HIP SEMINAR.

PROFILE LIKELIHOOD METHODS IN TOP QUARK MASS MEASUREMENTS AT THE CMS

Hannu Siikonen

Helsinki Institute of Physics

OUTLINE

- Background
 - - **PRECISION LIMIT?**
- 3 IN-SITU SYSTEMATICS

 - **4** Binning
- **6** Consequences
- **6** Further Features
- - Results

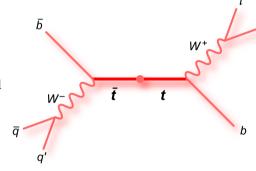
 - **8** Summary

 - Sources

TOP QUARK MEASUREMENTS AT THE LHC

- Background
- LIMIT?
- Systematics
- CONSTOLIENCES
- FURTHER
- FEATURES
- TESULIS
- Summary
- Sources

- At the LHC, direct measurements of the top quark mass (m_t) are the most precise
 - Direct ≡ reconstruction of decay products
 - Indirect ≡ anything else, e.g. based on cross-section
- In Run 2 conditions ($\sqrt{s} = 13 \,\text{TeV}$):
 - Collision events producing a top quark pair are the most frequent (832 fb⁻¹)
 - Events with a single top quark make a good number 2 (264 fb⁻¹)



Visualized: the semileptonic top quark pair decay channel

DIRECT TOP QUARK MASS MEASUREMENTS

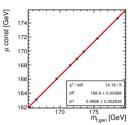
LIMIT?

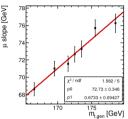
BINNING

Consequence

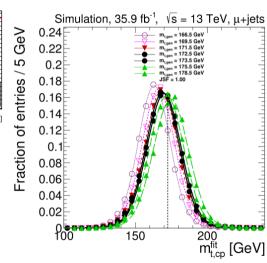
FURTHER

RESULTS





- Classical strategy:
 - Intricate parametrized fits on the observables are made against simulation truth values
 - The parameter dependence on e.g. m_t is fit against the **simulation** truth



Constructing A Likelihood

BACKGROUNE

LIMIT?

Systematics

Consequence

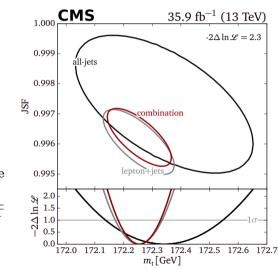
FURTHER FEATURES

RESULI

SUMMAR

Sources

- Using the parametrized fits, a likelihood function for the observables can be constructed
 - This will depend on the chosen parameters
- CMS used to utilize m_t and Jet Scale Factor (JSF)
 - On the right is the CMS lepton+jets and all-jets likelihood combination on the 2016 data
 - The yielded result: $m_t = 172.26 \pm 0.07 \text{ (stat+JSF)} \pm 0.61 \text{ (syst) } GeV$
- ATLAS used in addition bJSF during Run1



HAS THE PRECISION LIMIT BEEN REACHED?

The stat. (+ JSF) errors in the CMS 2016 measurement are vanishing vs. the systematics: $0.07 \, \text{GeV} \, \text{vs.} \, 0.61 \, \text{GeV}$

- In the classic treatment, the most important systematic error sources cannot typically be reduced by adding statistics
- Such error sources include e.g. modelling uncertainties (in the simulations)
- This indicates that adding limitless statistics to the measurement would at best yield an error of $\pm 0.00 \, (\text{stat+JSF}) \pm 0.61 \, (\text{syst}) \, \text{GeV}$
- As modelling advances, an inverse trend is observed:
 - With better modelling, the number of potential systematic error sources tends to increase
 - With traditional methods, there is always a risk of double-counting and adding statistical noise to each additional error source

HIP SEMINAR

APPARENTLY NOT?

Background

LIMIT?

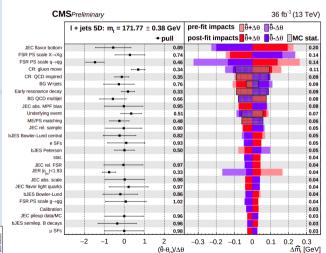
SYSTEMATIC

Consequence

FURTHER FEATURES

RESULTS

Sources



Earlier this year preliminary results on a new measurement on the 2016 data was released:

 $m_t = 171.77 \pm 0.04 \, (\mathrm{stat}) \pm 0.38 \, (\mathrm{syst}) \, \mathrm{GeV}$

• The analysis uses a split scheme of Final State Radiation (FSR) uncertainties: light quarks and heavy quarks handled separately

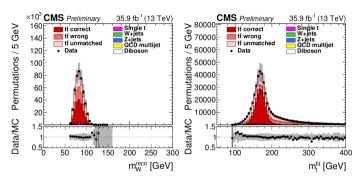
• With the old FSR definitions one measures $m_t = 172.14 \pm 0.04 \text{ (stat)} \pm 0.31 \text{ (syst) GeV}$

WHAT HAS CHANGED?

- Earlier CMS measurements only used two observables, which excelled in a fit on m_t^{gen} and JSF
 - The reconstructed m_t resonance
 - The reconstructed hadronic m_W resonance
- Three new observables were introduced in the new study
 - These include a ratio between b-jet and W jet p_T values, earlier utilized by ATLAS
 - Most importantly, the use of the partial resonance between a b-jet and the charged lepton was added in a phase-space region that was earlier unused
- These updates are still not sufficient for explaining the improvement

The missing piece is the introduction of a profile likelihood approach

A "SIMPLE" IN-SITU MEASUREMENT: JSF



- In the earlier iterations, the JSF nuisance parameter is measured in association to m_t in an *in-situ* manner
 - Measuring the additional dependence is possible, as the m_W distribution is present in the full likelihood
 - This allows reducing the jet calibration systematics

More Nuisance Parameters

BACKGROUND

PRECISION

IN-SITU

BINNING

Consequence

FURTHER

Regume

10100111

SUMMAR

Sources

• Could we do the same thing more comprehensively, making nuisance parameters from all systematic error sources?

A GENERALIZED IN-SITU MEASUREMENT

- There is no fundamental obstacle for interpreting the systematic variations similarly as JSF variations
 - This is exactly what is done in the new CMS m_t analysis on the 2016 Data with a profile likelihood method
 - In practice this requires a higher level of automation
 - In a final analysis there can easily exist more than 100 systematic uncertainties
- In consequence, the auxiliary JSF parameter becomes unnecessary:
 - This task is already covered by the Jet Energy Uncertainties
- Systematic uncertainties are in general modelled with variations on the central simulated samples
 - This includes two-sided variations, interpreted as the corresponding $\pm \sigma$ uncertainties
 - ... and one-sided variations, which are interpreted as $+\sigma$ uncertainties

Systematics in the Likelihood

- Background
- PRECISION LIMIT?

IN-SITU SYSTEMATICS

BINNI

Consequence

FURTHER

Drawn

SUMMARY

Sources

- In the old CMS analyses the best results were found with the **hybrid** method:
 - Here, a physically motivated Gaussian prior was imposed on the value of JSF
- In the profile likelihood approach the systematics are interpreted as nuisance parameters θ_k
 - The $\pm \sigma$ variations are defined to correspond to the values $\theta_k = \pm 1$
 - The knowledge that the variations are the $\pm \sigma$ uncertainties is enforced by a Gaussian prior \mathcal{G} on all of the nuisance parameters θ_k
 - Similar Gaussian priors are also set on the normalization scales (η_j) of the simulated samples, according to the cross-section and luminosity uncertainties
- In summary, starting from the likelihood without priors (\mathcal{L}_0) , the full likelihood stands as:

$$\mathcal{L} = \mathcal{L}_0 \times \prod_{k \in \text{nuisances}} \mathcal{G}\left(\theta_k\right) \times \prod_{j \in \text{samples}} \mathcal{G}\left(\eta_j\right). \tag{1}$$

HIP SEMINAR

PARAMETER AUTOMATIZATION?

36 fb⁻¹ (13 TeV)

CMS Preliminary

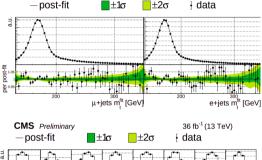
IN-SITU SYSTEMATICS

Consequences

FURTHER FEATURES

RESULTS

Summar



u+iets obs. hins

- The automatization ends up being a major issue in the practical implementation
 - One method for tackling the issue is using a binned likelihood model
 - Here, the only parameters are the bin edges, and the only variables to fit the bin event counts
 - Each bin forms its own Poisson counting experiment
- The 2016 CMS m_t analysis started with the 5 observables being handled by fit functions, but ended up handling 4/5 observables with binning (left)

13/34

Considerations for a Binned Analysis

- Maybe counter-intuitively, the binned approach is the most robust choice
 - Parametrized fit functions are notoriously volatile, even with a very good function
 - In contrast, a binned analysis derives its robustness from the simplicity of Poisson statistics
 - The CMS 2017–2018 m_t analysis uses the same 5 observables as the 2016 analysis, but all with a binned approach
 - This will be further handled in my thesis defence in Chemicum A129 on 22nd November, 1 pm

A BINNED LIKELIHOOD

• For a fully binned analysis the core likelihood in Eq. (1) can be expressed as:

$$\mathcal{L}_{0} = \prod_{i \in \text{bins}} \mathcal{P}\left(n_{i} \middle| \sum_{j \in \text{samples}} (1 + \kappa_{j})^{\eta_{j}} \times \nu_{i}^{j} \left(\vec{\theta}, m_{t}\right)\right)$$
(2)

- $\mathcal{P}(n_i|\lambda)$ is the Poisson probability distribution for the (bin) event yield n_i
- ν_i^j the expected event yield for the simulated sample j in the bin i
- $\vec{\theta}$ collects the nuisance parameters
- κ_j is the fraction of normalization uncertainty for the sample j, controlled by the nuisance parameter η_j .
- As a reminder, Eq. (1) stands as

$$\mathcal{L} = \mathcal{L}_0 imes \prod_{k \in ext{nuisances}} \mathcal{G}\left(heta_k
ight) imes \prod_{j \in ext{samples}} \mathcal{G}\left(heta_j
ight).$$

INTERPOLATION?

BACKGROUNE

LIMIT?

IN-SITU SYSTEMATICS

Consequence

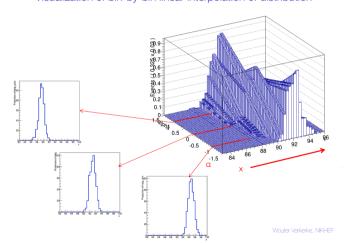
FURTHER

RESULTS

Sources

For a binned approach, interpolation between the central simulation sample and the variations is achieved through histogram morphing techniques

Visualization of bin-by-bin linear interpolation of distribution



MORPHING STRATEGIES

Background

LIMIT?

SYSTEMATIC:

Consequences

FURTHER FEATURES

D

SHMMARY

Sources

- The two main classes of histogram morphing are vertical morphing (see previous slide) and horizontal morphing
 - Vertical morphing (seen on the previous slide) is relatively simple: each bin is considered separately
 - Horizontal morphing can be implemented with various algorithms, and it usually considers both bin migration and vertical effects
- Vertical morphing is preferred by its simplicity:
 - No migration between bins, so each bin receives its own parameters
 - The morphing parameters are easy to determine automatically
 - Typically a smooth interpolation function is utilized
 - The parametrization of each nuisance for each bin can be parametrized either . . .
 - as a multiplicative factor (more common) or ...
 - as a direct offset

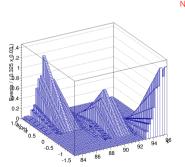
VERTICAL VS. HORIZONTAL MORPHING

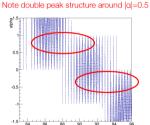
Even if vertical morphing is preferable.

horizontal morphing becomes necessary when the variations are too big

Limitations of piece-wise linear interpolation

- Bin-by-bin interpolation looks spectacularly easy and simple, but be aware of its limitations
 - Same example, but with larger 'mean shift' between templates





DETERMINATION OF A GOOD BINNING

BACKGROUND

In-situ

Systematics

Consequences

FURTHER FEATURES

-

.......

- Strict rules follow from the preference of vertical morphing:
 - Bins must be wide enough, so that the variations impose relatively small changes in bin contents
 - Simultaneously the bins should be **narrow enough** to provide resolution to measure the problem at hand
- Different problems may prefer different solutions:
 - A "bump hunt" is best done on an evenly spaced binning on the mass axis
 - A precision measurement (such as that of m_t) is best performed with bins with even statistics

WHAT IS THIS ALL GOOD FOR?

- DACKGROUND
- Nomenclature:
 - There can be one or more unconstrained Parameters of Interest
 - For us, there is only one: $\mathbf{m_t}$

We can define the following **profile likelihood ratio**:

• This is in contrast to the nuisance parameters $\vec{\theta}$ with Gaussian constraints

$$\lambda(m_t) = rac{\mathcal{L}\left(m_t, \hat{ec{ heta}}_{m_t}
ight)}{\mathcal{L}\left(\hat{m}_t, \hat{ec{ heta}}
ight)}$$

- Here, $\hat{\vec{\theta}}$ is the global maximum likelihood solution for the nuisance parameters
- And $\hat{\theta}_{m_t}$ the solution at m_t
- According to Wilks' theorem $-2 \ln \lambda(m_t)$ asymptotically approaches the χ^2 distribution at good statistics (error $\mathcal{O}\left(\frac{1}{\sqrt{n}}\right)$ for the 1D profile)

(3)

Nuisance Parameter Constraints

BACKGROUND

LIMIT?

Systematics

Consequences

Friedrice

FEATURES

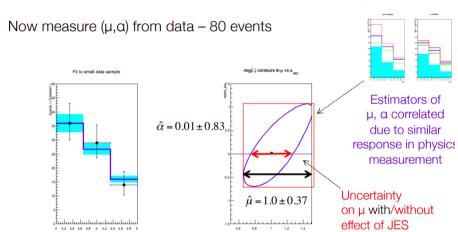
101100111

SUMMARY

SOURCES

- The a priori $\pm \sigma$ uncertainties correspond to the index k nuisance parameter values $\theta_k = \pm 1$
- Considering the full likelihood function, the nuisance parameter can be constrained a posteriori to a smaller uncertainty
 - This can be understood through applying Wilks' theorem to the nuisance
 - The nuisance parameter $\pm \sigma$ (a posteriori) limits are found at $-2 \ln \lambda (\theta_{\mathbf{k}}) = 1$
 - Here, $\lambda(\theta_k)$ is understood in analogy to $\lambda(m_t)$ i.e. all parameters but θ_k being fixed at the maximum likelihood values
- On the next two slides an example borrowed from Ref. 4 is presented

Example: Loose Constraint



• The Parameter of Interest μ is measured aside the Jet Energy Scale (JES) nuisance α , yielding a slight constraint on α from the *a priori* values $\alpha = \pm 1$

Example: Tight Constraint

BACKGROUND

In-situ

Systematic

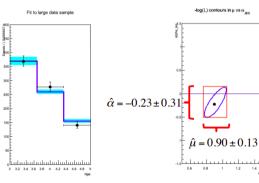
Consequences

FURTHER

RESULTS

Sources

The next year – 10x more data (800 events) repeat measurement with same model



Estimators of µ, a correlated due to similar response in physics measurement

• Here, statistics start to take over, constraining α to ± 0.31 , bringing down also the uncertainty on μ

WHICH NUISANCES CAN BE CONSTRAINED

• It is important to emphasize that the systematics that can be constrained usually have an experimental connection

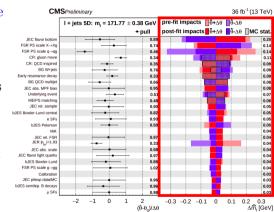
- This includes e.g. the energy scales of jets and charged leptons
- ... and jet flavor tagging (mainly b-jets)
- But also the choices in the simulation are uncertain and (maybe less obviously) connected to the experiment:
 - Parton Showers (Initial and Final State Radiation)
 - Parton Density Functions
 - Hadronization
 - Underlying event

HELSINKI INSTITUTE OF PRISSIS

NUISANCE PARAMETER IMPACTS

• The uncertainty δm_t imposed by the index k nuisance θ_k on the parameter of interest (m_t) is called the **impact** of θ_k on m_t

- The impacts are found in a few stepsFirst fitting all the nuisance
 - parameters and the parameter of interest Then, fixing θ_k to +1 and -1, and
 - then fitting on all the other parameters
 - The difference in the value of the parameter of interest is the impact



- The same approach works both on the *a priori* nuisance limits $\theta_k = \pm 1$ and the possibly constrained *a posteriori* limits
- $\theta_k = \pm \sigma_{\mathbf{posteriori}}, \text{ where } |\sigma_{\mathbf{posteriori}}| < 1$

NUISANCE PARAMETER PULLS

BACKGROUND

LIMIT?
IN-SITU

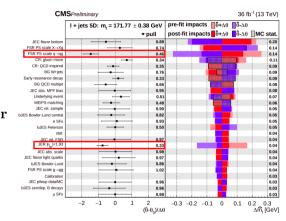
DINNING

FURTHER FEATURES

RESULTS

Sources

- A pull is defined as the nuisance parameter offset from zero (expressed in the units of the a priori $\pm \sigma$ uncertainty)
 - Impacts an pulls can be **blinded or unblinded**:
 - In the blinded mode simulation is used instead of real data
 - The simulation agrees with the central values in the model, so all blinded pulls are zero
 - However, the impacts are meaningful estimators for the true errors that will be measured in data



• In the unblinded case notable pulls can appear but they are expected to be less than a unity (one sigma) 26/34

STATISTICAL UNCERTAINTIES

BACKGROUND

LIMIT?

BINNING

Consequence

FEATURES

C----

- When estimating the expected number of events in a bin, the **statistical uncertainties** are also a kind of modelling uncertainty:
 - This means that every simulated sample in each bin should receive their statistical nuisance parameter
 - At low statistics they follow the Poisson distribution, which converges to a Gaussian at large statistics
 - If around 10 simulated samples are combined, the number of parameters quickly explodes
- Visualized from Ref. 4: Atlas Higgs combination model (23.000 functions, 1600 parameters)
- Partial cure: the **Barlow-Beeston** approach allows the combination of statistical errors from separate samples

COMBINATION OF SIMULATIONS

- BACKGROUND
- LIMIT!
- Systematics
- Consequence
- FURTHER
- Dremme
- Sources

- Integrated luminosity \mathcal{L} is the general measure for the amount of events in a sample
- When simulation and data are compared, each sample should be weighted by:

$$w^{ ext{Sim}} = rac{\mathcal{L}^{ ext{Data}}}{\mathcal{L}^{ ext{Sim}}_{ ext{Eff}}} = rac{\sigma^{ ext{Sim}} \mathcal{L}^{ ext{Data}}}{N^{ ext{Sim}}_{ ext{Eff}}}$$

- σ^{Sim} is the cross-section of each simulated sample (Sim)
- $N_{\text{Eff}}^{\text{Sim}}$ is the effective number of events in each simulated sample, considering event weights



STATISTICAL VARIATION UNCERTAINTIES

BACKGROUND

LIMIT?
In-situ

BINNING

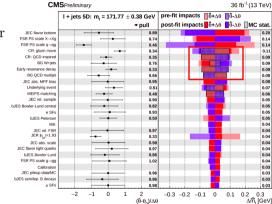
Consequence

Further Features

RESULTS

Compar

- There are three common methods for quantifying systematics
 - Reweighting the simulated sample (almost 100% statistical correlation)
 - 2 Rescaling object (e.g. jet) energies (quite close to 100% statistical correlation)
 - 3 Separate simulated samples (no statistical correlation)



- In the third case one should provide separate bin-wise nuisance parameters for the systematic variation sample
 - This is often a weak point and poorly implemented in the common tools

HIP SEMINAR

A FINAL LOOK AT THE NEW CMS RESULTS

LIMIT?

Systematic

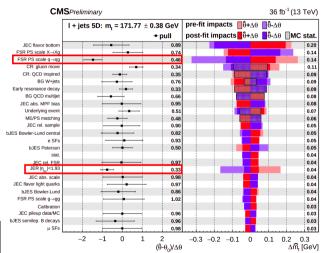
Covanovnya

FURTHER

RESULTS

10150115

Sources



- In the new 2016 analysis especial quark Final State Radiation (FSR) and Jet Energy Resolution (JER) are constrained to less than ±0.5
- This is explained by the hadronic W boson resonance
- The constraints are OK, but the notable **pulls** are a point of concern
- Without the constraints, the total error would be around $\pm 0.5 \,\mathrm{GeV}$

What to expect for 2017–2018

Precision

IN-SITU

SYSTEMATICS

Consequences

FURTHER FEATURES

Result

Summary

Sourc

- The number of recorded events is around 3 times larger in 2017–2018 w.r.t. 2016
 - Statistical error for N events is according to Poisson statistics proportional to $1/\sqrt{N}$
 - For systematics that are well constrained by the measured data, one can optimistically expect similar scaling as for statistical errors
 - In consequence, the error scaling factor in 2017–2018 w.r.t. 2016 can go to $1/\sqrt{3} \approx 0.58$
- Other improvements:
 - The method is more stable with a binned with also for m_t
 - The 2016 analysis scales away the even yield both in the central simulation and systematic variations
 - With Poisson statistics the (absolute) event yields are an important part of the whole picture, so we see including these as an important improvement

HISTORICAL REVIEW

BACKGROUND

In-situ

Systematic

CONSEQUENCE

FURTHER FEATURES

Results

SUMMAR

SOURCES

- One could ask why now?
- Tools have evolved and gotten more wide-spread
- Slow diffusion from one field of study to another:
 - The early adopters at the LHC were the Higgs hunters, as can be reviewed from this profile likelihood article and this article on CMS/ATLAS methods on Higgs boson searches
 - In the top quark community, the methods first spread to inclusive cross-section measurements, and then to differential cross-section measurements
 - At the final step, also precision measurements (such as the m_t measurement) are taking up the tools

UNIVERSITY OF HELSING

SUMMARY

- The most precise m_t measures at the LHC are currently performed on the top quark pair topology, based directly on the top quark decay products
- In early Run 2 it seemed that the precision limit for such m_t measurements had been reached
 - This is ruled by irreducible (systematic) error sources
 - Profile likelihood methods ruled this as a false assumption
 - The systematic errors can be constrained *in-situ* by the measurement
- Interesting future results coming up on the 2017-2018 CMS Run2 data:
 - A first look at these are given in my thesis defence on Tuesday November 22nd 1 pm at Chemicum A129

SUMMARY

UNIVERSITY OF HELSING! WHELSING! HELSING! HELSING! PHYSICS

Sources

BACKGROUND

LIMIT?

Systematic

Covenavione

CONSEQUENCE

FEATURES

TUESULIS

SUMMARY

Sources

- These slides can be reached at tinyurl.com/hiphannu
- 1 https://cds.cern.ch/record/2674989
- https://arxiv.org/pdf/1812.10534.pdf
- https://cds.cern.ch/record/2806509/files/TOP-20-008-pas.pdf
- https://www.precision.hep.phy.cam.ac.uk/wp-content/people/mitov/ lectures/GraduateLectures/Advanced-Statistics-Verkerke.pdf

