## Flavour Physics

Marcella Bona

ك Queen Mary
University of London

13th NExT Ph.D. Workshop
QMUL, London
Lecture 2

## Outline

$\checkmark$ Short recap
$\diamond$ Angles of the unitarity triangle
$\diamond$ Inputs to the Unitarity Triangle fit
$\diamond$ Global fit results in and beyond the SM
$\diamond$ New physics Scale analysis
$\diamond b$ to sll FCNC: ongoing work


## $\sin 2 \beta$ in golden $b \rightarrow c \bar{c} s$ modes

$$
\mathrm{B}^{0} \rightarrow \mathrm{~J} / \psi \mathrm{K}_{\mathrm{S}, \mathrm{~L}}
$$

Leading-order tree decays to cc̄s final states
tree diagram

because both $B$ and $\bar{B}$ can decay in this common final state, this can interfere with the oscillation diagram:


$$
\lambda=\frac{q}{p} \frac{A(\bar{B} \rightarrow f)}{A(B \rightarrow f)}=\left\{\begin{array}{l}
V_{t d}^{*} V_{t b} \\
\left.V_{t d}\right) V_{t b}^{*} \\
\frac{\bar{A}}{A} \sim e^{-i 2 \beta} \frac{\bar{A}}{A}
\end{array}\right.
$$

## $\sin 2 \beta$ in golden $b \rightarrow c \bar{c} s$ modes

$$
\mathrm{B}^{0} \rightarrow \mathrm{~J} / \psi \mathrm{K}_{\mathrm{s}, \mathrm{~L}}
$$


using this unitary condition ( $2^{\text {nd }} \rightleftarrows 3^{\text {rd }}$ family), we eliminate $V_{t b} V^{*}{ }_{\text {ts }}$

$$
\mathrm{V}_{\mathrm{ub}} \mathrm{~V}_{\mathrm{us}}^{*}+\mathrm{V}_{\mathrm{cb}} \mathrm{~V}_{\mathrm{cs}}^{*}+\mathrm{V}_{\mathrm{tb}} \mathrm{~V}_{\mathrm{ts}}^{*}=0 \quad \rightarrow \quad \mathrm{~V}_{\mathrm{tb}} \mathrm{~V}_{\mathrm{ts}}^{*}=-\mathrm{V}_{\mathrm{ub}} \mathrm{~V}_{\mathrm{us}}^{*}-\mathrm{V}_{\mathrm{cb}} \mathrm{~V}_{\mathrm{cs}}^{*}
$$

thus the amplitude is:

$$
A_{\text {ccs }}-\underbrace{V_{c \mathrm{c}} \mathrm{~V}^{*}}_{\mathcal{O}\left(\lambda^{2}\right)}\left(T+\mathrm{P}^{c}-\mathrm{P}^{\mathrm{t}}\right)+\underbrace{\mathrm{V}_{\mathrm{ub}} \mathrm{~V}^{*}{ }_{\mathrm{us}}}_{\mathcal{O}\left(\lambda^{4}\right)}\left(\mathrm{P}^{\mathrm{u}}-\mathrm{P}^{\text {CKM-suppressed }}\right. \text { pollution by penguins }
$$

## $\sin 2 \beta$ in golden $b \rightarrow c \bar{c} s$ modes

© branching fraction: $O\left(10^{-3}\right)$ the colour-suppressed tree dominates and the penguin pollution has the same weak phase of the tree or is CKM suppressed

- $A_{C P}(t)=\frac{\Gamma\left(\bar{B}^{0}(t) \rightarrow f_{C P}\right)-\Gamma\left(B^{0}(t) \rightarrow f_{C P}\right)}{\Gamma\left(\bar{B}^{0}(t) \rightarrow f_{C P}\right)+\Gamma\left(B^{0}(t) \rightarrow f_{C P}\right)} \quad \mathrm{S} \sim \sin 2 \beta$
© theoretical uncertainty:
- model-independent data-driven estimation from $\mathrm{J} / \psi \pi^{0}$ data:

$$
\Delta \mathrm{S}_{\mathrm{J} / \psi<0}=\mathrm{S}_{\mathrm{J} / \psi<0}-\sin 2 \beta=-0.01 \pm 0.01
$$

M.Ciuchini et al. arXiv:1102.0392 [hep-ph].

- model-dependent estimates of the u - and c - penguin biases

$$
\begin{aligned}
& \Delta \mathrm{S}_{\mathrm{J} / \psi K 0}=\mathrm{S}_{\mathrm{J} / \psi K 0}-\sin 2 \beta \sim O\left(10^{-3}\right) \\
& \Delta \mathrm{S}_{\mathrm{J} / \psi K 0}=\mathbf{S}_{\mathrm{J} / \psi K 0}-\sin 2 \beta \sim O\left(10^{-4}\right)
\end{aligned}
$$

## CP Violation in the B Meson System

Time-dependent analysis
CP violation in interference
Less clean channel due to big penguin contributions

$$
\mathrm{S}_{\mathrm{f} \mathrm{CP}} \propto \sin 2 \alpha
$$

Time-dependent analysis:
CP violation in interference
Direct CP violation

$$
\mathrm{S}_{\mathrm{f}_{\mathrm{CP}}}=-\eta_{\mathrm{CP}} \sin 2 \beta
$$

$\alpha / \phi_{2}$ angle $\alpha \equiv \arg \left[-V_{\mathrm{ta}} V_{\mathrm{tb}}^{*} / V_{\mathrm{ud}} \mathcal{V}_{\mathrm{ub}}^{*}\right]$
$B \rightarrow u \bar{u} d$ transitions with possible loop contributions.

$(1,0)$

## $\alpha / \phi_{2}$ angle

© Interference between box and tree results in an asymmetry that is sensitive to $\alpha$ in $B \rightarrow$ hh decays: $h=\pi, \rho, \ldots$

$$
C_{h h}=0
$$

$$
S_{h h}=\sin (2 \alpha)
$$

This is again a case of interference between mixing and decay. This scenario is equivalent to the measurement of $\sin 2 \beta$ in Charmonium decays ... but in this case it is more complicated..

## $\alpha / \phi_{2}$ angle

© Interference between box and tree results in an asymmetry that is sensitive to $\alpha$ in $B \rightarrow$ hh decays: $h=\pi, \rho, \ldots$



In this case the penguin diagram is not CKM suppressed so it spoils the clean measurement of the CP violation effect

## $\alpha\left(\phi_{2}\right)$ from $\pi \pi, \rho \rho, \pi \rho$ decays with Isospin analysis

Interference between box mixing and tree diagrams results in an asymmetry that is sensitive to $\alpha$ in $B \rightarrow$ hh decays: $h=\pi, \rho$

Unlike for $\beta$, loop (penguin diagrams) corrections are not negligible for $\alpha$

Need Isospin analysis including all modes ( B of all charges and flavours) to obtain the $\alpha$ estimate

- Considering the tree (T) only:

$$
\begin{aligned}
& \lambda_{\pi \pi}=\mathrm{e}^{2 i \alpha} \\
& \mathrm{C}_{\pi \pi}=0 \\
& \mathrm{~S}_{\pi \pi}=\sin (2 \alpha)
\end{aligned}
$$

- adding the penguins ( P ):

$$
\lambda_{\pi \pi}=e^{2 i \alpha} \frac{1+|P / T| e^{i \delta} e^{i \gamma}}{1+|P / T| e^{i \delta} e^{-i \gamma}}
$$

$C_{\pi \pi} \propto \sin (\delta)$
$S_{\pi \pi}=\sqrt{1-C_{\pi \pi}^{2}} \sin \left(2 \alpha_{e f f}\right)$

## Isospin analysis

- Consider the simplest case: $B \rightarrow \pi \pi / \rho \rho$ decays.

$$
\begin{aligned}
& \frac{1}{\sqrt{2}} A^{+-}+A^{00}=A^{+0} \\
& \frac{1}{\sqrt{2}} \bar{A}^{+-}+\bar{A}^{00}=\bar{A}^{+0}
\end{aligned}
$$



- There are $\operatorname{SU}(2)$ violating corrections to consider, for example electroweak penguins ( $\sim 5 \%$ ), but these are much smaller than current experimental accuracy and eventually they can be incorporated

Measuring S in $\mathrm{h}^{0} \mathrm{~h}^{0}$ provides an additional constraint on this angle. into the Isospin analysis.

## $\gamma\left(\phi_{3}\right)$ from B decays in DK

$B$ to $D^{(*)} K^{(*)}$ decays: from BRs and BR ratios, no time-dependent analysis, just rates.

$B \rightarrow D^{(*) 0}\left(D^{(+*)}\right) K^{(*)}$ decays can proceed both through $\mathrm{V}_{\mathrm{cb}}$ and $\mathrm{V}_{\mathrm{ub}}$ amplitudes

## $\gamma\left(\phi_{3}\right)$ from B decays in DK

$B$ to $D^{(*)} K^{(*)}$ decays: from BRs and BR ratios, no time-dependent analysis, just rates.

The phase $\gamma$ is measured exploiting interferences between $\mathrm{b} \rightarrow \mathrm{c}$ and $\mathrm{b} \rightarrow \mathrm{u}$ transitions: two amplitudes leading to the same final states

Some rates can be really small: $\sim 10^{-7}$ need to combine all the possible modes and analysis methods.


$$
\mathbf{V}_{\mathrm{ub}}=\left|\mathbf{V}_{\mathrm{ub}}\right| \mathbf{e}^{-\mathrm{i} y}\left(\sim \lambda^{3}\right)
$$



## CP Violation in the B Meson System


M.Bona - Flavour Physics - lecture 2

## CP Violation in the B Meson System as Unitary Triangle


M.Bona - Flavour Physics - lecure $<$

## More inputs to determine the Unitary Triangle

Tree-level diagrams: $\left|\mathrm{V}_{\mathrm{ub}}\right|,\left|\mathrm{V}_{\mathrm{cb}}\right|, ~ \gamma$
Loop diagrams from neutral meson mixing: $\Delta m_{d}, \Delta m_{s}, \varepsilon_{k}$
CP-conserving: $\left|\mathrm{V}_{\mathrm{xb}}\right|, \Delta \mathrm{m}_{\mathrm{d}}, \Delta \mathrm{m}_{\mathrm{s}}$
CP-violating: $\sin (2 \beta), \alpha, \gamma, \boldsymbol{\varepsilon}_{\mathrm{K}}$

## CKM parameter extraction

example of observables


## More inputs

In addition to the angles we already discusses, there are the mixing parameters ( $\Delta m$ ), the CP violation in the kaon system and tree-level semileptonic B decays

M.Bona - Flavour Physics - lecture 2

## CPV in the Kaon system

The physical states $\mathrm{K}_{\mathrm{s}}$ and $\mathrm{K}_{\mathrm{L}}$ are not pure CP eigenstates, with the deviation described by complex parameter $\varepsilon$ (or $\varepsilon_{k}$ ).
Linking formalism:

$$
p / q=(1+\varepsilon) /(1-\varepsilon)
$$

Direct CP violation can occur in kaon decays to two pions [ $\mathrm{K}_{\mathrm{L}}$ ( $C P=-1$ ) is seen to decay in two pions (CP=+1)]. This is described by complex parameter $\varepsilon^{\prime}$.

1. CP Violation in $\mathrm{K}-\overline{\mathrm{K}}$ mixing (Indirect CPV): $\operatorname{Re}(\varepsilon)$
2. in the decay amplitudes
(Direct CPV): $\operatorname{Re}\left(\varepsilon^{\prime}\right)$
3. in the interference
between decays with and without mixing: $\operatorname{Im}(\varepsilon)$ and Im ( $\varepsilon^{\prime}$ )

## CPV in the Kaon system

## $\varepsilon_{K}$ from K-K mixing



$$
\begin{gathered}
\boldsymbol{\varepsilon}_{\mathrm{K}}=(\mathbf{2 . 2 2 8} \pm \mathbf{0 . 0 1 1}) \cdot \mathbf{1 0}^{-3} \\
B_{K}=\frac{<K\left|J_{\mu} J^{\mu}\right| \bar{K}>}{\langle K| J_{\mu}|0><0| J^{\mu} \mid \bar{K}>} \\
\mathbf{B}_{\mathrm{K}}=\mathbf{0 . 7 3 1} \pm \mathbf{0 . 0 3 6}
\end{gathered}
$$

from lattice QCD

$$
I \varepsilon_{K} \vDash C_{\varepsilon} B_{K} A^{2} \lambda^{6} \eta\left\{-\eta S_{0}\left(x_{c}\right)\left(1-\lambda^{2} / 2\right)+\eta_{s} 0_{0}\left(x_{c}, x_{t}\right) \eta V_{0}\left(x_{t}\right) A^{2} \lambda^{4}(1-\bar{\rho})\right\}
$$

$\mathrm{S}_{0}=$ Inami-Lim functions for c-c, c-t, e t-t contributions (from perturbative calculations)

## CPV in the Kaon system

## $\varepsilon_{K}$ from K-K mixing


from lattice QCD


$$
\left.I \varepsilon_{K} \vDash C_{\varepsilon} B_{K} A^{2} \lambda^{6} \eta\left\{-\eta S_{0}\left(x_{c}\right)\left(1-\lambda^{2} / 2\right)+\eta_{s} S_{0}\left(x_{c}, x_{t}\right)-\eta S_{0}\left(x_{t}\right)\right)^{2} \lambda^{4}(1-\bar{\rho})\right\}
$$

$\mathrm{S}_{0}=$ Inami-Lim functions for $\mathrm{c}-\mathrm{c}, \mathrm{c}-\mathrm{t}$, e t-t contributions (from perturbative calculations)

B meson mixing parameter $\Delta \mathrm{m}_{\mathrm{q}} \quad \mathrm{q}=\mathrm{d} . \mathrm{s}$


$$
\begin{aligned}
& \Delta \mathrm{m}_{\mathrm{d}}=0.507 \pm 0.005 \mathrm{ps}^{-1} \\
& \Delta \mathrm{~m}_{\mathrm{s}}=17.70 \pm 0.08 \mathrm{ps}^{-1}
\end{aligned}
$$

WA
CDF +LHCb

$$
\begin{aligned}
\Delta m_{d} & =\frac{G_{F}^{2}}{6 \pi^{2}} m_{W}^{2} \eta_{b} S\left(x_{t}\right) m_{B_{d}} f_{B_{d}}^{2} \hat{B}_{B_{d}}\left|V_{t b}\right|^{2}\left|V_{t d}\right|^{2}= \\
& =\frac{G_{F}^{2}}{6 \pi^{2}} m_{W}^{2} \eta_{b} S\left(x_{t}\right) m_{B_{d}} f_{B_{d}}^{2} \hat{B}_{B_{d}}\left|V_{c t}\right|^{2} \lambda^{2}\left((1-\bar{\rho})^{2}+\bar{\eta}^{2}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \Delta m_{d} \approx\left[(1-\boldsymbol{\rho})^{2}+\boldsymbol{\eta}^{2}\right] \frac{f_{B_{s}}^{2} B_{B_{s}}}{\xi^{2}} \\
& \Delta m_{s} \approx f_{B_{s}}^{2} B_{B_{s}}
\end{aligned}
$$

$S=$ Inami - Lim function
$B_{B_{q}}$ and $f_{B_{q}}$ from lattice $Q C D$ (from perturbative calculations)
M.Bona - Flavour Physics - lecture 2

B meson mixing parameter $\Delta m_{q} \quad q=d . s$


$$
\begin{aligned}
& \Delta \mathrm{m}_{\mathrm{d}}=0.507 \pm 0.005 \mathrm{ps}^{-1} \quad \text { WA } \\
& \Delta \mathrm{m}_{\mathrm{S}}=17.70 \pm 0.08 \mathrm{ps}^{-1} \quad \mathrm{CDF}+\mathrm{LHCb}
\end{aligned}
$$



$$
\begin{aligned}
& \boldsymbol{\Delta} m_{d} \approx\left[(1-\boldsymbol{\rho})^{2}+\boldsymbol{\eta}^{2}\right] \frac{f_{B_{s}}^{2} B_{B_{s}}}{\xi^{2}} \\
& \Delta m_{s} \approx f_{B_{s}}^{2} B_{B_{s}}
\end{aligned}
$$

## Semileptonic decays for $\left|\mathrm{V}_{\mathrm{ub}} / \mathrm{V}_{\mathrm{cb}}\right|$

## tree diagrams

- $\mathrm{b} \rightarrow \mathrm{c}$ and $\mathrm{b} \rightarrow \mathrm{u}$ transition
o negligible new physics contributions
o inclusive and exclusive semileptonic $B$ decay branching ratios


QCD corrections to be included o inclusive measurements: OPE o exclusive measurements: form factors from lattice QCD

$$
\left|\frac{V_{u b}}{V_{c b}}\right|=\frac{\lambda}{1-\frac{\lambda^{2}}{2}} \sqrt{\bar{\rho}^{2}+\bar{\eta}^{2}}
$$



## Semileptonic decays for $\left|\mathrm{V}_{\mathrm{ub}} / \mathrm{V}_{\mathrm{cb}}\right|$

o Inclusive and exclusive Measurements affected by different uncertainties both theoretical and experimental

$$
\sim 1.7 \sigma \text { discrepancy }
$$

o Long standing discrepancy between m the two sets of measurements and the global fit does not help


## Lattice QCD

lattice inputs updated in Summer 2022

## Observables <br> Measurement

| $\mathrm{B}_{\mathrm{K}}$ | $0.756 \pm 0.016$ |
| :---: | :---: |
| $\mathrm{f}_{\mathrm{Bs}}$ | $0.2301 \pm 0.0012$ |
| $\mathrm{f}_{\mathrm{Bs}} / \mathrm{f}_{\text {Bd }}$ | $1.208 \pm 0.005$ |
| $\mathrm{~B}_{\text {Bs }} / \mathrm{B}_{\text {Bd }}$ | $\mathbf{1 . 0 1 5} \pm \mathbf{0 . 0 2 1}$ |
| $\mathrm{B}_{\text {Bs }}$ | $\mathbf{1 . 2 8 4} \pm \mathbf{0 . 0 5 9}$ |

We quote, instead, the weighted average of the $\mathrm{N}_{\mathrm{f}}=2+1+1$ and $\mathrm{N}_{\mathrm{f}}=2+1$ results with the error rescaled when chi2/dof $>1$, as done by FLAG for the $\mathrm{N}_{\mathrm{f}}=2+1+1$ and $\mathrm{N}_{\mathrm{f}}=2+1$ averages separately [new HPQCD (2+1+1) result 1907.01025]

## Unitarity Triangle analysis in the SM:


M.Bona - Flavour Physics - lecture 2

## Unitarity Triangle analysis in the SM:


levels @ 95\% Prob

## Unitarity Triangle analysis in the SM:

levels @ 95\% Prob

$$
\begin{aligned}
& \bar{\rho}=0.160 \pm 0.009 \\
& \bar{\eta}=0.345 \pm 0.009
\end{aligned}
$$

## Unitarity Triangle analysis in the SM:

M.Bona - Flavour Physics - lecture 2

## Some interesting configurations



## Some interesting configurations



## compatibility plots

To "measure" the agreement of a single measurement with the indirect determination from the fit using all the other inputs:

Color code: agreement between the predicted values and the measurements at better than 1, 2, ...no

$$
\begin{aligned}
& \alpha_{\exp }=(95.0 \pm 4.7)^{\circ} \\
& \alpha_{\text {UTfit }}=(92.3 \pm 1.5)^{\circ}
\end{aligned}
$$

$$
\begin{aligned}
& \gamma_{\exp }=(65.8 \pm 3.4)^{\circ} \\
& \gamma_{U T f i t}=(64.9 \pm 1.3)^{\circ}
\end{aligned}
$$

The cross has the coordinates $(x, y)=$ (central value, error) of the direct measurement

$$
\begin{gathered}
110 \\
\alpha\left[{ }^{0}\right]
\end{gathered}
$$

M.Bona - Flavour Physics - lecture 2

Checking the usual tensions..

M.Bona - Flavour Physics - lecture 2

Unitarity Triangle analysis in the SM:
obtained excluding the

| Observables | Measurement | Prediction | Pull (\#O) |
| :---: | :---: | :---: | :---: |
| $\sin 2 \beta$ | $0.688 \pm 0.020$ | $0.732 \pm 0.027$ | $\sim 1.3$ |
| $\gamma$ | $65.8 \pm 3.4$ | $64.9 \pm 1.3$ | $<1$ |
| $\alpha$ | $95.0 \pm 4.7$ | $92.3 \pm 1.5$ | $<1$ |
| $\varepsilon_{\mathrm{k}} \cdot 10^{3}$ | $2.228 \pm 0.001$ | $2.04 \pm 0.14$ | $<1$ |
| $\left\|\mathrm{~V}_{\mathrm{cb}}\right\| \cdot 10^{3}$ | $41.25 \pm 0.95$ | $42.6 \pm 0.5$ | $<1$ |
| $\left\|\mathrm{~V}_{\mathrm{cb}}\right\| \cdot 10^{3}$ (incl) | 42.160 .50 |  | $<1$ |
| $\left\|\mathrm{~V}_{\mathrm{cb}}\right\| \cdot 10^{3}$ (excl) | 39.440 .63 |  | $\sim 4.0$ |
| $\left\|\mathrm{~V}_{\mathrm{ub}}\right\| \cdot 10^{3}$ | $3.77 \pm 0.24$ | $3.70 \pm 0.10$ | $<1$ |
| $\left\|\mathrm{~V}_{\mathrm{ub}}\right\| \cdot 10^{3}$ (incl) | $4.32 \pm 0.29$ | - | $\sim 2.0$ |
| $\left\|\mathrm{~V}_{\mathrm{ub}}\right\| \cdot 10^{3}$ (excl) | $3.74 \pm 0.17$ | - | $<1$ |

M.Bona - Flavour Physics - lecture 2

New $\varepsilon^{1 / \varepsilon}$ prediction from the Unitarity Triangle fit

Experimental value $\varepsilon^{\prime} / \varepsilon=(16.6 \pm 3.3) \cdot 10^{-4}$

New UTfit work:
$\varepsilon^{\prime} / \varepsilon=(15.2 \pm 4.7) \cdot 10^{-4}$


## UT analysis including new physics

fit simultaneously for the CKM and the NP parameters (generalized UT fit)

- add most general loop NP to all sectors
- use all available experimental info
- find out NP contributions to $\Delta F=2$ transitions
$B_{d}$ and $B_{s}$ mixing amplitudes
(2+2 real parameters):

$$
A_{q}=C_{B_{q}} e^{2 i \phi_{B_{q}}} A_{q}^{S M} e^{2 i \phi_{q}^{S M}}=\left(1+\frac{A_{q}^{N P}}{A_{q}^{S M}} e^{2 i\left(\phi_{q}^{N P}-\phi_{q}^{S M}\right)}\right) A_{q}^{S M} e^{2 i \phi_{q}^{S M}}
$$

## UT analysis including new physics

$$
\begin{aligned}
& A_{q}=C_{B_{q}} e^{2 i \phi_{B_{q}}} A_{q}^{S M} e^{2 i \phi_{q}^{S M}}=\left(1+\frac{A_{q}^{N P}}{A_{q}^{S M}} e^{2 i\left(\phi_{q}^{\phi M}-\phi_{q}^{s(M)}\right.}\right) A_{q}^{S M} e^{2 i \phi_{q}^{S M}} \\
& \Delta m_{q / K}=C_{B_{q} / \Delta m_{k}}\left(\Delta m_{q / K}\right)^{S M} \varepsilon_{K}=C_{\varepsilon} \varepsilon_{k}^{S M} \\
& A_{C P}^{B_{d} \rightarrow J / \psi K_{s}}=\sin 2\left(\beta+\phi_{B_{d}}\right) \quad A_{C P}^{B_{s} \rightarrow J / \psi \phi} \sim \sin 2\left(-\beta_{s}+\phi_{B_{s}}\right) \\
& A_{S L}^{q}=\operatorname{Im}\left(\Gamma_{12}^{q} / A_{q}\right) \quad \Delta \Gamma^{q} / \Delta m_{q}=\operatorname{Re}\left(\Gamma_{12}^{q} / A_{q}\right)
\end{aligned}
$$

## new-physics-specific constraints

$$
A_{\mathrm{SL}}^{s} \equiv \frac{\Gamma\left(\bar{B}_{s} \rightarrow \ell^{+} X\right)-\Gamma\left(B_{s} \rightarrow \ell^{-} X\right)}{\Gamma\left(\bar{B}_{s} \rightarrow \ell^{+} X\right)+\Gamma\left(B_{s} \rightarrow \ell^{-} X\right)}=\operatorname{Im}\left(\frac{\Gamma_{12}^{s}}{A_{s}^{\text {full }}}\right)
$$

semileptonic asymmetries in $B^{0}$ and $B_{s}$ : sensitive to NP effects in both size and phase. Taken from the latest HFLAV.
lifetime $\tau^{\text {FS }}$ in flavour-specific final states: average lifetime is a function to the width and the width difference

$$
\tau^{\mathrm{FS}}\left(\mathrm{~B}_{\mathrm{s}}\right)=1.527 \pm 0.011 \mathrm{ps}
$$



## NP analysis results



NP analysis results $\quad A_{q}=C_{B_{q}} e^{2 i \phi_{\rho}} \cdot A_{q}^{S M} e^{2 i \phi_{q}^{S M}}$
dark: 68\% light: 95\% SM: red cross


M.Bona - Flavour Physics - lecture 2

NP analysis results

$$
A_{q}=\left(1+\frac{A_{q}^{N P}}{A_{q}^{S M}} e^{2 i\left(\phi_{q}^{N Q}-\phi_{q}^{S M}\right.}\right) A_{q}^{S M} e^{2 i \phi_{q}^{S M}}
$$




The ratio of NP/SM amplitudes is: < 25\% @68\% prob. (35\% @ 95\%) in $\mathrm{B}_{\mathrm{d}}$ mixing < 25\% @68\% prob. (30\% @ $95 \%$ ) in $\mathrm{B}_{\mathrm{s}}$ mixing new physics enters according to its specific features

$$
\begin{aligned}
\mathcal{H}_{\mathrm{eff}}^{\Delta B=2} & \left.=\sum_{i=1}^{5} C_{i}\right) Q_{i}^{b q}+\sum_{i=1}^{3} \widehat{\tilde{C}_{i}} \tilde{Q}_{i}^{b q} \\
Q_{1}^{q_{i} q_{j}} & =\bar{q}_{j L}^{\alpha} \gamma_{\mu} q_{i L}^{\alpha} \bar{q}_{j L}^{\beta} \gamma^{\mu} q_{i L}^{\beta} \\
Q_{2}^{q_{i} q_{j}} & =\bar{q}_{j R}^{\alpha} q_{i L}^{\alpha} \bar{q}_{j R}^{\beta} q_{i L}^{\beta} \\
Q_{3}^{q_{i} q_{j}} & =\bar{q}_{j R}^{\alpha} q_{i L}^{\beta} \bar{q}_{j R}^{\beta} q_{i L}^{\alpha}
\end{aligned}
$$

$$
Q_{4}^{q_{i} q_{j}}=\bar{q}_{j R}^{\alpha} q_{i L}^{\alpha} \bar{q}_{j L}^{\beta} q_{i R}^{\beta}
$$

$$
Q_{5}^{q_{i} q_{j}}=\bar{q}_{j R}^{\alpha} q_{i L}^{\beta} \bar{q}_{j L}^{\beta} q_{i R}^{\alpha}
$$

## testing the new-physics scale

$$
C_{i}(\Lambda)=F \frac{L_{i}}{\Lambda^{2}}
$$

F. function of the NP flavour couplings

Li: loop factor (in NP models with no tree-level FCNC)
$\Lambda$ : NP scale (typical mass of new particles mediating $\Delta \mathrm{F}=2$ processes)

The dependence of C on $\Lambda$ changes depending on the flavour structure. We can consider different flavour scenarios:

- Generic: $\mathrm{C}(\Lambda)=\alpha / \Lambda^{2} \quad \mathrm{~F}_{\mathrm{i}} \sim 1$, arbitrary phase
- NMFV: $\quad C(\Lambda)=\alpha \times\left|F_{S M}\right| / \Lambda^{2} \quad F_{i} \sim\left|F_{S M}\right|$, arbitrary phase
- MFV: $\quad C(\Lambda)=\alpha \times\left|F_{S M}\right| / \Lambda^{2} \quad F_{1} \sim\left|F_{S M}\right|, F_{i \neq 1} \sim 0$, SM phase
$\alpha\left(L_{i}\right)$ is the coupling among NP and SM
$\bigcirc \alpha \sim 1$ for strongly coupled NP
$\odot \alpha \sim \alpha_{w}\left(\alpha_{s}\right)$ in case of loop coupling through weak (strong) interactions

If no NP effect is seen lower bound on NP scale $\Lambda$
$F$ is the flavour coupling and so
$F_{S M}$ is the combination of CKM factors for the considered process

## results from the Wilson coefficients

Generic: $C(\Lambda)=\alpha / \Lambda^{2}$,
$\mathrm{F}_{\mathrm{i}} \sim 1$, arbitrary phase
$\alpha \sim 1$ for strongly coupled NP


Lower bounds on NP scale (at 95\% prob.)
$\Lambda>4.410^{5} \mathrm{TeV}$
$\alpha \sim \alpha_{w}$ in case of loop coupling through weak interactions

$$
\Lambda>1.310^{4} \mathrm{TeV}
$$

for lower bound for loop-mediated contributions, simply multiply by $\alpha_{s}(\sim 0.1)$ or by $\alpha_{w}(\sim 0.03)$.

## results from the Wilson coefficients

$\mathrm{NMFV}: \quad \mathrm{C}(\Lambda)=\alpha \times\left|\mathrm{F}_{\text {SM }}\right| / \Lambda^{2}$,
$\mathrm{F}_{\mathrm{i}} \sim\left|\mathrm{F}_{\mathrm{sm}}\right|$, arbitrary phase
$\alpha \sim 1$ for strongly coupled NP


Lower bounds on NP scale (at 95\% prob.)
$\Lambda>95 \mathrm{TeV}$
$\alpha \sim \alpha_{w}$ in case of loop coupling through weak interactions

$$
\Lambda>2.9 \mathrm{TeV}
$$

for lower bound for loop-mediated contributions, simply multiply by $\alpha_{s}(\sim 0.1)$ or by $\alpha_{w}(\sim 0.03)$.

FCNC b to sll

## Flavour changing neural current $b$ to sll

There are a lot of measurements
that can test $b$ to sle transitions:
$B_{s} \rightarrow \ell^{+} \ell^{-}, B \rightarrow K \ell^{+} \ell^{-}$,
Banding ratios,
$B \rightarrow K^{*} \ell^{+} \ell^{-}, B_{s} \rightarrow \phi \ell^{+} \ell^{-}$, SM symmetry tests

$$
\Lambda_{b} \rightarrow p K^{-} \ell^{+} \ell^{-}, \ldots
$$

Suppressed: with branching ratios from $10^{-6}$ down hence new physics effects can enhance their rates Clean: varying levels of cleaness


Increasing
precision of the
SM prediction

- Semileptonic $b \rightarrow s \mu \mu$
- Leptonic $B_{s} \rightarrow \mu \mu$
- Lepton universality


## Flavour changing neural current $b$ to sll

Increasing
precision of the
SM prediction
© Semileptonic $b \rightarrow s \mu \mu$

- Leptonic $B_{s} \rightarrow \mu \mu$
- Lepton universality



## Flavour changing neural current b to sll

- Semileptonic $b \rightarrow s \mu \mu$

Increasing
precision of the
SM prediction

- Leptonic $B_{s} \rightarrow \mu \mu$
- Lepton universality

Wilson coeff. Operator

| $\gamma$-penguin | $\mathcal{C}_{7}^{(1)}$ | $\sim\left(\bar{s} \sigma_{\mu \nu} P_{R(L)} \bar{b}\right) F^{\mu \nu}$ |
| :---: | :---: | :---: |
| EW-penguins (V) | $\mathcal{C}_{9}{ }^{\prime \prime}$ | $\sim\left(\bar{s} \gamma_{\mu} P_{L(R)} \bar{b}\right)\left(\ell \gamma^{\mu} \bar{\ell}\right)$ |
| (A) | $\mathcal{C}_{10}{ }^{(\prime)}$ | $\sim\left(\bar{s} \gamma^{\mu} P_{L(R)} \bar{b}\right)\left(\ell \gamma_{\mu} \gamma_{5} \bar{\ell}\right)$ |
| Scalar | $\mathcal{C}_{S}^{(\prime)}$ | $\sim\left(\bar{s} P_{R(L)} \bar{b}\right)(\ell \bar{\ell})$ |
| Pseudoscalar | $\mathcal{C}_{P}^{\left({ }^{\prime}\right)}$ | $\sim\left(\bar{s} P_{L(R)} \bar{b}\right)\left(\ell \gamma_{5} \bar{\ell}\right)$ |



## QCD complications

- Quarks are bound in hadrons $\rightarrow$ local form factors.
- Insertion of $q \bar{q}$ loop $\rightarrow$ non-local form factors + non-factorisable soft gluon corrections.


## Flavour changing neural current $b$ to sll

Fully leptonic


Very rare $\boldsymbol{\mathcal { B }} \lesssim 10^{-9}$

- Theoretically clean
- Mostly clean to reconstruct Sensitive mainly to $\mathcal{C}_{10}^{\left({ }^{\prime}\right)}$.

Semi-leptonic


Quite rare, $\mathcal{B} \sim 10^{-6}$

- Hadronic pollution.
- Mostly clean to reconstruct.
- Electron reconstruction very challenging.
Sensitive to $\mathcal{C}_{7}^{\left({ }^{\prime}\right)}, \mathcal{C}_{9}^{\left({ }^{\prime}\right)}$ and $\mathcal{C}_{10}^{\left({ }^{\prime}\right)}$ depending on $q^{2} \equiv m_{\ell^{+} \ell^{-}}^{2}$ region.

Radiative

Fairly rare, $\mathcal{B} \sim 10^{-5}$

- Similar to semi-leptonic.
- Experimental resolution not great.

Sensitive to $\mathcal{C}_{7}^{\left({ }^{\prime}\right)}$.

## Flavour changing neural current $b$ to sll

Fully leptonic


Very rare $\boldsymbol{\mathcal { B }} \lesssim 10^{-9}$

- Theoretically clean
- Mostly clean to reconstruct Sensitive mainly to $\mathcal{C}_{10}^{\left({ }^{\prime}\right)}$.

Semi-leptonic


Quite rare, $\mathcal{B} \sim 10^{-6}$

- Hadronic pollution.
- Mostly clean to reconstruct.
- Electron reconstruction very challenging.
Sensitive to $\mathcal{C}_{7}^{\left({ }^{\prime}\right)}, \mathcal{C}_{9}^{\left({ }^{\prime}\right)}$ and $\mathcal{C}_{10}^{\left({ }^{\prime}\right)}$ depending on $q^{2} \equiv m_{\ell^{+} \ell^{-}}^{2}$ region.



## Flavour changing neural current $b$ to sll

Cleanest measurement: lepton universality tests via ratios

- $b \rightarrow s \ell^{+} \ell^{-}$is lepton universal in the SM
$\rightarrow$ can identify LU violating NP contribution
Hiller \& Kruger arXiv:hep-ph/0310219
$\bigcirc b \rightarrow s \tau \tau$ not observed yet $\rightarrow$ compare $\mu$ and e

- Predictions are extremely precise
- QCD uncertainty cancels to $10^{-4}$
- Up to $\sim 1 \%$ QED corrections

Bordone et al arXiv:1605.07633

- Main challenge at LHCb is e/ $\mu$ differences in the detector response

$$
R_{H}=\frac{\int_{q_{\min }^{2}}^{q_{\max }^{2}} \frac{\mathrm{~d} \mathscr{B}\left(B \rightarrow H \mu^{+} \mu^{-}\right)}{\mathrm{d} q^{2}} \mathrm{~d} q^{2}}{\int_{q_{\min }^{2}}^{q_{\text {max }}} \frac{\mathrm{d} \mathscr{B}\left(B \rightarrow H e^{+} e^{-}\right)}{\mathrm{d} q^{2}} \mathrm{~d} q^{2}} \stackrel{\mathrm{SM}}{\stackrel{ }{\circ}} 1
$$

## Flavour changing neural current $b$ to sll

Cleanest measurement: lepton universality tests via (double) ratios

$$
R_{X}=\frac{\mathcal{B}\left(B \rightarrow X \mu^{+} \mu^{-}\right)}{\mathcal{B}\left(B \rightarrow X e^{+} e^{-}\right)} / \frac{\mathcal{B}\left(B \rightarrow X J / \psi\left(\rightarrow \mu^{+} \mu^{-}\right)\right)}{\mathcal{B}\left(B \rightarrow X J / \psi\left(\rightarrow e^{+} e^{-}\right)\right)}
$$


[arXiv:2212.09153] [arXiv:2212.09152]

M.Bona - Flavour Physics - lecture 2

## Flavour changing neural current $b$ to sll

another way to look at FCNC: $b \rightarrow s$ transition with a BR $\sim 1.110^{-6}$
$\checkmark$ angular distribution of the 4 particles in the final state sensitive to new physics for the interference of NP and SM diagrams

- allows measuring a large set of angular parameters sensitive to Wilson coefficients $\mathrm{C}^{()_{7}}, \mathrm{C}^{()_{9}}, \mathrm{C}^{()_{10}}, \mathrm{C}^{(\text {() }}{ }_{\mathrm{s}, \mathrm{P}}$

o decay described by three angles $\left(\theta_{\mathrm{L}}, \theta_{\mathrm{K}}, \phi\right)$ and the di-muon mass squared $\mathrm{q}^{2} \rightarrow$ the angular distribution is analysed in finite bins of $q^{2}$ as a function of $\theta_{L}, \theta_{K}$ and $\phi$.
Hadronic uncertainties (form factors) difficult to evaluate


## Fully leptonic decays

- Flavour Changing Neutral Currents (FCNC)
- In addition, they are CKM and helicity suppressed.
- Within the SM, they can be calculated with small theoretical uncertainties of order 6-8\%

| meson <br> type | $e$ | Lepton type |  |
| :---: | :---: | :---: | :---: |
| $B^{0}$ | $(2.48 \pm 0.21) 10^{-15}$ | $(1.06 \pm 0.09) 10^{-10}$ | $(2.22 \pm 0.19) 10^{-8}$ |
| $B_{s}^{0}$ | $(8.54 \pm 0.55) 10^{-14}$ | $(3.65 \pm 0.23) 10^{-9}$ | $(7.73 \pm 0.49) 10^{-7}$ |

B
(a)

(b) B

$\nu$ Perfect ground for indirect new physics searches:
virtual new particles can contribute to the loop

- both enhancement and suppression effects are possible




## Global fits to $b$ to sll processes



M.Bona - Flavour Physics - lecture 2

## Conclusions

- Flavour physics is an essential tool in the current circumstances
- Could point us in the direction of the new physics
- A lot of measurements and experiments can look at this from a number of points of view
Theory is also improving in calculations and testing more closely the Standard Model


## direct CP violation

## Time-integrated direct CP asymmetries

- can be measured in decays of both neutral and charged mesons
- measure a direct CP asymmetry by comparing amplitudes of decay
- Event counting exercise: when studying neutral B mesons we can select a selftagging final state.


$$
\begin{aligned}
& A_{1}=a_{1} e^{i\left(\phi_{1}+\delta_{1}\right)} \\
& A_{2}=a_{2} e^{i\left(\phi_{2}+\delta_{2}\right)}
\end{aligned}
$$ to the same final state

| $\delta_{i}:$ strong phases |
| :---: |
| CP even |

- the measured asymmetry becomes:

$$
\left.\mathrm{A}_{\mathrm{CP}} \equiv \frac{\left|\bar{A}_{f}\right|^{2}-\left|A_{f}\right|^{2}}{\left|\bar{A}_{\bar{f}}\right|^{2}+\left|A_{f}\right|^{2}} \sim \sum_{i, j} a_{i} a_{j} \sin \phi_{i}-\phi_{j}\right) \sin \delta_{i}-\delta_{j} \mid
$$

$\phi_{i}$ : weak phases CP odd

- limited by our knowledge of weak and strong phase differences.
$\triangleright$ But there are many possible measurements that we can compare!


## Charmless two-body B decays

$\mathcal{B}(B \rightarrow K \pi, \pi \pi, K K)$

M.Bona - Flavour Physics - lecture 2

Charmless two-body B decays


## Direct CP violation in charmless two-body B decays

$$
\left.\mathrm{A}_{\mathrm{CP}} \equiv \frac{\left|\bar{A}_{\hat{f}}\right|^{2}-\left|A_{f}\right|^{2}}{\left|\bar{A}_{\hat{f}}\right|^{2}+\left|A_{f}\right|^{2}} \sim \sum_{i, j} a_{i} a_{j} \sin \phi_{i}-\phi_{j} \sin \boldsymbol{\delta}_{i}-\delta_{j} \right\rvert\,
$$

$\delta_{i}$ : strong phase

CP even

> interesting modes:
> $\Rightarrow \mathrm{K}^{+} \pi^{:}$: penguin+tree
> $\Rightarrow \mathrm{K}^{+} \pi^{0}$ : penguin+tree
> $\Rightarrow \mathrm{K}^{0} \pi^{+}$: pure penguin

$$
\begin{aligned}
& B^{+}, B^{0} \\
& u, d \longrightarrow u, d
\end{aligned}
$$

$$
\begin{aligned}
& A\left(B^{0} \rightarrow K^{+} \pi\right)=V_{t s} V_{t b}{ }^{*} \times \boldsymbol{P}_{1}(c)-V_{u s} V_{u b}{ }^{*} \times\left\{\boldsymbol{E}_{1}-\boldsymbol{P}_{1}{ }^{G I M}(u-c)\right\} \\
& A\left(B^{+} \rightarrow K^{0} \pi^{+}\right)=-V_{t s} V_{t b}{ }^{*} \times \boldsymbol{P}_{1}(c)+V_{u s} V_{u b}{ }^{*} \times\left\{\boldsymbol{A}_{1} \boldsymbol{P}_{1}{ }^{G I M}(u-c)\right\} \\
& \sqrt{2} \cdot A\left(B^{+} \rightarrow K^{+} \pi^{0}\right)=V_{t s} V_{t b}{ }^{*} \times \boldsymbol{P}_{1}(c)-V_{u s} V_{u b}{ }^{*} \times\left\{\boldsymbol{E}_{1}+E_{2}+\boldsymbol{A}_{1}-\boldsymbol{P}_{1} \operatorname{GIM}(u-c)\right\} \\
& \sqrt[y]{2} \cdot A\left(B^{0} \rightarrow K^{0} \pi^{0}\right)=V_{t s} V_{t b}{ }^{*} \times \boldsymbol{P}_{1}(c)-V_{u s} V_{u b}{ }^{*} \times\left\{\boldsymbol{E}_{2}+\boldsymbol{P}_{1} \operatorname{GIM}(u-c)\right\}
\end{aligned}
$$

The ingredients:
$\Rightarrow$ The elements of the CKM matrix (from the UT analysis)
$\Rightarrow$ Color Allowed $\left(E_{1}\right)$ and Color suppressed $\left(E_{2}\right)$ tree-level emissions
$\Rightarrow$ Charming ( $\mathrm{P}_{1}$ ) and GIM ( $\mathrm{P}_{1}{ }^{\mathrm{GIM}}$ ) penguins
$\Rightarrow$ Annihilation $\left(\mathrm{A}_{1}\right)$

## Direct CP violation in charmless two-body B decays

(- $\mathrm{B}^{0} \rightarrow \mathrm{~K}^{ \pm} \pi^{\mp}$ : tree and gluonic penguin contributions

- Compute time integrated asymmetry

$$
\mathcal{A}_{K^{ \pm} \pi^{\mp}} \equiv \frac{N\left(\bar{B}^{0} \rightarrow K^{-} \pi^{+}\right)-N\left(B^{0}-K^{+} \pi^{-}\right)}{N\left(\bar{B}^{0} \rightarrow K^{-} \pi^{+}\right)+N\left(B^{0} \rightarrow K^{+} \pi^{-}\right)}=-0.084 \pm 0.004
$$

© Experimental results from Belle, BaBar, and now also LHCb have significant weight in the world average of this CP violation parameter.
๑ First measurement of direct CP violation present in B decays.
© Unknown strong phase differences between amplitudes, means we cannot use this to measure weak phases


## Direct CP violation in charmless two-body B decays

© $\mathrm{B}^{+} \rightarrow \mathrm{K}^{+} \pi^{0}$ : colour suppressed tree (in addition to the colour allowed one) and gluonic penguin contributions

© Experimentălly measure:


- Difference between $\mathrm{B}^{+}$and $\mathrm{B}^{0}$ asymmetries:

$$
A\left(K^{+} \pi^{-}\right)=-0.084 \pm 0.004
$$

- Difference claimed to be an indication of new physics, however:
$\triangleright$ Theory calculations assume that only $\mathrm{T}+\mathrm{P}$ contribute to $\mathrm{K}^{+} \pi^{-}$, and $\mathrm{C}+\mathrm{P}$ contribute to $\mathrm{K}^{+} \pi^{0}$.
$\triangleright$ The $C$ contribution is larger than originally expected in $\mathrm{K}^{+} \pi^{0}$.


## Is there a kл puzzle?

Only SCET includes a non-factorizable $\mathrm{O}\left(\Lambda_{\mathrm{ocol}} / \mathrm{m}_{\mathrm{b}}\right)$ charming ponguin.
All these approaches neglect the CKMsuppressed $\mathrm{O}\left(\Lambda_{\mathrm{acc}} / \mathrm{m}_{\mathrm{b}}\right)$ corrections

|  | QCDF [50] | PQCD [54, 55] | SCET [58] | $\exp$ |
| :---: | :---: | :---: | :---: | :---: |
| $B R\left(\pi^{-} \bar{K}^{0}\right)$ | $19.3+1.9+11.3+1.9+13.2$ | $24.5{ }_{-8.1}^{+13.6}$ | $20.8 \pm 7.9 \pm 0.6 \pm 0.7$ | $23.1 \pm 1.0$ |
| $A_{\text {CPP }}\left(\pi^{-} \bar{K}^{0}\right)$ | $0.9+0.2+0.3+0.3+0.1+0.6$ | $0 \pm 0$ | $<5$ | $0.9 \pm 2.5$ |
| $\boldsymbol{B R}\left(\pi^{0} \mathrm{~K}^{-}\right)$ | $11.1 \underbrace{+1.8}_{-1.7}+5.8+0.9+6.9$ | $13.9 \pm \pm{ }_{-5.6}^{+10.0}$ | $11.3 \pm 4.1 \pm 1.0 \pm 0.3$ | $12.8 \pm 0.6$ |
| $A_{\text {CPP }}\left(\pi^{0} K^{-}\right)$ | $7.1 \pm_{-1.8}^{+1.7} \mathbf{- 2 . 0}_{-2.0}^{+0.8}+9.0$ | $-1+5$ | $-11 \pm 9 \pm 11 \pm 2$ | $4.7 \pm 2.6$ |
| $B R\left(\pi^{+} K^{-}\right)$ | $16.3 \pm{ }_{-2.3}^{+2.6}+9.5{ }_{-1.4}^{+1.4}{ }_{-11.4}^{4.8}$ | $20.9 \pm+8.3$ | $20.1 \pm 7.4 \pm 1.3 \pm 0.6$ | $19.4 \pm 0.6$ |
| $A_{\text {CP }}\left(\pi^{+} K^{-}\right)$ | $4.5{ }_{-1.1}^{+1.1}{ }_{-2.5}^{2.2}+0.5{ }_{-0.5}^{8.7}$ | $-9.8$ | $-6 \pm 5 \pm 6 \pm 2$ | $-9.5 \pm 1.3$ |
| $B R\left(\pi^{0} \bar{K}^{0}\right)$ | $7.0{ }_{-0.7}^{+0.7}+4.7{ }_{-3.2}^{+0.7}+5.4$ | $9.1 \pm 3.6$ | $9.4 \pm 3.6 \pm 0.2 \pm 0.3$ | $10.0 \pm 0.6$ |
| $A^{\text {CPP }}\left(\pi^{0} \bar{K}^{0}\right)$ | $-3.3{ }_{-0.8}^{+1.0}{ }_{-1.6}^{1.3}{ }_{-1.0}^{+0.5}{ }_{-3.3}^{3.4}$ | $-7_{-3}^{+3}$ | $5 \pm 4 \pm 4 \pm 1$ | $-12 \pm 11$ |



Upper Value $O\left(\Lambda_{Q C D} / \mathrm{mb}\right)$


## Direct CP violation searches

$$
\begin{aligned}
A_{C P} & =\frac{\bar{N}-N}{\bar{N}+N} \\
A_{C P} & =0 \\
& =\text { no CP violation }
\end{aligned}
$$

- We have searched for direct CP violation now in a huge number of channels.
- This is a selection of the modes more precisely measured.




## Searching for new physics via other $b \rightarrow$ ccs modes

© $\sin 2 \beta$ has been measured to $O\left(1^{\circ}\right)$ accuracy in $b \rightarrow c \bar{c} s$ decays.
© Can use this to search for signs of New Physics (NP) if:

- Identify a rare decay sensitive to $\sin 2 \beta$ (loop dominated process).
- Measure S precisely in that mode ( $\mathrm{S}_{\text {eff }}$ ).
- Control the theoretical uncertainty on the Standard Model 'pollution' ( $\Delta \mathrm{S}_{\mathrm{SM}}$ ).
- Compute
© In the preserice ou וvr: $\Delta \mathcal{O}_{\mathrm{NP}} \neq \mathrm{U}$

- New heavy particles can introduce new amplitudes affecting physical observables of loop dominated processes.
- Observables affected include branching fractions, CP asymmetries, forward backward asymmetries.. etc.. - The Standard Model contributions need to be understood


## $\alpha\left(\phi_{2}\right)$ from $\pi \pi, \rho \rho, \pi \rho$ decays with Isospin analysis

Interference between box mixing and tree diagrams results in an asymmetry that is sensitive to $\alpha$ in $B \rightarrow h h$ decays: $h=\pi, \rho$

Unlike for $\beta$, loop (penguin diagrams) corrections are not negligible for $\alpha$

Need Isospin analysis including all modes ( B of all charges and flavours) to obtain the $\alpha$ estimate


$$
\alpha \equiv \arg \left[-V_{\mathrm{td}} V_{\mathrm{tb}}^{*} / V_{\mathrm{ud}} V_{\mathrm{ub}}^{*}\right]
$$

$B \rightarrow \pi \pi$
$\pi^{+} \pi^{-} \mathbf{S}_{\mathbf{C P}}$

HFLAV
Moriond 2018



M.Bona - Flavour Physics - lecture 2

- simultaneous ML fit to all hh modes with h being $\pi$ or K : $\odot \mathrm{B}^{+} \rightarrow \pi^{+} \pi^{\prime}, \mathrm{K}^{+} \pi^{-}, \mathrm{K}^{+} \mathrm{K}^{-}$(and cc )
© $\mathrm{B}^{+} \rightarrow \pi^{+} \pi^{0} \mathrm{~K}^{+} \pi^{0}$ (and $c c$ )

© Inputs from: $\quad B^{0} \rightarrow \pi^{+} \pi^{-}$

$$
\begin{aligned}
& B^{+} \rightarrow \pi^{+} \pi^{0} \\
& B^{0} \rightarrow \pi^{0} \pi^{0}
\end{aligned}
$$

eight solutions to the isospin system: shown here a case with uncertainties reduced of a factor 10

M.Bona - Flavour Physics - lecture 2
additional information can be used: to reduce the degeneracy of the solutions and also to keep the amplitudes to go to infinity (unphysical)
for example Bs to KK (assuming SU(3) and a big uncertainty on that) can put an upper limit on the penguin amplitude

- Vector-Vector modes: angular analysis required to determine the CP content. $L=0,1,2$ partial waves:
๑ longitudinal: CP-even state
๑ transverse: mixed CP states


O dominant decay $\rho \pi$ is not a CP eigenstate

- 5 amplitudes need to be considered:

๑ $\mathrm{B}^{0} \rightarrow \rho^{+} \pi^{-}, \rho^{-} \pi^{+}, \rho^{0} \pi^{0}$ and $\mathrm{B}^{+} \rightarrow \rho^{+} \pi^{0}, \rho^{0} \pi^{+}$
๑ Isospin pentagon


## $\gamma / \phi_{3}$ angle

$$
\gamma \equiv \arg \left[-V_{\mathrm{ud}}\left(V_{\mathrm{ub}}^{*}\right) V_{\mathrm{cd}} V_{\mathrm{cb}}^{*}\right]
$$

Extract $\gamma$ using $\mathrm{B} \rightarrow \mathrm{D}^{(*)} \mathrm{K}^{(*)}$ final states using:

- GLW: Use CP eigenstates of $\mathrm{D}^{\circ}$.

© $D^{(*)} K^{(*)}$ decays: from BRs and BR ratios, no time-dependent analysis, just rates
© the phase $\gamma$ is measured exploiting interferences: two amplitudes leading to the same final states
© some rates can be really small: $\sim 10^{-7}$


Theoretically clean (no penguins neglecting the $D^{0}$ mixing)



$$
r_{B}=\text { amplitude ratio }
$$

$\boldsymbol{r}_{\boldsymbol{B}}=\left|\frac{\boldsymbol{B}^{-} \rightarrow \overline{\boldsymbol{D}}^{0} K^{-}}{\boldsymbol{B}^{-} \rightarrow \boldsymbol{D}^{0} K^{-}}\right|=\sqrt{\overline{\boldsymbol{\eta}}^{2}+\overline{\boldsymbol{\rho}}^{2}} \times \boldsymbol{F}_{\boldsymbol{C} \boldsymbol{S}}$
~0.36 hadronic contribution channel-dependent

- in $\mathrm{B}^{+} \rightarrow \mathrm{D}^{(*)} \mathrm{K}^{+}: \mathrm{r}_{\mathrm{B}}$ is $\sim 0.1$
- to be measured: $r_{B}(D K), r^{*}{ }_{B}\left(D^{*} K\right)$ and $r_{B}^{s}\left(\mathrm{DK}^{*}\right)$

GLW(Gronau, London, Wyler) method: more sensitive to $r_{\mathrm{B}}$ uses the CP eigenstates $D^{(*)}{ }^{\circ} \mathrm{CP}$ with final states: $\mathrm{K}^{+} \mathrm{K}^{-}, \pi^{+} \pi^{-}$(CP-even), $\mathrm{K}_{\mathrm{s}} \pi^{0}(\omega, \phi)$ (CP-odd)
$R_{C P \pm}=1+r_{B}^{2} \pm 2 r_{B} \cos \gamma \cos \delta_{B} \quad A_{C P \pm}=\frac{ \pm 2 r_{B} \sin \gamma \sin \delta_{B}}{1+r_{B}^{2} \pm 2 r_{B} \cos \gamma \cos \delta_{B}}$ ADS(Atwood, Dunietz, Soni) method: $\mathrm{B}^{0}$ and $\mathrm{B}^{0}$ in the same final state with $\mathrm{D}^{0} \rightarrow \mathrm{~K}^{+} \pi^{-}$(suppr.) and $\mathrm{D}^{0} \rightarrow \mathrm{~K}^{+} \pi^{-}$(fav.)

$$
\boldsymbol{R}_{A D S}=r_{B}^{2}+r_{D C S}^{2}+2 r_{B} r_{D C S} \cos \gamma \cos \left(\delta_{B}+\delta_{D}\right)
$$

the most sensitive way to $\gamma$ ecays $\mathrm{B}^{-} \rightarrow \mathrm{D}^{(*)}\left[\mathrm{K}_{s} \pi^{+} \pi \pi^{-}\right] \mathrm{K}^{-}$
three free parameters to extract: $\gamma, r_{B}$ and $\delta_{B}$

- GLW Method: Study $\mathrm{B}^{+} \rightarrow \mathrm{D}_{\mathrm{CP}}{ }^{0} \mathrm{X}^{+}$and $\mathrm{B}^{+} \rightarrow \mathrm{DX}^{+}+\mathrm{cc}\left(\mathrm{D}^{0} \rightarrow \mathrm{~K}^{+} \pi^{-}\right)$
- $\mathrm{X}^{+}$is a strangeness one meson e.g. a $\mathrm{K}^{+}$or $\mathrm{K}^{{ }^{+}+}$.
- $D_{C P}{ }^{0}$ is a CP eigenstate (use these to extract $\gamma$ ):

$$
\begin{aligned}
& D_{C P=+1}^{0}=K^{+} K^{-}, \pi^{-} \pi^{+} \\
& D_{C P=1}^{0}=K_{s}^{0} \pi^{0}, K_{s}^{0} \omega, K_{s}^{0} \phi
\end{aligned}
$$

. 4 observables

- 3 unknowns: $r_{B}, \gamma_{=}$and $\delta$
$\boldsymbol{R}_{C P_{ \pm}}=\frac{B F\left(B^{-} \rightarrow D_{ \pm}^{0} K^{-}\right)+B F\left(B^{+} \rightarrow D_{ \pm}^{0} K^{+}\right)}{B F\left(B^{-} \rightarrow D^{0} K^{-}\right)+B F\left(B^{+} \rightarrow D^{0} K^{+}\right)}=1+r_{B}^{2} \pm 2 r_{B} \cos \delta \cos \gamma$
$\boldsymbol{A}_{\boldsymbol{C} \boldsymbol{P}_{ \pm}}=\frac{\boldsymbol{B F}\left(B^{-} \rightarrow D_{ \pm}^{0} K^{-}\right)-\boldsymbol{B F}\left(B^{+} \rightarrow D_{ \pm}^{0} \boldsymbol{K}^{+}\right)}{\boldsymbol{B F}\left(\boldsymbol{B}^{-} \rightarrow \boldsymbol{D}_{ \pm}^{0} K^{-}\right)+\boldsymbol{B F}\left(\boldsymbol{B}^{+} \rightarrow D_{ \pm}^{0} \boldsymbol{K}^{+}\right)}= \pm 2 \boldsymbol{r}_{\boldsymbol{B}} \sin \boldsymbol{\delta} \sin \gamma / \boldsymbol{R}_{\boldsymbol{C}} \boldsymbol{P}_{ \pm}$
$\triangleright r_{B} \sim 0.1$ as this is a ratio of Cabibbo suppressed to Cabibbo allowed decays and also includes a colour suppression factor for $\left.\left.\mathrm{B}^{+} \rightarrow \mathrm{D}^{*}\right) \mathrm{K}^{*}\right) \mathrm{b} \rightarrow \mathrm{u}$ decays.
- Measurement has an 8 -fold ambiguity on $\gamma$.
- ADS Method: Study $\mathrm{B}^{ \pm, 0} \rightarrow \mathrm{D}^{(*) 0} \mathrm{~K}^{(*) \pm}$
- Reconstruct doubly suppressed decays with common final states and extract $\gamma$ through interference between these amplitudes:

$$
\mathrm{B} \rightarrow \mathrm{D}^{(*) 0} \mathrm{~K}^{(*)}
$$

CKM Favoured


$$
\mathrm{D}^{(*) 0} \rightarrow \mathrm{~K}^{+} \pi^{-}
$$

CKM Favoured
$\stackrel{\text { Doubly ckM Supprassed }}{\circ} \mathrm{\gamma}$.

$$
\begin{aligned}
r_{B}^{(*)} & =\left|\frac{A\left(B^{-} \rightarrow \bar{D}^{(+) 0} K^{-}\right)}{A\left(B^{-} \rightarrow D^{(*) 0} K^{-}\right)}\right| \\
r_{D} & =\left|\frac{A\left(D^{0} \rightarrow K^{+} \pi^{-}\right)}{A\left(D^{0} \rightarrow K^{-} \pi^{+}\right)}\right|
\end{aligned}
$$

$$
\odot \delta^{(*)}=\delta^{(*)}{ }_{B}+\delta_{D}
$$

$$
\left.\odot \delta^{( }\right) \text {is the sum of strong phase differences between }
$$

the two B and D decay amplitudes.
$\odot r_{D}$ and $r_{B}$ are measured in $B$ and charm factories.
$\odot \delta_{D}$ is measured by CLEO-c

○ GGSZ ("Dalitz") Method: Study $\mathrm{D}^{(*)} \mathrm{K}^{(*)}$ using the $\mathrm{D}^{(*)} \rightarrow \mathrm{K}_{\mathrm{s}} \mathrm{h}+\mathrm{h}$ - Dalitz structure to constrain $\gamma$. $(\mathrm{h}=\pi, \mathrm{K})$
๑ Self tagging: use charge for $\mathrm{B}^{ \pm}$decays or $\mathrm{K}^{(*)}$ flavour for $\mathrm{B}^{0}$ mesons.

$$
\text { where }^{A\left(B^{ \pm} \rightarrow\left(K_{S}^{0} h^{+} h^{-}\right)_{D} K^{ \pm}\right) \propto f\left(m_{+}^{2}, m_{-}^{2}\right)+f\left(m_{-}^{2}, m_{+}^{2}\right) r_{B} e^{i\left(\delta_{B} \pm \gamma\right)}}
$$



- Use a control sample (CLEO-c data or $\mathrm{D}^{*+} \rightarrow \mathrm{D}^{0} \pi^{+}$) to measure the Dalitz plot.

$$
\begin{aligned}
D^{*+} \rightarrow & D^{0} \pi^{-} \\
& \rightarrow D^{0} \rightarrow K_{s}^{0} h^{+} h^{-}
\end{aligned}
$$




Control sample plots from BaBar GGSZ paper
$\gamma:$ GGSZ Method
© neutral D mesons reconstructed in threebody CP-eigenstate final states (typically $\mathrm{D}^{0} \rightarrow \mathrm{~K}_{\mathrm{s}} \pi^{-} \pi^{+}$)
© the complete structure (amplitude and strong phases) of the $\mathrm{D}^{0}$ decay in the phase space is obtained on independent data sets and used as input to the analysis
© use of the cartesian coordinate:

- $x_{ \pm}=r_{B} \cos (\delta \pm \gamma)$
- $y_{ \pm}=r_{B} \sin (\delta \pm \gamma)$
$\bigcirc \gamma, r_{B}$ and $\delta_{B}$ are obtained from a simultaneous fit of the $\mathrm{K}_{S} \pi^{+} \pi^{-}$Dalitz plot density for $\mathrm{B}^{+}$and $\mathrm{B}^{-}$
© need a model for the Dalitz amplitudes
© 2-fold ambiguity on $\gamma$


Interference of
$B-D^{0} K^{-}, D^{0} \rightarrow K^{0}{ }_{s} \rho^{0}$
with
$\mathrm{B}^{-} \rightarrow \mathrm{D}^{0} \mathrm{~K}^{-}, \mathrm{D}^{0} \rightarrow \mathrm{~K}_{\mathrm{s}} \boldsymbol{\rho}^{0}$ ~ GLW like


## $\gamma$ from B into DK decays: combined: $(73.4 \pm 4.4)^{\circ}$ UTfit prediction: $(65.8 \pm 2.2)^{\circ}$

$\overline{\mathrm{CP}}$ violation in interference between mixing and decay:

$$
\boldsymbol{\lambda}_{f_{C P}}=\frac{q}{p} \cdot \frac{\overline{\boldsymbol{A}}_{f_{C P}}}{\boldsymbol{A}_{f_{C P}}}
$$

© decays in final state $f$
accessible to both a B or a B ( $f$ is not necessarily a CP eigenstate)
© if $\operatorname{Im} \lambda \neq 0$ then $\rightarrow \mathrm{CP}$ violation


$$
\lambda=\frac{q}{p} \frac{A(\bar{B} \rightarrow f)}{A(B \rightarrow f)}=\frac{V_{d d}^{*} V_{t b} \bar{A}}{V_{t d} V_{t b}^{*}} \sim e^{-i 2 \beta} \frac{\bar{A}}{A}
$$

$\beta$ is the
mixing phase

| examples |  | f | $\boldsymbol{\operatorname { r r g }}\left(\frac{\bar{A}}{A}\right)$ | \| $\boldsymbol{\lambda}$ \| | parameter |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | mixing | $B^{\mathbf{0}} \rightarrow \boldsymbol{l} \boldsymbol{L} X X, D^{(*)} \boldsymbol{\pi}\left(\rho, a_{1}\right)$ | 0 | $\sim 0$ | $\Delta V_{B_{B}}$ |
|  | " $\sin 2 \beta$ " | $B^{\mathbf{0}} \rightarrow \boldsymbol{J} / \psi \mathrm{K}^{\mathbf{0}}, \ldots$ | 0 | 1 | $\sin 2 \beta$ |
|  | $" \sin 2 \alpha "$ | $B^{\mathbf{0}} \rightarrow \pi \pi, \rho \pi, \pi \pi \pi$ | $\sim(-2 \gamma)$ | $\sim 1$ | $\sin 2 \alpha$ |
|  | $" \sin (2 \beta+\gamma) "$ | $\boldsymbol{B}^{\boldsymbol{0}} \rightarrow \boldsymbol{D}^{(*)} \boldsymbol{\pi}$ | $\sim(-\gamma)$ | $\sim 0.02$ | $\sin (2 \beta+\gamma)$ |

## BB pair coherent production

© The $B^{0}$ and $B^{0}$ mesons from the $Y(4 S)$ are in a coherent $L=1$ state:

- The $\mathrm{Y}(4 \mathrm{~S})$ is a bb state with $\mathrm{J}^{\mathrm{PC}}=1^{-}$.
- B mesons are scalars ( $\mathbf{J}^{P}=0^{-}$)
$\Rightarrow$ total angular momentum conservation
$\Rightarrow$ the BB pair has to be produced in a $L=1$ state.
© The $\mathrm{Y}(4 \mathrm{~S})$ decays strongly so B mesons are produced in the two flavour eigenstates $B^{0}$ and $B^{0}$ :
- After production, each B evolves in time, but in phase so that at any time there is always exactly one $B^{0}$ and one $B^{0}$ present, at least until one particle decays: $\Rightarrow$ If at a given time $t$ one B could oscillate independently from the other, they could become a state made up of two identical mesons: but the $L=1$ state is anti-symmetric, while a system of two identical mesons (bosons!) must be completely symmetric for the two particle exchange.
© Once one $B$ decays the other continues to evolve, and so it is possible to have events with two B or two B decays.


## Measuring $\Delta t$



Asymmetric energies produce boosted Y(4S), decaying into coherent BB pair

## Measuring $\Delta t$



## Measuring $\Delta t$


$\Rightarrow$ Then fit the $\Delta t$ distribution to obtain the amplitude of sine and cosine terms.
M.Bona - Flavour Physics - lecture 2

- (simplified) angular analysis
- Inputs from:

$\theta_{i}$ are the helicity angles: angles between the $\pi^{0}$ momentum and the direction opposite to that of the $B^{0}$ in the vector rest frame.
$\phi$ is the angle between the vector meson decay planes.
- We define the fraction of longitudinally polarised events as:

$$
\begin{aligned}
\frac{\Gamma_{L}}{\Gamma} & =\frac{\left|H_{0}\right|^{2}}{\left|H_{0}\right|^{2}+\left|H_{+1}\right|^{2}+\left|H_{-1}\right|^{2}} \\
& =f_{L}
\end{aligned}
$$

$\frac{d^{2} \Gamma}{\Gamma d \cos \theta_{1} d \cos \theta_{2}}=\frac{9}{4}\left[f_{L} \cos ^{2} \theta_{1} \cos ^{2} \theta_{2}+\frac{1}{4}\left(1-f_{L}\right) \sin ^{2} \theta_{1} \sin ^{2} \theta_{2}\right]$

- Can measure $\mathrm{S}^{00}$ as well as $\mathrm{C}^{00}$ to help resolve ambiguities.
- Finite width of the $\rho$ is ignored in the $\alpha$ determination
© Combining all the modes to maximize our knowledge of $\alpha$..



$\approx$ bayesian analysis: the quantity plotted is now the Probability
Density Function (PDF)
M.Bona - Flavour Physics - lecture 2

© Analyse a transformed Dalitz Plot to extract parameters related to $\alpha$.
© Use the Snyder-Quinn method.

© Fit the time-dependence of the amplitudes in the Dalitz ${ }^{( } \overline{\mathrm{p}}$ Tot.

$$
\begin{aligned}
\left|\mathcal{A}_{3 \pi}^{ \pm}(\Delta t)\right|^{2}=\frac{e^{-|\Delta t| / \tau_{B^{0}}}}{4 \tau_{B^{0}}}\left[\left|\mathcal{A}_{3 \pi}\right|^{2}+\left|\overline{\mathcal{A}}_{3 \pi}\right|^{2}\right. & \mp\left(\left|\mathcal{A}_{3 \pi}\right|^{2}-\left|\overline{\mathcal{A}}_{3 \pi}\right|^{2}\right) \cos \left(\Delta m_{d} \Delta t\right) \\
& \left. \pm 2 \operatorname{Im}\left[\overline{\mathcal{A}}_{3 \pi} \mathcal{A}_{3 \pi}^{*}\right] \sin \left(\Delta m_{d} \Delta t\right)\right]
\end{aligned}
$$

Theoretically cleaner (SM uncertainties $\sim 10^{-2}$ to $10^{-3}$ )
$\rightarrow$ tree dominated decavs to Charmonium $+\mathrm{K}^{0}$ final states. $\left.\beta \equiv \arg \left[-V_{\mathrm{cd}} V_{\mathrm{cb}}^{*} / V_{\mathrm{td}}\right) V_{\mathrm{tb}}^{*}\right]$


$$
A_{C P}(t)=\frac{\Gamma\left(\bar{B}^{0}(t) \rightarrow f_{C P}\right)-\Gamma\left(B^{0}(t) \rightarrow f_{C P}\right)}{\Gamma\left(\bar{B}^{0}(t) \rightarrow f_{C P}\right)+\Gamma\left(B^{0}(t) \rightarrow f_{C P}\right)}
$$



## $\alpha / \phi_{2}$ angle [recap]

$$
\alpha \equiv \arg \left[-V_{\mathrm{td}} V_{\mathrm{tb}}^{*} / V_{\mathrm{ud}} V_{\mathrm{ub}}^{*}\right.
$$

$b \rightarrow$ uūd transitions with possible
m loop contributions. Extract $\alpha$ using

- $\mathrm{SU}(2)$ Isospin relations.
- SU(3) flavour related processes.


$(0,0)$
$(1,0)$

$$
A_{C P}(t)=\frac{\Gamma\left(\bar{B}^{0}(t) \rightarrow f_{C P}\right)-\Gamma\left(B^{0}(t) \rightarrow f_{C P}\right)}{\Gamma\left(\bar{B}^{0}(t) \rightarrow f_{C P}\right)+\Gamma\left(B^{0}(t) \rightarrow f_{C P}\right)}
$$

## $\gamma / \phi_{3}$ angle

$\left.\gamma \equiv \arg \left[-V_{\mathrm{ud}}{V_{\mathrm{ub}}^{*}}^{*}\right) V_{\mathrm{cd}} V_{\mathrm{cb}}^{*}\right]$
Extract $\gamma$ using $\mathrm{B} \rightarrow \mathrm{D}^{(*)} \mathrm{K}^{(*)}$ final states using:

- GLW: Use CP eigenstates of $\mathrm{D}^{\circ}$.



## Sides of the Unitarity Triangle

## Sides of the Unitarity Triangle



## Sides of the Unitarity Triangle



## Sides of the Unitarity Triangle



## Side measurement: $\mathrm{V}_{\mathrm{ub}}$

$\odot\left|V_{u b}\right| \propto B R\left(B \rightarrow X_{u} \mid v\right)$ in a limited region of phase space.
© Reconstruct both B mesons in an event.

- Study the $\mathrm{B}_{\text {recoil }}$ to measure $\mathrm{V}_{\mathrm{ub}}$.
- Measure BR as a function of

$$
q_{l v}^{2}, m_{X}, m_{M I S S} \text { or } E_{l}
$$


and use theory to convert these results into $\left|\mathrm{V}_{\mathrm{ub}}\right|$.
© Can study modes exclusively or inclusively.
© Several models available to estimate $\left|\mathrm{V}_{\mathrm{ub}}\right|$

- The resulting values have a significant model uncertainty.


## Exclusively reconstructed $\mathrm{b} \rightarrow \mathrm{ulv}$

- If we fully reconstruct one B meson in an event, then

- ... with a single $v$ in the event, we can infer $P^{v}$ and 'reconstruct' the $v$
- Clean signals


Use the beam energy to constrain $P^{v}$ to
effectively 'reconstruct' the $v$ from the missing
energy-momentum: $\mathrm{m}_{\text {MISS }}=\mathrm{m}_{\mathrm{v}}=0$.

- Study B decays to:

$$
\begin{aligned}
& B^{0} \rightarrow \pi^{-} I^{+} \nu \\
& B^{0} \rightarrow \rho^{-} I^{+} v \\
& B^{+} \rightarrow \pi^{0} I^{+} \nu \\
& B^{+} \rightarrow \rho^{0} I^{+} v \\
& B^{+} \rightarrow \omega I^{+} v
\end{aligned}
$$

- Fully reconstruct $\mathrm{B}_{\text {RECO }}$
- tagged or untagged for the second $B$

M.Bona - Flavour Physics - lecture 2

$$
\frac{d \Gamma(B \rightarrow \pi l v)}{d q^{2}}=\frac{G_{F}^{2}}{24 \pi^{3}}\left|V_{u b}\right|^{2} p_{\pi}^{3}\left|f\left(q^{2}\right)\right|^{2}
$$

$\left|\mathrm{V}_{\mathrm{ub}}\right|$ is determined from a combined fit of a B $\rightarrow \pi$ form factor parameterization to theory predictions and the average $q^{2}$ spectrum in data.
Form factor input:

- Low $\mathrm{q}^{2}$ region ( $<6-7 \mathrm{GeV}^{2}$ ): Light cone sum rules,
unperturbative, at $\mathrm{q}^{2}=0$
- Intermediate to high $\mathrm{q}^{2}$

$\left|V_{\mathrm{ub}}\right|=(3.65 \pm 0.09 \pm 0.11)$
uncertainty $14 \%$


## ub: inclusive analysis

- Treat B meson decay like a free b quark (+corrections)
- High background from clv decays.
© Kinematic cuts are used to suppress background.
- Use Operator Product Expansions to translate measureed branching fractions $\operatorname{tonde}_{\text {bid }} V_{\text {ub }}$.
 kinematio ${ }_{6}^{0}{ }_{4}^{5}$ regions.

M.Bona - Flavour Physics - lecture 2

The following theoretical calculations are used to extract |Vub|: BLNP [arXiv:hep-ph/0504071v3] DGE [arXiv:hep-ph/0509360v2].

Recent update: [arXiv:0806.4524]
GGOU [arXiv:0707.2493].
ADFR [arXiv:0711.0860]
BLL [arXiv:hep-ph/0107074v1]
No averaged value for $|V u b|$ from the
idifferent theoretical models, $\underset{4.52 \pm 0.16+0.15-0.16}{\mathrm{HFAG}}$
HFAG Ave.
$4.52 \pm 0.15+0.11-0.14$
HFAG Ave. (ADFR)
$4.08 \pm 0.13+0.18-0.12$
HFAG Ave. (BLL)
$4.62 \pm 0.20 \pm 0.29$
BABAR (LLR)
$4.43 \pm 0.45 \pm 0.29$
BABAR endpoint (LLR)
$4.28 \pm 0.29 \pm 0.48$
BABAR endpoint (LNP)

$4.40 \pm 0.30 \pm 0.47$
$\qquad$
$\because$
$\cdots$ -
$\qquad$


## Side measurements: $\mathrm{V}_{\mathrm{cb}}$

๑ Use the differential decay rates of $\mathrm{B} \rightarrow \mathrm{D}^{*} \mid v$ to determine $\left|\mathrm{V}_{\mathrm{cb}}\right|$ :

$$
\frac{d \Gamma\left(\bar{B} \rightarrow D^{*} l^{-} \bar{v}\right)}{d \omega d \cos \theta_{l} d \cos \theta_{V} d \chi} \propto F^{2}\left(\omega, \theta_{l}, \theta_{V}, \chi\right)\left|V_{c b}\right|^{2}
$$

- F is a form factor.
- Need theoretical input to relate the differential rate measurement to $\left|\mathrm{V}_{\mathrm{cb}}\right|$.
- Reconstruct
- Measurement is not statistically limited, so use clean signal mode for $D \rightarrow K \pi$ decay only.
- Extract signal yield, $F(1)\left|V_{\text {cb }}\right|$ and $\rho$ from 3D binned fit to data.



## Side measurements: $\mathrm{V}_{\mathrm{cb}}$

© Use the differential decay rates of $\mathrm{B} \rightarrow$ Dlv to determine $\left|\mathrm{V}_{\mathrm{cb}}\right|$ :

$$
\frac{d \Gamma\left(\bar{B} \rightarrow D l^{-} \bar{v}\right)}{d \omega d \cos \theta_{l} d \cos \theta_{v} d \chi} \propto G^{2}(\omega)\left|V_{c b}\right|^{2}
$$

- Use a sample of fully reconstructed tag B mesons, then look for the signal.
- Improves background rejection, at the cost of signal efficiency.

- $G$ is a form factor.
- Need theoretical input to relate the differential rate measurement to $\left|\mathrm{V}_{\mathrm{cb}}\right|$.
- Reconstruct the following D decay channels:

$$
\begin{array}{cc}
D^{0} \rightarrow & K^{-} \pi^{+} \\
K^{-} \pi^{+} \pi^{0} & D^{+} \rightarrow \\
K^{-} \boldsymbol{\pi}^{+} \pi^{-} \pi^{+} \pi^{+} \\
K_{s}^{0} \pi^{+} \pi^{-} & K^{-} \pi^{+} \pi^{+} \pi^{0} \\
K_{s}^{0} \pi^{+} \pi^{-} \pi^{0} & K_{s}^{0} \pi^{+} \\
K_{s}^{0} \pi^{0} & K_{s}^{0} \pi^{+} \pi^{0} \\
K^{+} K^{-} & K^{+} K^{-} \pi^{+} \\
\pi^{+} \pi^{-} & K_{s}^{0} K^{+} \\
K_{s}^{0} K_{s}^{0} & K_{s}^{0} \pi^{+} \pi^{+} \pi^{-} \\
&
\end{array}
$$

$\omega$ is
related to $q^{2}$ of the B meson to the D

Exclusive $\left|\mathrm{V}_{\mathrm{cb}}\right|$


$$
\begin{gathered}
\mathrm{G}(1)\left|\mathrm{V}_{\mathrm{cb}}\right|=(42.3 \pm 1.5) 10^{-3} \quad \rho^{2} \\
\left|\mathrm{~V}_{\mathrm{cb}}\right|=(39.4 \pm 1.7) 10^{-3}
\end{gathered}
$$



$$
\begin{aligned}
\mathrm{F}(1)\left|\mathrm{V}_{\mathrm{cb}}\right| & =(36.0 \pm 0.5) 10^{-3} \\
\left|\mathrm{~V}_{\mathrm{cb}}\right| & =(39.0 \pm 1.1) 10^{-3}
\end{aligned}
$$

At parton level, the decay rate for $\mathrm{b} \rightarrow \mathrm{clv}$ can be calculated accurately and is proportional to $\left|\mathrm{V}_{\mathrm{cb}}\right|^{2}$
شi To relate measurements of semileptonic B-meson decays to $\left|\mathrm{V}_{\mathrm{cb}}\right|^{2}$ the parton-level expressions have to be corrected for the effects of non-perturbative effects.
Heavy-Quark-Expansions (HQE) successful
i tool to incorporate perturbative and nonperturbative QCD corrections.
E.g. total decay rate expanded in the kinetic scheme Determine the five parameters $+\left|\backslash V_{c b l}\right|$
$\rightarrow$ from a simultane

$$
\left|\mathrm{V}_{\mathrm{cb}}\right|=(42.19 \pm 0.78)
$$



Unitarity Triangle analysis


## Unitarity Triangle analysis in the SM

© SM UT analysis:

- provide the best determination of CKM parameters
- test the consistency of the SM ("direct" vs "indirect" determinations)
- provide predictions for future experiments (ex. $\sin 2 \beta, \Delta \mathrm{~m}_{\mathrm{s}}, \ldots$ )
M. Bona et al. (UTfit) JHEP0507:028, 2005


## Unitarity Triangle analysis in the SM



Unitarity Triangle analysis in the SM

|  | Observables | Accuracy |
| :---: | :---: | :---: |
|  | $\left\|\mathrm{V}_{\mathrm{ub}} / \mathrm{V}_{\mathrm{cb}}\right\|$ | ~ 7\% |
|  | $\varepsilon_{\mathrm{K}}$ | - 0.5\% |
|  | $\Delta \mathrm{m}_{\mathrm{d}}$ | - 1\% |
|  | $\left\|\Delta \mathrm{m}_{\mathrm{d}} / \Delta \mathrm{m}_{\mathrm{s}}\right\|$ | - 1\% |
|  | $\sin 2 \beta$ | ~ 3\% |
|  | $\cos 2 \beta$ | ~ 13\% |
|  | $\alpha$ | ~6\% |
| M.Bona-Flavour Physis - lecture 2 | $\gamma$ | ~6\% |

## Unitarity Triangle analysis in the SM


M.Bona - Flavour Physics - lecture 2
levels @ 95\% Prob

$$
\overline{\bar{\rho}}=0.148 \pm 0.013
$$

$$
\frac{\Gamma}{\eta}=0.348 \pm 0.010
$$

Unitarity Triangle analysis in the SM


## Unitarity triangle fit beyond the SM

1. fit simultaneously for the CKM and the NP parameters (generalized UT fit)

- add most general loop NP to all sectors
- use all available experimental info
- find out NP contributions
to $\Delta \mathrm{F}=2$ transitions

2. perform a $\Delta \mathrm{F}=2 \mathrm{EFT}$ analysis to put bounds on the NP scale

- consider different choices of the FV and CPV couplings


## generic NP parameterization:

$B_{d}$ and $B_{s}$ mixing amplitudes ( $2+2$ real parameters):

$$
C_{B_{s}} \mathrm{e}^{-2 i \phi_{\mathrm{B}}}=\frac{\left\langle\overline{\mathrm{B}}_{\mathrm{s}}\right| \mathrm{H}_{\mathrm{ef}}^{\mathrm{SM}}+\mathrm{H}_{\mathrm{eff}}^{\mathrm{NP}}\left|\mathrm{~B}_{\mathrm{s}}\right\rangle}{\left\langle\bar{B}_{\mathrm{s}}\right| \mathrm{H}_{\mathrm{eff}}^{\mathrm{SM}}\left|\mathrm{~B}_{\mathrm{s}}\right\rangle}=1+\frac{\mathrm{A}_{\mathrm{NP}} \mathrm{e}^{-2 \mathrm{i} \phi_{\mathrm{NP}}}}{\mathrm{~A}_{\mathrm{SM}} \mathrm{e}^{-2 \mathrm{i} \beta_{\mathrm{s}}}}
$$

$$
A_{q}=C_{B_{q}} e^{2 i \phi_{B_{0}}} A_{q}^{S M} e^{2 i \phi_{q}^{S M}}=\left(1+\frac{A_{q}^{N P}}{A_{q}^{S M}} e^{2 i\left(\phi_{q}^{N P}-\phi_{q}^{S M}\right)}\right) A_{q}^{S M} e^{2 i \phi_{q}^{S M}}
$$

Observables:

$$
\begin{array}{ll}
\Delta m_{q / K}=C_{B_{q} / \Delta m_{K}}\left(\Delta m_{q / K}\right)^{S M} & \varepsilon_{K}=C_{\varepsilon} \varepsilon_{K}^{S M} \\
A_{C P}^{B_{d} \rightarrow J / \psi K K_{s}}=\sin 2\left(\beta+\phi_{B_{d}}\right) & A_{C P}^{B_{s} \rightarrow J / \psi \phi} \sim \sin 2\left(-\beta_{s}+\phi_{B_{s}}\right) \\
A_{S L}^{q}=\operatorname{lm}\left(\Gamma_{12}^{q} / A_{q}\right) & \Delta \Gamma^{q} / \Delta m_{q}=\operatorname{Re}\left(\Gamma_{12}^{q} / A_{q}\right)
\end{array}
$$

NP analysis results


$$
\begin{aligned}
& \overline{\bar{\rho}}=0.144 \pm 0.028 \\
& \bar{\eta}=0.378 \pm 0.027
\end{aligned}
$$

## SM is

$$
\begin{aligned}
& \bar{\rho}=0.148 \pm 0.013 \\
& \bar{\eta}=0.348 \pm 0.010
\end{aligned}
$$

NP parameter results

The ratio of NP/SM amplitudes is:
< 18\% @68\% prob. (30\% @95\%) in $\mathrm{B}_{\mathrm{d}}$ mixing
M.Bona-Flavour Physics- $200 \%{ }^{2} 2068 \%$ pro $(30 \% 0.95 \%$ ) in B mixing

## Testing the new-physics scale

## At the high scale

 new physics enters according to its specific features
## At the low scale

 use OPE to write the most general effective Hamiltonian. the operators have different chiralities than the SM NP effects are in the Wilson$$
\begin{aligned}
\mathcal{H}_{\mathrm{eff}}^{\Delta B=2} & =\sum_{i=1}^{5} C_{i} Q_{i}^{b q}+\sum_{i=1}^{3} \widetilde{C}_{i} \tilde{Q}_{i}^{b q} \\
Q_{1}^{q_{i} q_{j}} & =\bar{q}_{j L}^{\alpha} \gamma_{\mu} q_{L L}^{\alpha} \bar{q}_{j L}^{\beta} \gamma^{\mu} q_{i L}^{\beta}, \\
Q_{2}^{q_{i} q_{j}} & =\bar{q}_{j R}^{\alpha} q_{i L}^{\alpha} \bar{q}_{j R}^{\beta} q_{i L}^{\beta},
\end{aligned}
$$

Coefficients C

$$
C_{i}(\Lambda)=F_{i} \frac{U_{i}}{\Lambda^{2}}
$$

## Effective BSM Hamiltonian for $\Delta \mathrm{F}=2$ transitions

The dependence of C on $\Lambda$ changes depending on the flavour structure. We can consider different flavour scenarios:

- Generic: $\mathrm{C}(\Lambda)=\alpha / \Lambda^{2} \quad \quad \mathrm{~F}_{i} \sim 1$, arbitrary phase
- NMFV: $\mathrm{C}(\Lambda)=\alpha \times\left|\mathrm{F}_{\mathrm{SM}}\right| / \Lambda^{2}$ $\mathrm{F}_{\mathrm{i}} \sim\left|\mathrm{F}_{\mathrm{sm}}\right|$, arbitrary phase
- MFV: $\quad C(\Lambda)=\alpha \times\left|F_{\text {sM }}\right| / \Lambda^{2} \quad F_{1} \sim\left|F_{\text {sM }}\right|, F_{i \neq 1} \sim 0$, SM phase
$\alpha\left(\mathrm{L}_{\mathrm{i}}\right)$ is the coupling among NP and SM
© $\alpha \sim 1$ for strongly coupled NP
$\odot \alpha \sim \alpha_{w}\left(\alpha_{s}\right)$ in case of loop
coupling through weak
(strong) interactions If no NP effect is seen
lower bound on NP scale $\Lambda$
$F$ is the flavour coupling and so $F_{\text {sM }}$ is the combination of CKM factors for the consiaerea process


## results from the Wilson coefficients

Generic: $C(\Lambda)=\alpha / \Lambda^{2}$, $\mathrm{F}_{\mathrm{i}} \sim 1$, arbitrary phase

NMFV: $\quad C(\Lambda)=\alpha \times\left|F_{\text {sM }}\right| / \Lambda^{2}$, $\mathrm{F}_{\mathrm{i}} \sim\left|\mathrm{F}_{\mathrm{sM}}\right|$, arbitrary phase


$\Lambda>5.010^{5} \mathrm{TeV}$
Lower bounds on NP scale
$\alpha \sim \alpha_{w}$ in case ot loop coupling through weak interactions

$$
\Lambda>1.510^{4} \mathrm{TeV}
$$

$\alpha \sim \alpha_{w}$ In case of loop coupling through weak interactions

$$
\Lambda>3.4 \mathrm{TeV}
$$

Ior iower Dound ior ioop-mealated contríioutions, simply multiply by $\alpha_{s}(\sim 0.1)$ or by $\alpha_{w}(\sim 0.03)$

## Summary

- Very partial, shallow and simplified vision of flavour physics
- Points to consider to measure a CP violating asymmetry.
" Need more than one amplitude (more than one Feynman diagram) to have a non-zero CP violation signal.
- Neutral mesons to measure the weak phase cleanly (usually).
- Charged mesons to measure direct CP violation. Knowledge of strong phases limits how you can interpret these measurements in terms of the weak phases.
- Need a model, and many measurements to say anything sensible.

Flavour physics has the fundamental role to carry on precise
measurements and indirect searches that could be more powerful


## CP violation in the D system

- B factories have measured the D mixing (2007)
- The time-integrated CP asymmetry have contributions from both direct CP violation (in the decays) and indirect CP violation (in the mixing or in interference)
- In the SM, indirect CP violation in charm is expected to be very small and universal between CP eigenstates:
$\Rightarrow$ predictions of about $\mathrm{O}\left(10^{-3}\right)$ for CPV parameters
- Direct CP violation can be larger in SM:
it depends on final state (on the specific amplitudes contributing)
$\Rightarrow$ negligible in Cabibbo-favoured modes (SM tree dominates everything)
$\Rightarrow$ In singly-Cabibbo-suppressed modes:
up to $\mathrm{O}\left(10^{-4}-10^{-3}\right)$ plausible
- Both can be enhanced by NP, in principle up to $\mathrm{O}(\%)$


## Where to look for direct CP violation

- Remember: need (at least) two contributing amplitudes with different strong and weak phases to get CPV.
- $\mathrm{D}^{0} \rightarrow \mathrm{~K}^{+} \mathrm{K}^{\mathrm{C}}$ and $\mathrm{D}^{0} \rightarrow \pi^{+} \pi^{\boldsymbol{\pi}}$ decays:
- Singly-Cabibbo-suppressed modes with gluonic penguin diagrams
- Several classes of NP can contribute
... but also non-negligible SM contribution



## No CP violation measured so far

$$
\Gamma=\frac{\Gamma_{2}+\Gamma_{1}}{2} \quad x=\frac{m_{1}-m_{2}}{\Gamma} \quad y=\frac{\Gamma_{2}-\Gamma_{1}}{2 \Gamma}
$$




CPV-allowed plot, no mixing $(x, y)=(0,0)$ point: $\Delta \chi^{2}>300$

## $\Delta \Gamma_{\mathrm{s}}$ and $\phi_{\mathrm{s}}$ measurement from $\mathrm{B}_{\mathrm{s}} \rightarrow \mathrm{J} / \psi \phi$

The time evolution of the meson $\mathrm{B}_{\mathrm{s}}$ and ${ }^{-} \mathrm{B}_{\mathrm{s}}$ is described by the superposition of $B_{H}$ and $B_{L}$ states, with masses $m_{S} \pm \Delta m_{s} / 2$ and lifetimes $\Gamma_{S} \pm \Delta \Gamma_{S} / 2$

These states' deviate from defined values $C P= \pm 1$, as described in the SM by the mixing phase $\phi_{s}\left(\phi_{s}=-2 \beta_{s}\right)$,

SM prediction (fit): $\phi_{s}=-0.0368 \pm 0.0018 \mathrm{rad}$
$\Delta \Gamma_{s}=0.082 \pm 0.021 \mathrm{ps}^{-1}$
New Physics can contribute to $\phi_{\mathrm{s}}$, and change the ratio $\Delta \Gamma_{\mathrm{s}} / \Delta \mathrm{m}_{\mathrm{s}}$.
In generall, the decay to a final state that is coupled to $\mathrm{B}_{\mathrm{s}}$ and/ $/ \mathrm{or}^{-} \mathrm{B}_{\mathrm{s}}$, exhibits fast oscillations driven by $\Delta \mathrm{m}_{\mathrm{s}}$. Interference between amplitudes for both states generates CP violation, and conveys information on $\phi$ s.


## angular analysis in $\mathrm{B}_{\mathrm{s}} \rightarrow \mathrm{J} / \psi \phi$

- In the decay ${ }^{-} \mathrm{B}_{\mathrm{s}}\left(\mathrm{B}_{\mathrm{s}}\right) \rightarrow \mathrm{J} / \psi \phi \rightarrow \mathrm{I}^{-} \mathrm{K}^{+} \mathrm{K}^{-}$ different components in the angular-distributions amplitudes
correspond to $\mathrm{CP}=+1$ or -1
The "transversity angles" are used to describe the angular distributions



## angular analysis in $\mathrm{B}_{\mathrm{s}} \rightarrow \mathrm{J} / \psi \phi$

- Angular analysis as a function of proper time and b-tagging
- Similar to $\mathrm{B}_{\mathrm{d}}$ measurement in $\mathrm{B}_{\mathrm{d}} \rightarrow \mathrm{J} / \psi \mathrm{K}^{*}$
- Additional sensitivity from the $\Delta \Gamma_{\mathrm{s}}$ terms (negligible for $\mathrm{B}_{\mathrm{d}}$ )

```
\frac{d}{}\mp@subsup{}{}{4}P(t,w)
        +|A\mp@subsup{A}{\perp}{}\mp@subsup{|}{}{2}\mp@subsup{T}{-}{\prime}\mp@subsup{f}{3}{}(w)+|\mp@subsup{A}{||}{}||\mp@subsup{A}{\perp}{}|\mp@subsup{U}{+}{}\mp@subsup{f}{4}{}(w)
        +| A | || A | | cos(\delta||
        +| A | | A A | | V+ fof(w)
T
    \mp\eta\operatorname{sin}(2\mp@subsup{\beta}{s}{})\operatorname{sin}(\Deltamst)],\eta=+1(-1) for P(\overline{P})
U
    - cos(\mp@subsup{\delta}{\perp}{}-\mp@subsup{\delta}{||}{})\operatorname{cos}(2\mp@subsup{\beta}{s}{})\operatorname{sin}(\Delta\mp@subsup{m}{s}{}t)
    \pm\operatorname{cos}(\mp@subsup{\delta}{\perp}{}-\mp@subsup{\delta}{||}{})\operatorname{sin}(2\mp@subsup{\beta}{\textrm{s}}{})\operatorname{sinh}(\Delta\Gamma\textrm{t}/2)]
V
    - cos(\delta\perp})\operatorname{cos}(2\mp@subsup{\beta}{\textrm{s}}{})\operatorname{sin}(\Delta\mp@subsup{m}{\textrm{s}}{}\textrm{t}
    \pm\operatorname{cos}(\mp@subsup{\delta}{\perp}{})\operatorname{sin}(2\mp@subsup{\beta}{\textrm{s}}{})\operatorname{sinh}(\Delta\Gammat/2)]
```

Dunietz et al.
Phys.Rev.D63:114015,2001

$$
\begin{gathered}
\text { Ambiguities for } \\
\phi_{\mathrm{s}} \rightarrow \pi-\phi_{\mathrm{s}} \\
\Delta \Gamma_{\mathrm{s}} \rightarrow-\Delta \Gamma_{\mathrm{s}}, \\
\cos \left(\delta_{\perp}-\delta_{\|}\right) \rightarrow-\cos \left(\delta_{\perp}-\delta_{\|}\right)
\end{gathered}
$$

๑ transversity basis: $\mathrm{W}(\theta, \varphi, \psi)$
$\odot \theta$ and $\varphi$ : direction of the
$\mu^{+}$from $\mathrm{J} / \psi$ decay
๑ $\psi$ : between the decay planes of $J / \psi$ and $\phi$

## angular analysis in $\mathrm{B}_{\mathrm{s}} \rightarrow \mathrm{J} / \psi \phi$


M.Bona - Flavour Physics - lecture 2

errors from tree-only fit on $\rho$ and $\eta$. $\bar{\rho}$

$$
\begin{aligned}
& \sigma(\rho)=0.008 \text { [currently } 0.051 \text { ] } \\
& \sigma(\eta)=0.010 \text { [currently } 0.050 \text { ] }
\end{aligned}
$$


errors from 5 -constraint fit on $\rho$ and $\eta$ : $\sigma(\rho)=0.005$ [currently 0.034] $\sigma(\eta)=0.004$ [currently 0.015]

## Summary

- Points to consider to measure a CP violating asymmetry. Need more than one amplitude (more than one Feynman diagram) to have a non-zero CP violation signal.
- Neutral mesons can be used to measure the weak phase cleanly (usually).
- Charged mesons can be used to measure direct CP violation. Knowledge of strong phases limits how you can interpret these measurements in terms of the weak phases.
- Need a model, and many measurements to say anything sensible.
- Even then you will have a large theoretical uncertainty.

You can count the CKM vertex factors in the Feynman diagrams to tell you relative sizes of decays that you expect (This works for tree level processes. You need to consider colour / Zweig supression for more detailed guesses).

CP violation in interference between mixing and decay:

$$
\boldsymbol{\lambda}_{f_{C P}}=\frac{q}{p} \cdot \frac{\overline{\boldsymbol{A}}_{f_{C P}}}{\boldsymbol{A}_{f_{C P}}}
$$

© decays in final state $f$
accessible to both a B or a B ( $f$ is not necessarily a CP eigenstate)
© if $\operatorname{Im} \lambda \neq 0$ then $\rightarrow \mathrm{CP}$ violation


$$
\lambda=\frac{q}{p} \frac{A(\bar{B} \rightarrow f)}{A(B \rightarrow f)}=\frac{V_{d d}^{*} V_{t b} \bar{A}}{V_{t d} V_{t b}^{*}} \sim e^{-i 2 \beta} \frac{\bar{A}}{A}
$$

$\beta$ is the
mixing phase

| examples |  | f | $\operatorname{Arg}\left(\frac{A}{A}\right)$ | $\mid \boldsymbol{\lambda}$ \| | parameter |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | mixing <br> " $\sin 2 \beta$ " <br> " $\sin 2 \alpha$ " <br> $" \sin (2 \beta+\gamma) "$ | $\begin{aligned} & B^{0} \rightarrow l \nu X, D^{(*)} \pi\left(\rho, a_{1}\right) \\ & B^{0} \rightarrow J / \psi K^{0}, \ldots \\ & B^{0} \rightarrow \pi \pi, \rho \pi, \pi \pi \pi \\ & B^{0} \rightarrow D^{(*)} \pi \end{aligned}$ | 0 | $\sim 0$ | $\Delta \boldsymbol{M I}_{\boldsymbol{B}^{0}}$ |
|  |  |  | 0 | 1 | $\sin 2 \beta$ |
|  |  |  | $\sim(-2 \gamma)$ | $\sim 1$ | $\sin 2 \alpha$ |

## BB pair coherent production

© The $B^{0}$ and $B^{0}$ mesons from the $Y(4 S)$ are in a coherent $L=1$ state:

- The $\mathrm{Y}(4 \mathrm{~S})$ is a bb state with $\mathrm{J}^{\mathrm{PC}}=1^{-}$.
- B mesons are scalars ( $\mathbf{J}^{P}=0^{-}$)
$\Rightarrow$ total angular momentum conservation
$\Rightarrow$ the BB pair has to be produced in a $L=1$ state.
© The $\mathrm{Y}(4 \mathrm{~S})$ decays strongly so B mesons are produced in the two flavour eigenstates $B^{0}$ and $B^{0}$ :
- After production, each B evolves in time, but in phase so that at any time there is always exactly one $B^{0}$ and one $B^{0}$ present, at least until one particle decays: $\Rightarrow$ If at a given time $t$ one B could oscillate independently from the other, they could become a state made up of two identical mesons: but the $L=1$ state is anti-symmetric, while a system of two identical mesons (bosons!) must be completely symmetric for the two particle exchange.
© Once one $B$ decays the other continues to evolve, and so it is possible to have events with two B or two B decays.


## Measuring $\Delta t$



Asymmetric energies produce boosted Y(4S), decaying into coherent BB pair

## Measuring $\Delta t$



## Measuring $\Delta t$


$\Rightarrow$ Then fit the $\Delta t$ distribution to obtain the amplitude of sine and cosine terms.
M.Bona - Flavour Physics - lecture 2

