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COMPARING FIXED ORDER AND PARTON SHOWER

Parton shower Fixed order

Correct only for soft/
collinear radiation

Hard radiation correctly 
described

High multiplicity final states 
possible

At most ~10 particles in 
final state

Realistic, hadronic final 
states Only partonic final states

Hard to improve accuracy Known how to systematically 
improve accuracy
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BRIEF ASIDE ON JETS

▸ Fixed order calculations describe single partons, but they 
are not what is observed in a detector 

▸ Soft-collinear radiation causes a 'spray' of particles from 
each initiating parton 

▸ The spray forms a cone-like shape of radiation, called a jet 

▸ Many different ways to define jets, which must be IR-safe - 
definitions use a jet radius   which quantifies jet size 

▸ Jet algorithms take partons and cluster them into jets

R
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JET PRODUCTION

▸ Tree level processes are  , 
  etc.  

▸ Parton shower starts with these and 
adds extra radiation 

▸ Only correct in soft/collinear limit, but 
sometimes adds hard extra emissions 

▸ Pretty good from PS - large 
uncertainties on FO at small values as 
large logs blow up

qq → qq
qg → qg
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VECTOR BOSON + JET PRODUCTION

▸ Fig. shows cross section for   jet to have transverse 
energy above   

▸ PS and FO in agreement for 1st jet, but terrible for >2

N th

ET
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VECTOR BOSON + JET PRODUCTION

▸ Explanation: HERWIG generates hard   configs 

▸ But: also soft/coll. enhanced events where   is radiated off 
a dijet config, not captured by QCD shower alone

Z + j

Z
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MATRIX ELEMENTS WITH PARTON SHOWERS (MEPS)
▸ How do we combine PS and FO? 

▸ Consider   production as the underlying hard process. 
PS does a good job for   parton, but terribly for more

Z + j
Z + 1

▸ Naïve solution: generate 
  with correct LO ME, 
then shower   

▸ Problem: double 
counting!

Z + 2

Credit: G. Salam
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MLM MERGING
▸ Introduce transverse momentum cutoff   and angular 

cutoff   

▸ Generate tree-level events for up to    partons, where all 
partons have   and separation   

▸ Shower all events 

▸ Apply a jet algorithm to the showered event with  , 
and identify all jets with   

▸ If each jet corresponds to one of the partons and there are no 
extra jets above   then accept, otherwise reject 

QME
RME

Z + N
pT > QME θ > RME

R > RME
pT > Qmerge ≳ QME

Qmerge
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MLM MERGING

▸ Double-counting removed by rejection of hard radiation 

▸ Hard jets come only from the matrix element
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MLM VS FIXED ORDER AND PARTON SHOWER

▸ MLM (green) gets 
shape right 

▸ Large scale uncertainty 
and normalisation 
wrong, much worse 
than NLO (red)

▸ Ideally, need a way to combine NLO calculations with 
the parton shower (or even NNLO) 
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MATCHING NLO TO PARTON SHOWER

▸ Criteria for a successful combination of NLO+PS: 

• Total cross section inherited from NLO 

• Radiation pattern (first order) follows NLO real emission  

• Logarithmic accuracy of PS is maintained 

‣ Recall NLO structure:

σNLO
N = ∫ dΦℬ [ℬN(Φℬ) + 𝒱N(Φℬ) + ℐ𝒮

N(Φℬ)]

+∫ dΦℛ [ℛN(Φℛ) − 𝒮N(Φℛ)]
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IMPROVING THE PARTON SHOWER - MATRIX ELEMENT CORRECTIONS

▸ Parton shower good for soft/collinear, bad for hard 
emissions 

▸ Can we correct it to get the hardest emission right? 

▸ In many processes, parton shower is an overestimate of 
exact ME:

ℛN(Φℬ ⊗ Φ1) ≤ ℬN(Φℬ) ⊗ 𝒦N(Φ1)

▸   is PS soft and collinear splitting kernel (we discussed  , 
the collinear case only) 
𝒦 Pij
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MATRIX ELEMENT CORRECTIONS

▸ Terms in curly brackets integrate to 1 (shower is unitary) 

▸ Let’s modify the splitting kernel to make it look more like 
the real matrix element, at least for the first emission:

▸ First emission pattern looks like:

dσN = dΦℬℬN(Φℬ){ΔN(μ2
Q, tc) + ∫

μ2
Q

tc

dΦ1 [𝒦N(Φ1)ΔN(μ2
Q, t(Φ1))]}

No emission probability Single emission probability at a given time t

�̃�N(Φ1) = ℛN(Φℬ ⊗ Φ1)/ℬN(Φℬ)
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MATRIX ELEMENT CORRECTIONS

▸ Now first emission follows real matrix element! 

▸ Practically, use normal shower kernels and simply accept/
reject points with a probability

▸ First emission pattern modified to:

dσN = dΦℬℬN(Φℬ) Δ̃N(μ2
Q, tc) + ∫

μ2
Q

tc

dΦ1 [ ℛN(Φℬ ⊗ Φ1)
ℬN(Φℬ)

Δ̃N(μ2
Q, t(Φ1))]

𝒫MEC =
ℛN(Φℬ ⊗ Φ1)

ℬ(Φℬ) ⊗ 𝒦N(Φ1)
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NLO MATCHING - THE POWHEG METHOD

▸ Define Born-like configurations which give NLO-accurate 
cross section:

ℬN(Φℬ) = ℬN(Φℬ) + 𝒱N(Φℬ) + ∫ dΦ1 [ℛN(ΦB ⊗ Φ1) − 𝒮N(ΦB ⊗ Φ1)]

▸ IR-subtracted, UV-renormalised virtual piece is 

𝒱N(Φℬ) = 𝒱N(Φℬ) + ℐ𝒮
N(Φℬ)

▸ Works if  .   terms are fully differential 
cross sections of Born configurations with NLO weight.

Φℛ = Φℬ ⊗ Φ1 ℬ
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NLO MATCHING - THE POWHEG METHOD

▸ Unitary PS cannot spoil NLO cross section 

▸ Still need pattern of first emission to be correct up to   

▸ Get this by applying matrix element corrections! 

▸ POWHEG formula given by

𝒪(αs)

dσN = dΦℬℬN(Φℬ) Δ̃N(μ2
Q, tc) + ∫

μ2
Q

tc

dΦ1 [ ℛN(Φℬ ⊗ Φ1)
ℬN(Φℬ)

Δ̃N(μ2
Q, t(Φ1))]
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NLO MATCHING - THE POWHEG METHOD

▸ POWHEG formula given by

dσN = dΦℬℬN(Φℬ) Δ̃N(μ2
Q, tc) + ∫

μ2
Q

tc

dΦ1 [ ℛN(Φℬ ⊗ Φ1)
ℬN(Φℬ)

Δ̃N(μ2
Q, t(Φ1))]

▸ Gets NLO cross section right (term in curly braces 
integrates to unity) 

▸ Gets real radiation right at   - NLO terms in   hitting 
  are   

▸ Subtleties in scale choices, starting scale of PS 

𝒪(αs) ℬ
ℛN /ℬN 𝒪(α2

s )
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MATCHING TO NNLO

▸ LO gives order of magnitude estimate, NLO is reliable, but need 
NNLO for precision. 

▸ NNLO calculations are much harder than NLO.  

▸ Many overlapping divergences - up to 2 extra emissions, can be 
soft and/or collinear in different combinations 

▸ Cancellation of divergences between real and virtual diagrams is 
still guaranteed by the KLN theorem 

▸ Let’s take a step back - how do we define an 'event' which is IR-
finite?
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BORN

VIRTUAL

REAL

0-JET 1-JET

DEFINING IR-FINITE EVENTS
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HARD REAL

0-JET 1-JET

SOFT/COLL. REAL

r0 < rcut
0 r0 > rcut

0

DEFINING IR-FINITE EVENTS



PRECISION MONTE CARLO EVENT GENERATORS FOR LHC PHYSICS

HARD REAL

0-JET 1-JET

SOFT/COLL. REAL

r0 < rcut
0 r0 > rcut

0

DEFINING IR-FINITE EVENTS
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BORN VIRTUAL

REAL

0-JET

1-JET

DOUBLE-VIRTUAL

2-JET

DOUBLE-REAL

REAL-VIRTUAL

DEFINING IR-FINITE EVENTS
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DEFINING IR-FINITE EVENTS

BORN VIRTUAL

REAL

0-JET

1-JET

DOUBLE-VIRTUAL

2-JET

DOUBLE-REAL

REAL-VIRTUAL
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DEFINING IR-FINITE EVENTS

REAL

0-JET

1-JET 2-JET

DOUBLE-REAL

REAL-VIRTUAL

r0 < rcut
0

r0 > rcut
0
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DEFINING IR-FINITE EVENTS

0-JET

1-JET 2-JET

DOUBLE-REAL

REAL-VIRTUAL

r0 < rcut
0

r0 > rcut
0
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DEFINING IR-FINITE EVENTS

0-JET

1-JET 2-JET

DOUBLE-REAL

r0 < rcut
0 , r1 < rcut

1

r0 > rcut
0 , r1 < rcut

1

r0 > rcut
0 , r1 > rcut

1
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▸ Defining events this way introduced a projection from a 
higher multiplicity to a lower multiplicity phase space 

▸ Results are only (N)NLO accurate up to power corrections 
in   - as  , exact fixed order result is recovered 

▸ Causes large logarithms to appear which spoil 
perturbative convergence! 

rcut
0 rcut

0 → 0

L = log(Q/rcut
0 ) becomes large…

DEFINING IR-FINITE EVENTS
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RESUMMATION - THE CURE FOR LARGE LOGS

▸ Large logs signal the breakdown of 
the perturbative series in the coupling, 
leading term   

▸ Reordering the series to expand in a 
genuinely small parameter cures 
behaviour 

αL2 ∼ 1 ⇒ αL ≪ 1

‣ Different formalisms available to achieve this

dσ = C(αs) exp (Lg1(αsL) + g2(αsL) + αsg3(αsL) + …)
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COMBINING RESUMMED AND FIXED ORDER CALCULATIONS IN GENEVA

GENEVA Parton 
showerResummed 

@NNLL’
Fixed Order 

@NNLO
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GENEVA AS AN NNLO+PS EVENT GENERATOR
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GENEVA AS AN NNLO+PS EVENT GENERATOR

2212.10489, 2301.11875, S. Alioli, G. Billis, A. Broggio, A. Gavardi, S. Kallweit, MAL, G. Marinelli,  
R. Nagar, D. Napoletano
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SUMMARY

▸ Fixed order and parton shower calculations have different 
advantages - important to be able to combine them to 
achieve best theoretical description 

▸ Merging combines samples with different multiplicities at 
FO and showers them without double counting 

▸ Matching corrects first emissions of parton shower to be 
(N)NLO accurate and gives events with (N)NLO weight
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OVERVIEW

▸ I have not been exhaustive by a long shot - many topics 
uncovered and details omitted, see initial references for 
more info 

▸ Aim has not been to bring you up-to-speed with cutting 
edge developments or list all available tools, but to peek 
inside the black-box 

▸ Hopefully now you appreciate the power and limitations of 
event generators, and can debug more successfully!


