Non-oscillating Early Dark Energy and Quintessence from α -Attractors

Researchers: Lucy Brissenden, Konstantinos Dimopoulos and Samuel Sánchez López

Lucy Brissenden

Lancaster University

January 2023

Supervisor: Konstantinos Dimopoulos

https://doi.org/10.48550/arXiv.2301.03572

1/15

January 2023

Lucy Brissenden (Lancaster University) Non-oscillating Early Dark Energy and Quinte

▶ < ∃ >

æ

Motivation - The Hubble Tension

In observational cosmology there are two types of measurements:

Early-time measurements

- Measure observables that depend on the history of the Universe at early times (for example around decoupling or matter-radiation equality)
- Examples: CMB, BAO (baryon acoustic oscillations)

Planck data [1] gives a Hubble constant of

 $H_0 = 67.44 \pm 0.58 \text{ km s}^{-1} \text{ Mpc}^{-1}$

Late-time measurements

- Measure observables that depend on the history of the Universe to the present day
- Examples: Type-1a Supernovae, Cepheid variables (basically anything in the cosmic distance ladder)

The SH₀ES collaboration [2] gives a Hubble constant of $H_0 = 73.04 \pm 1.04$ km s⁻¹ Mpc⁻¹

These two measurements are in 5σ tension! There is no indication that this arises from systematic error.

- Early Dark Energy (EDE) is a possible way to resolve the Hubble tension
- EDE is an injection of dark energy around matter-radiation equality, always remaining subdominant, that decays away before it can be detected in the CMB
- Lowers the value of the sound horizon at last scattering, such that the Hubble constant today is higher. The comoving sound horizon is given by

$$r_d = \int_{z_d}^{\infty} \frac{c_s(z)}{H(z)} dz,$$
(1)

where $c_s(z)$ is the sound speed of baryon acoustic oscillations (BAO) and H(z) is the Hubble parameter, both as a function of redshift.

Quintessence: Late-time dark energy (dark energy that makes up 70% of the Universe today) that is caused by a scalar field. So named because it is the fifth substance in the Universe content, after baryonic matter, radiation, dark matter and neutrinos.

In this project we aim to use a scalar field with an α -attractor potential to cause both early dark energy and late-time dark energy, thus resolving the Hubble tension and finding a cause for dark energy today.

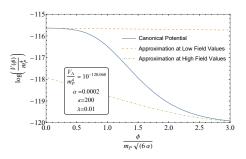
α -attractors

- α-attractors [3] are a class of inflationary models
- In supergravity, introducing curvature to the internal field-space manifold can result in kinetic poles for some of the scalar fields of the theory. The free parameter α is inversely proportional to said curvature.
- These are called attractors because:
 - multiple initial field trajectories will evolve to a unique one
 - 2 the inflationary predictions each model results in are broadly generic for the class.

This results in a non-standard Lagrangian for the field

$$\mathcal{L} = rac{-rac{1}{2}(\partial arphi)^2}{(1-rac{arphi^2}{6lpha m_{
m P}^2})^2} - V(arphi)\,,$$
 (2)

where φ is the non-canonical scalar field and we use the short-hand notation $(\partial \varphi)^2 \equiv g^{\mu\nu} \partial_\mu \varphi \, \partial_\nu \varphi$. We then redefine the non-canonical field in terms of the canonical scalar field ϕ as


$$d\phi = \frac{d\varphi}{1 - \frac{\varphi^2}{6\alpha m_P^2}} \quad \Rightarrow \quad \varphi = m_P \sqrt{6\alpha} \tanh\left(\frac{\phi}{\sqrt{6\alpha} m_P}\right). \tag{3}$$

The poles $\varphi = \pm \sqrt{6\alpha}$ are transposed to infinity, giving the Lagrangian of the canonical field the more typical form

$$\mathcal{L} = -\frac{1}{2}(\partial\phi)^2 - V(\phi). \tag{4}$$

It is necessary to specify the potential such that it produces the desired combination of behaviours...

Shape of Potential

In terms of the canonical scalar field, the Lagrangian density is then given by Eq. (4), where the scalar potential is

$$V(\phi) = \exp(\lambda e^{\kappa\sqrt{6\alpha}})$$
$$V_{\Lambda} \exp[-\lambda e^{\kappa\sqrt{6\alpha} \tanh(\phi/\sqrt{6\alpha} m_{\rm P})}].$$
(6)

The potential is approximated at early times by

$$V_{\rm eq} \simeq \exp[\lambda(e^{\kappa\sqrt{6\alpha}} - 1)]V_{\Lambda} \exp(-\kappa\lambda\,\phi_{\rm eq}/m_{\rm P})\,,\tag{7}$$

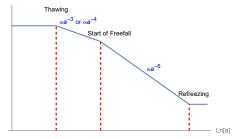
and at late times by

$$V_{0} \simeq V_{\Lambda} \left[1 + 2\kappa \lambda e^{\kappa \sqrt{6\alpha}} \sqrt{6\alpha} \exp\left(-\frac{2\phi_{0}}{\sqrt{6\alpha} m_{P}}\right) \right]$$
(8)

 $V(arphi) = V_X \exp(-\lambda e^{\kappa arphi/m_{
m P}}),$

The potential has the form

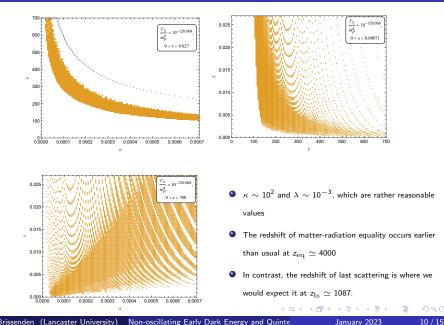
with $V_{\Lambda} \equiv \exp(-\lambda e^{\kappa \sqrt{6\alpha}}) V_X.$ (5)

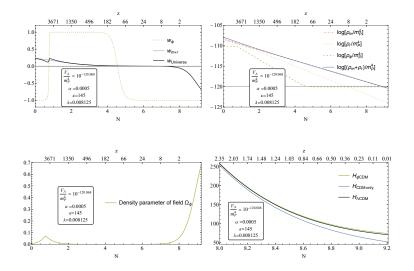

January 2023

Expected Field Behaviour

Klein-Gordon equation of motion:

$$\ddot{\phi} + 3H\dot{\phi} + V'(\phi) = 0, \qquad (9)$$


 $Ln[\rho_{\phi}]$



We solved the equations of motion with a matter+radiation background in Mathematica to find the subsequent field evolution numerically...

- The field should begin frozen and thaw around matter-radiation equality, peaking at roughly 10% of the overall energy density.
- It will then enter a period of kinetic domination (freefall) and redshift away as a^{-6} . (It can follow a scaling attractor for a short time before this)
- After this, it will refreeze at an energy density comparable to that of today, mimicking ΛCDM.
- The field will either grow to dominate while frozen or begin to thaw around the present day.

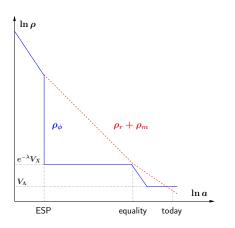
Parameter Space

■ つ 11/

< □ > < □ > < □ > < □ > < □ > < □ >

Field Behaviour

Constraint	Field Value
$0.015 \leq \Omega_{\phi}^{\text{eq}} < 0.107$	0.05178
$\Omega_{\phi}^{ m ls} < 0.015$	0.001722
$\Omega_\phi^{eq} > \Omega_\phi^{ls}$	YES
$0.6833 \leq \Omega_{\phi}^0 \leq 0.6945$	0.6889
$-1 \leq w_{\phi}^0 \leq -0.95$	-1.000
$-0.55 \leq w_{\phi}^{a} \equiv - \left. \frac{\mathrm{d}w_{\phi}}{\mathrm{d}a} \right _{0} \leq 0.03$	-4.850×10^{-11}
$72.00 \le \frac{H_0}{\mathrm{km \ s}^{-1} \mathrm{Mpc}^{-1}} \le$ 74.08	73.27
$\kappa\lambda$	1.178
$(\phi_0-\phi_{ m eq})/m_{ m P} < 1$	0.4274


Table: Table giving the constraints and their corresponding values for an example point, $\alpha = 0.0005$, $\kappa = 145$, $\lambda = 0.008125$, and V_{Λ} tuned to the SH₀ES cosmological constant, in the viable parameter space. The Hubble constant obtained in this example is $H_0 = 73.27$ km/s Mpc.

- Field fits the expected behaviour, generating a higher H₀ with the maximum allowed value of the EDE density parameter always below 0.1
- It is possible that this is too restrictive a constraint, because the constraint was developed for oscillating EDE [4] - in non-oscillating EDE, the field has a true free-fall period, redshifting away exactly as a⁻⁶ rather than just below this rate.

- This non-oscillatory model of unified early and late dark energy resolves the Hubble tension and explains dark energy today with the assumption of relatively natural values in the model parameters.
- The scalar field lies originally frozen at the origin, until it thaws near the time of equal matter-radiation densities, when it becomes EDE. Afterwards it free-falls until it refreezes at a lower potential energy density value, which provides the vacuum density of ACDM.
- The potential is engineered to be steep enough to induce free-fall.
- However, the model is a proof of concept. It demonstrates that any suitably steep runaway potential can produce a model unifying EDE with ACDM.

Extension - Quintessential Inflation with EDE

 The α-attractors construction leads to two flat regions in the scalar potential of the canonical fields.

- This has been used for quintessential inflation models, with the low-energy plateau responsible for quintessence and the high-energy plateau for inflation.
- Analytical estimates suggests that a shift in field space, along with a modification of the scalar potential such that it reduces to our potential near the earlier pole, can produce quintessential inflation.

$$V(\tilde{\varphi}) = V_X \exp\{-2\lambda \sinh[\kappa(\tilde{\varphi} - \Phi)/m_{\rm P}]\},$$
(10)

 A mechanism is needed to ensure the field freezes. In the paper we suggest an interaction with a second field such that the inflaton becomes trapped at an ESP (enhanced symmetry point).

Any questions?

References

- N. Aghanim et al., "Planck 2018 results. VI. Cosmological parameters," Astron. Astrophys., vol. 641, A6, 2020, [Erratum: Astron.Astrophys. 652, C4 (2021)]. DOI: 10.1051/0004-6361/201833910. arXiv: 1807.06209 [astro-ph.C0].
- [2] A. G. Riess *et al.*, "A Comprehensive Measurement of the Local Value of the Hubble Constant with 1 km s¹Mpc¹ Uncertainty from the Hubble Space Telescope and the SH0ES Team," *Astrophys. J. Lett.*, vol. 934, no. 1, p. L7, 2022. DOI: 10.3847/2041-8213/ac5c5b. arXiv: 2112.04510 [astro-ph.C0].
- [3] R. Kallosh, A. Linde, and D. Roest, "Superconformal Inflationary α-Attractors," JHEP, vol. 11, p. 198, 2013. DOI: 10.1007/JHEP11(2013)198. arXiv: 1311.0472 [hep-th].
- [4] T. L. Smith, V. Poulin, J. L. Bernal, K. K. Boddy, M. Kamionkowski, and R. Murgia, "Early dark energy is not excluded by current large-scale structure data," *Phys. Rev. D*, vol. 103, no. 12, p. 123542, 2021. DOI: 10.1103/PhysRevD.103.123542. arXiv: 2009.10740 [astro-ph.CO].