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LEARNING OBJECTIVES

By the end of this lecture, you will be able to: 

▸ Define a parton shower  

▸ Describe why parton showers are needed to simulate 
realistic final states 

▸ Interpret parton showering as a probabilistic process 

▸ Discuss the need for a hadronisation model and describe 
the most common approaches
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LIMITATIONS OF FIXED ORDER CALCULATIONS

▸ Calculations at fixed order the most accurate description of 
high energy (hard) processes 

▸ Accuracy is systematically improvable (though difficult) 

▸ However: they break down when physics is low energy (soft 
and/or collinear) 

▸ Describe only partonic final states 

▸ Can only deal with a small number of particles (max ~10 at 
NLO, max 3 at NNLO)



MONTE CARLO EVENT GENERATORS AND COMPUTATIONAL PHYSICS

PARTON SHOWER ALGORITHMS

▸ Parton showers bridge the gap between hard (TeV) and 
soft (GeV) scales   by resolving multiple gluon emissions 

▸ They evolve down to hadronic scales    (long distances) 

▸ Presence of multiple scales - rate is determined by large 
logarithms,

Q

Q0

αn
s log2n Q

Q0
∼ 1

▸ Generated by emissions ordered in  Q
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EXAMPLE - HIGGS PRODUCTION IN GLUON FUSION

▸ At the LHC, Higgs bosons are mainly produced via gluon 
fusion. Higgs does not couple directly to gluons, but through 
a top-quark loop. 

▸ Can be 'integrated out' to give an effective theory coupling 
Higgs and gluons - good approximation, simpler calculations
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HIGGS PRODUCTION IN GLUON FUSION

▸ Calculate squared MEs ( ):C = αs/6πv

g(p1)

g(p2)

H |ℳHgg |2 = 2(N2
c − 1)m4

HC2

g(p1)

g(p2)

H

g(p3) |ℳHggg |2 = 4Nc(N2
c − 1)C2g2

s

× ( m8
H + (2p1 ⋅ p2)4 + (2p1 ⋅ p2)4 + (2p1 ⋅ p2)4

8 (p1 ⋅ p2) (p1 ⋅ p3) (p2 ⋅ p3) )
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HIGGS PRODUCTION IN GLUON FUSION - COLLINEAR LIMIT

▸ Examine in the limit that gluons 2 and 3 are collinear: 
 :p2 = zP, p3 = (1 − z)P

2p1 ⋅ p2 → zm2
H, 2p1 ⋅ p3 → (1 − z)m2

H, 2p2 ⋅ p3 → 0

▸ The three gluon ME reduces to 

|ℳHggg |2 → 4Nc(N2
c − 1)C2g2

s m4
H ( 1 + z4 + (1 − z)4

2z(1 − z)p2 ⋅ p3 )
▸ We recognise the two gluon ME inside!
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HIGGS PRODUCTION IN GLUON FUSION - COLLINEAR LIMIT

▸ Rewriting,

|ℳHggg |2 →
2g2

s

2p2 ⋅ p3
|ℳHgg |2 Pgg(z)

▸ The collinear splitting function   is given byPgg

Pgg(z) = 2Nc ( z2 + (1 − z)2 + z2(1 − z)2

z(1 − z) )
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HIGGS PRODUCTION IN GLUON FUSION - COLLINEAR LIMIT

▸ Repeat for quarks:

g(p1)

q(p2)

H

q(p3) |ℳHgq̄q |2 = 4TR(N2
c − 1)C2g2

s

× ( (2p1 ⋅ p2)2 + (2p1 ⋅ p3)2

2 (p2 ⋅ p3) )
|ℳHgq̄q |2 →

2g2
s

2p2 ⋅ p3
|ℳHgg |2 Pqg(z)

Pqg(z) = TR [z2 + (1 − z)2]
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QUARK-GLUON COLLINEAR LIMIT

▸ Remaining possibility not present in Higgs process, but 
can look at e.g.  :γ* → qq̄

q(p1)

q̄(p2)

γ*(Q)

q(p1)

q̄(p2)

γ*(Q) g(p3)

|ℳγ*q̄q |2 = 4Nce2
qQ2

|ℳγ*q̄qg |2 = 8NcCFe2
qg2

s Q2

( (2p1 ⋅ p3)2 + (2p2 ⋅ p3)2 + 2Q2(2p1 ⋅ p2)
4(p1 ⋅ p3) (p2 ⋅ p3) )

Pqq(z) = CF ( 1 + z2

1 − z )
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SPLITTING FUNCTIONS AND FACTORISATION

▸ The results for the splitting functions are actually universal 
- they are the same for every QCD process in the collinear 
limit

|ℳac… |2 →
2g2

s

2pa ⋅ pc
|ℳb… |2 Pab(z)

a

c

b
1 − z

z

Collinear singularity

▸ Soft singularities also present in  ,   as  . 

▸ Singularities imply soft/collinear radiation is favoured.

Pqq Pgg z → 1



MONTE CARLO EVENT GENERATORS AND COMPUTATIONAL PHYSICS

PHASE SPACE FACTORISATION

▸ Same considerations apply to phase space:

dΦ…b = (…)
d3 ⃗pb

(2π)32Eb

dΦ…ac = (…)
d3 ⃗pa

(2π)32Ea

d3 ⃗pc

(2π)32Ec

b

θc

θa

dΦ…ac = dΦ…b
d3 ⃗pa

(2π)32Ea

Eb

Ec
≈ dΦ…b

1
(2π)2

EaEb

2Ec
dEaθadθa

Exercise - prove for small  θa

pa = zpb

pc = (1 − z)pb
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PHASE SPACE FACTORISATION
▸ Small-angle kinematics, collinear limit: momentum 

conservation gives
Ea = zEb, Ec = (1 − z)Eb

zθa − (1 − z)θc = 0

▸ Relate opening angle   to Mandelstam:θ = θa + θc

t = (pa + pc)2 = 2EaEc(1 − cos2 θ) =
zE2

bθ2
a

1 − z
▸ Change variables in phase space  (Ea, θa) → (z, t)

dΦ…ac = dΦ…b
dz dt
16π2
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PARTON SHOWER

▸ Combining phase space and matrix element factorisation, 
we arrive at 

dσn+1 = dσn ( αs

2π ) dt
t

Pab(z) dz

▸ Iterate to generate soft and collinear radiation!

▸ Evolution in invariant mass   reduces 
momentum fraction   

▸ Treatment so far for final state radiation 
( ) - for IS, must account for PDFs

t
z

t > 0
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PARTON SHOWER

▸ Master equation for parton 
shower can be interpreted as the 
probability   of a given parton 
branching at values   - how 
does   change in time step 
 ? 

▸ Represent multiple emissions as 
paths in   space. Branchings 
are vertical steps, where   
changes at fixed  .

f(x, t)
(x, t)

f(x, t)
t + δt

(x, t)
x

t

x

t

Change in   = (paths in - paths out) /  f(x, t) δx
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PARTON SHOWER

▸ Consider gluon-only case - integrate branching 
probabilities to find numbers in and out:

y > x

x

z = x/y
δfin(x, t) =

δt
t ∫

1

x
dy dz ( αs

2π ) Pgg(z) f(y, t) δ(x − zy)

=
δt
t ∫

1

x

dz
z ( αs

2π ) Pgg(z) f(x /z, t)

x

y < x

z = y/x
δfout(x, t) =

δt
t

f(x, t)∫
x

0
dy dz ( αs

2π ) Pgg(z) δ(y − xz)

=
δt
t

f(x, t)∫
1

x
dz ( αs

2π ) Pgg(z)
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DGLAP EVOLUTION
▸ Taking the difference, arrive at the Dokshitzer-Gribov-

Lipatov-Altarelli-Parisi (DGLAP) equation

t
∂f(x, t)

∂t
= ∫

1

0
dz ( αs

2π ) Pab(z) ( 1
z

f(x/z, t) − f(x, t))
▸ Introducing the Sudakov form factor, 

Δ(t) = exp [−∫
t

t0

dt′ 

t′ ∫ dz ( αs

2π ) Pab(z)]
write as

t
∂
∂t ( f(x, t)

Δ(t) ) =
1

Δ(t) ∫
dz
z ( αs

2π ) Pab(z) f(x/z, t)
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THE SUDAKOV FORM FACTOR

▸ Integrate previous equation to find solution

f(x, t) = Δ(t) f(x, t0) + ∫
t

t0

dt′ 

t′ 

Δ(t)
Δ(t′ ) ∫

dz
z ( αs

2π ) Pab(z) f(x/z, t)

No branching between   
and  

t0
t

For each value of  , no 
branching between   and  

t′ 

t′ t

▸ Sudakov gives no emission probability! 

▸ Back to MC: generate  , determine   from 
 , generate   to get integral right 

r ∈ [0,1] t2
Δ(t2)/Δ(t1) = r z
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EXPONENTIATION AND RESUMMATION

▸ Have to cut-off   integration to avoid singularities - defines 
what is a resolvable emission for the shower 

▸ No resolvable emissions for quark in the simplest case:

z

Δq(t) = exp [−∫
t

t0

dt′ 

t′ ∫
1−t0/t′ 

t0/t′ 

dz ( αs

2π ) Pqq(z)]
∼ exp −CF ( αs

2π ) log2 ( t
t0 )

▸ Exponentiation sums terms with a double log - in 
resummation terminology, this is a leading log evolution 



MONTE CARLO EVENT GENERATORS AND COMPUTATIONAL PHYSICS

EVOLUTION VARIABLES 

▸ At the moment have considered the virtuality   as the 
evolution variable, but other choices possible:

t

t = z(1 − z)E2
bθ2

p2
T = θ2

aE2
a = z2(1 − z)2E2

bθ2

▸ For constant  , these imply z
dt
t

=
dθ2

θ2
=

dp2
T

p2
T

▸ Equivalent in collinear limit but different elsewhere. Of the 
Big Three, PYTHIA and SHERPA use  , HERWIG uses   pT θ
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THIS TOO SHALL PASS

▸ Nothing gold can stay. Eventually, shower evolution brings 
us to ~1 GeV scales where perturbation theory breaks 
down. No more branching! 

▸ Once all partons meet this fate, we are left with quarks and 
gluons. Detector, however, sees hadrons! 

▸ Need a hadronisation model to describe transition from 
partons to hadrons. Nonperturbative physics  not 
calculable from first principles, use empirical models

⇒



MONTE CARLO EVENT GENERATORS AND COMPUTATIONAL PHYSICS

THE BROWN MUCK

▸ What do we actually know? 

▸ Gluons self-couple - field 
lines are attractive (to each 
other!) 

▸ Inter-quark potential is 
quasi-linear with separation 
(known from lattice data, 
hadron spectroscopy)
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FEYNMAN-FIELD FRAGMENTATION (’78)

▸   pairs created from vacuum to dress bare quarks.  

▸ Fragmentation functions   give density of momentum 
fraction   carried away by hadron   from quark   

▸ Gaussian   distribution, recursively split   

▸ Flaws: frame dependent, no connection with perturbative 
physics, not IR safe, not a confinement model, wrong 
energy dependence 

qq̄

fq→h(z)
z h q

pT q → q′ + h
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LUND STRING MODEL
▸ Model linear potential as a stretched spring (string) 

▸ Mesons are oscillating strings

q q̄
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LUND STRING MODEL

▸ Force between quarks eventually drops as it becomes 
energetically favourable for string to break 

▸ Tunnelling probability for breaking of string with tension   
given by 

κ

P ∝ exp (
πm2

⊥q

κ )
▸ Suppressed by quark masses (so charm almost negligible) 

▸ Suppressed by high transverse momentum - breaking 
gives back-to-back particles in CM frame
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LUND STRING MODEL

▸ Need to account for gluons too - model as kinks in string 

▸ Large, instantaneous momentum transfer at initial time 
which stretches string

▸ Connected to two string segments, so loses energy twice as 
fast as the endpoints ( ) CA/CF ∼ 2
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LUND STRING MODEL

▸ Consequence: string effect results in depleted regions
g

q

q̄

Almost no hadrons here - depleted by kink 
and quark endpoints

Colour connections
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PRECONFINEMENT

▸ In large   limit, planar graphs dominate:Nc

▸ Colour partners (forming a colour singlet) are produced 
'close' to each other by parton shower. 

▸ Can be paired up to form 'clusters'
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CLUSTER MODEL

Steps: 

▸ Trace colour through shower 

▸ Convert gluons to quark pairs with heuristic model 

▸ Collect quark pairs into colour singlet clusters 

▸ Cluster masses peaked at low scales: decay heavy clusters 
into lighter ones  

▸ Light clusters decay to hadrons
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HADRONISATION MODELS

▸ String model based on nonperturbative physics, improved 
by perturbative QCD (parton shower) 

▸ Cluster model based on perturbative physics, improved by 
string-like cluster fission 

▸ Both depend on a large number of free parameters - 
extracted by tuning to data, usually from LEP 

▸ Overall good agreement, ~5% over many observables and 
energy scales
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SUMMARY

▸ Parton shower algorithms use a soft/collinear 
approximation to the matrix element to iteratively 
generate many emissions 

▸ Shower evolves from a high to low scale 

▸ Sudakov factor gives shower no-emission probability 
between two scales 

▸ End of showering is described by nonperturbative 
hadronisation models


