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Top Quark Measurements at the LHC

• At the LHC, direct measurements of
the top quark mass (mt) are the
most precise
• Direct ≡ reconstruction of decay

products
• Indirect ≡ anything else, e.g. based

on cross-section

• In Run 2 conditions (
√
s = 13 TeV):

• Collision events producing a top
quark pair are the most frequent
(832 fb−1)

• Events with a single top quark
make a good number 2 (264 fb−1)

Visualized: the semileptonic top quark
pair decay channel
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Direct Top Quark Mass Measurements

• Classical strategy:
• Intricate parametrized fits on the

observables are made against
simulation truth values

• The parameter dependence on e.g.
mt is fit against the simulation
truth

4/34
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Constructing A Likelihood

• Using the parametrized fits, a
likelihood function for the
observables can be constructed
• This will depend on the chosen

parameters

• CMS used to utilize mt and Jet
Scale Factor (JSF)
• On the right is the CMS

lepton+jets and all-jets
likelihood combination on the
2016 data

• The yielded result: mt = 172.26±
0.07 (stat+JSF)± 0.61 (syst)GeV

• ATLAS used in addition bJSF
during Run1

5/34



HIP Seminar

Background

Precision
Limit?

In-situ
Systematics

Binning

Consequences

Further
Features

Results

Summary

Sources

Constructing A Likelihood

• Using the parametrized fits, a
likelihood function for the
observables can be constructed
• This will depend on the chosen

parameters

• CMS used to utilize mt and Jet
Scale Factor (JSF)
• On the right is the CMS

lepton+jets and all-jets
likelihood combination on the
2016 data

• The yielded result: mt = 172.26±
0.07 (stat+JSF)± 0.61 (syst)GeV

• ATLAS used in addition bJSF
during Run1

5/34



HIP Seminar

Background

Precision
Limit?

In-situ
Systematics

Binning

Consequences

Further
Features

Results

Summary

Sources

Constructing A Likelihood

• Using the parametrized fits, a
likelihood function for the
observables can be constructed
• This will depend on the chosen

parameters

• CMS used to utilize mt and Jet
Scale Factor (JSF)
• On the right is the CMS

lepton+jets and all-jets
likelihood combination on the
2016 data

• The yielded result: mt = 172.26±
0.07 (stat+JSF)± 0.61 (syst)GeV

• ATLAS used in addition bJSF
during Run1

5/34



HIP Seminar

Background

Precision
Limit?

In-situ
Systematics

Binning

Consequences

Further
Features

Results

Summary

Sources

Has the Precision Limit been reached?

• The stat. (+ JSF) errors in the CMS 2016 measurement are vanishing vs. the
systematics: 0.07 GeV vs. 0.61 GeV
• In the classic treatment, the most important systematic error sources

cannot typically be reduced by adding statistics
• Such error sources include e.g. modelling uncertainties (in the simulations)
• This indicates that adding limitless statistics to the measurement would at best

yield an error of ±0.00 (stat+JSF)± 0.61 (syst) GeV

• As modelling advances, an inverse trend is observed:
• With better modelling, the number of potential systematic error sources tends to

increase
• With traditional methods, there is always a risk of double-counting and adding

statistical noise to each additional error source

6/34
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Apparently Not?

• Earlier this year preliminary
results on a new
measurement on the 2016
data was released:
• mt = 171.77±

0.04 (stat)±0.38 (syst) GeV
• The analysis uses a split

scheme of Final State
Radiation (FSR)
uncertainties: light quarks
and heavy quarks handled
separately

• With the old FSR
definitions one measures
mt = 172.14±
0.04 (stat)±0.31 (syst) GeV
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What Has Changed?

• Earlier CMS measurements only used two observables, which excelled in a fit
on mgen

t and JSF

1 The reconstructed mt resonance
2 The reconstructed hadronic mW resonance

• Three new observables were introduced in the new study
• These include a ratio between b-jet and W jet pT values, earlier utilized by

ATLAS
• Most importantly, the use of the partial resonance between a b-jet and the

charged lepton was added in a phase-space region that was earlier unused

• These updates are still not sufficient for explaining the improvement
• The missing piece is the introduction of a profile likelihood approach

8/34



HIP Seminar

Background

Precision
Limit?

In-situ
Systematics

Binning

Consequences

Further
Features

Results

Summary

Sources

What Has Changed?

• Earlier CMS measurements only used two observables, which excelled in a fit
on mgen

t and JSF

1 The reconstructed mt resonance
2 The reconstructed hadronic mW resonance

• Three new observables were introduced in the new study
• These include a ratio between b-jet and W jet pT values, earlier utilized by

ATLAS
• Most importantly, the use of the partial resonance between a b-jet and the

charged lepton was added in a phase-space region that was earlier unused

• These updates are still not sufficient for explaining the improvement
• The missing piece is the introduction of a profile likelihood approach

8/34



HIP Seminar

Background

Precision
Limit?

In-situ
Systematics

Binning

Consequences

Further
Features

Results

Summary

Sources

What Has Changed?

• Earlier CMS measurements only used two observables, which excelled in a fit
on mgen

t and JSF

1 The reconstructed mt resonance
2 The reconstructed hadronic mW resonance

• Three new observables were introduced in the new study
• These include a ratio between b-jet and W jet pT values, earlier utilized by

ATLAS
• Most importantly, the use of the partial resonance between a b-jet and the

charged lepton was added in a phase-space region that was earlier unused

• These updates are still not sufficient for explaining the improvement
• The missing piece is the introduction of a profile likelihood approach

8/34



HIP Seminar

Background

Precision
Limit?

In-situ
Systematics

Binning

Consequences

Further
Features

Results

Summary

Sources

A “Simple” In-Situ Measurement: JSF

• In the earlier iterations, the JSF nuisance parameter is measured in
association to mt in an in-situ manner
• Measuring the additional dependence is possible, as the mW distribution is

present in the full likelihood
• This allows reducing the jet calibration systematics

9/34
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More Nuisance Parameters

• Could we do the same thing
more comprehensively, making
nuisance parameters from all
systematic error sources?

10/34
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A Generalized In-Situ Measurement

• There is no fundamental obstacle for interpreting the systematic variations
similarly as JSF variations
• This is exactly what is done in the new CMS mt analysis on the 2016

Data with a profile likelihood method
• In practice this requires a higher level of automation
• In a final analysis there can easily exist more than 100 systematic uncertainties

• In consequence, the auxiliary JSF parameter becomes unnecessary:
• This task is already covered by the Jet Energy Uncertainties

• Systematic uncertainties are in general modelled with variations on the central
simulated samples
• This includes two-sided variations, interpreted as the corresponding ±σ

uncertainties
• . . . and one-sided variations, which are interpreted as +σ uncertainties

11/34
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Systematics in the Likelihood

• In the old CMS analyses the best results were found with the hybrid
method:
• Here, a physically motivated Gaussian prior was imposed on the value of JSF

• In the profile likelihood approach the systematics are interpreted as nuisance
parameters θk
• The ±σ variations are defined to correspond to the values θk = ±1
• The knowledge that the variations are the ±σ uncertainties is enforced by a

Gaussian prior G on all of the nuisance parameters θk
• Similar Gaussian priors are also set on the normalization scales (ηj) of the

simulated samples, according to the cross-section and luminosity uncertainties

• In summary, starting from the likelihood without priors (L0), the full
likelihood stands as:

L = L0 ×
∏

k∈nuisances

G (θk)×
∏

j∈samples

G (ηj) . (1)

12/34
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Parameter Automatization?

• The automatization ends up being a
major issue in the practical
implementation
• One method for tackling the

issue is using a binned
likelihood model

• Here, the only parameters are the
bin edges, and the only variables to
fit the bin event counts

• Each bin forms its own Poisson
counting experiment

• The 2016 CMS mt analysis started
with the 5 observables being handled
by fit functions, but ended up
handling 4/5 observables with
binning (left)

13/34
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Considerations for a Binned Analysis

• Maybe counter-intuitively, the binned approach is the most robust choice
• Parametrized fit functions are notoriously volatile, even with a very

good function
• In contrast, a binned analysis derives its robustness from the simplicity of

Poisson statistics

• The CMS 2017–2018 mt analysis uses the same 5 observables as the 2016
analysis, but all with a binned approach
• This will be further handled in my thesis defence in Chemicum A129 on

22nd November, 1 pm

14/34
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A Binned Likelihood

• For a fully binned analysis the core likelihood in Eq. (1) can be expressed as:

L0 =
∏
i∈bins

P

ni∣∣ ∑
j∈samples

(1 + κj)
ηj × νji

(
~θ,mt

) (2)

• P(ni|λ) is the Poisson probability distribution for the (bin) event yield ni
• νji the expected event yield for the simulated sample j in the bin i
• ~θ collects the nuisance parameters
• κj is the fraction of normalization uncertainty for the sample j, controlled by the

nuisance parameter ηj .

• As a reminder, Eq. (1) stands as

L = L0 ×
∏

k∈nuisances

G (θk)×
∏

j∈samples

G (ηj) .

15/34
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Interpolation?

• For a binned
approach,
interpolation
between the
central
simulation
sample and the
variations is
achieved through
histogram
morphing
techniques

Visualization of bin-by-bin linear interpolation of distribution

Wouter Verkerke, NIKHEF

xα
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Morphing Strategies

• The two main classes of histogram morphing are vertical morphing (see
previous slide) and horizontal morphing
• Vertical morphing (seen on the previous slide) is relatively simple: each bin is

considered separately
• Horizontal morphing can be implemented with various algorithms, and it usually

considers both bin migration and vertical effects

• Vertical morphing is preferred by its simplicity:
• No migration between bins, so each bin receives its own parameters

• The morphing parameters are easy to determine automatically
• Typically a smooth interpolation function is utilized

• The parametrization of each nuisance for each bin can be parametrized either . . .
• as a multiplicative factor (more common) or . . .
• as a direct offset

17/34
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Vertical vs. Horizontal Morphing

• Even if vertical
morphing is
preferable,
horizontal
morphing
becomes
necessary when
the variations
are too big

Limitations of piece-wise linear interpolation

• Bin-by-bin interpolation looks spectacularly easy and simple, 
but be aware of its limitations

– Same example, but with larger ‘mean shift’ between templates

Wouter Verkerke, NIKHEF

Note double peak structure around |α|=0.5
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Determination of a Good Binning

• Strict rules follow from the preference of vertical morphing:
• Bins must be wide enough, so that the variations impose relatively small

changes in bin contents
• Simultaneously the bins should be narrow enough to provide resolution to

measure the problem at hand

• Different problems may prefer different solutions:
• A “bump hunt” is best done on an evenly spaced binning on the mass axis
• A precision measurement (such as that of mt) is best performed with

bins with even statistics

19/34
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What is This All Good For?

• Nomenclature:
• There can be one or more unconstrained Parameters of Interest
• For us, there is only one: mt

• This is in contrast to the nuisance parameters ~θ with Gaussian constraints

• We can define the following profile likelihood ratio:

λ(mt) =
L
(
mt, ~̂θmt

)
L
(
m̂t, ~̂θ

) (3)

• Here, ~̂θ is the global maximum likelihood solution for the nuisance parameters

• And ~̂θmt
the solution at mt

• According to Wilks’ theorem −2 lnλ(mt) asymptotically approaches the χ2

distribution at good statistics (error O
(

1√
n

)
for the 1D profile)

20/34

https://en.wikipedia.org/wiki/Wilks%27_theorem
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Nuisance Parameter Constraints

• The a priori ±σ uncertainties correspond to the index k nuisance parameter
values θk = ±1

• Considering the full likelihood function, the nuisance parameter can be
constrained a posteriori to a smaller uncertainty
• This can be understood through applying Wilks’ theorem to the nuisance
• The nuisance parameter ±σ (a posteriori) limits are found at −2 lnλ (θk) = 1
• Here, λ (θk) is understood in analogy to λ (mt) – i.e. all parameters but θk being

fixed at the maximum likelihood values

• On the next two slides an example borrowed from Ref. 4 is presented

21/34
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Example: Loose Constraint

• The Parameter of Interest µ is measured aside the Jet Energy Scale (JES)
nuisance α, yielding a slight constraint on α from the a priori values α = ±1
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Example: Tight Constraint

• Here, statistics start to take over, constraining α to ±0.31, bringing down also
the uncertainty on µ
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Which Nuisances can be Constrained

• It is important to emphasize that the systematics that can be
constrained usually have an experimental connection
• This includes e.g. the energy scales of jets and charged leptons
• . . . and jet flavor tagging (mainly b-jets)

• But also the choices in the simulation are uncertain and (maybe less
obviously) connected to the experiment:
• Parton Showers (Initial and Final State Radiation)
• Parton Density Functions
• Hadronization
• Underlying event
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Nuisance Parameter Impacts

• The uncertainty δmt imposed by the
index k nuisance θk on the
parameter of interest (mt) is called
the impact of θk on mt

• The impacts are found in a few steps
• First fitting all the nuisance

parameters and the parameter of
interest

• Then, fixing θk to +1 and −1, and
then fitting on all the other
parameters

• The difference in the value of the
parameter of interest is the impact

• The same approach works both on the a priori nuisance limits
θk = ±1 and the possibly constrained a posteriori limits
θk = ±σposteriori, where |σposteriori| < 1
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Nuisance Parameter Pulls

• A pull is defined as the nuisance
parameter offset from zero
(expressed in the units of the a
priori ±σ uncertainty)

• Impacts an pulls can be blinded or
unblinded:
• In the blinded mode simulation is

used instead of real data
• The simulation agrees with the

central values in the model, so all
blinded pulls are zero

• However, the impacts are
meaningful estimators for the
true errors that will be
measured in data

• In the unblinded case notable pulls
can appear but they are expected to
be less than a unity (one sigma) 26/34
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Statistical Uncertainties

• When estimating the expected number of events in a bin, the statistical
uncertainties are also a kind of modelling uncertainty:
• This means that every simulated sample in each bin should receive their

statistical nuisance parameter
• At low statistics they follow the Poisson distribution, which converges to a

Gaussian at large statistics
• If around 10 simulated samples are combined, the number of parameters quickly

explodes

• Visualized from Ref. 4: Atlas Higgs
combination model (23.000 functions,
1600 parameters)

• Partial cure: the Barlow-Beeston
approach allows the combination of
statistical errors from separate samples
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Combination of Simulations

• Integrated luminosity L is the general measure for the amount of events in a
sample

• When simulation and data are compared, each sample should be weighted by:

wSim =
LData

LSim
Eff

=
σSimLData

NSim
Eff

(4)

• σSim is the cross-section of each
simulated sample (Sim)

• NSim
Eff is the effective number of events in

each simulated sample, considering event
weights

28/34
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Statistical Variation Uncertainties

• There are three common methods for
quantifying systematics

1 Reweighting the simulated sample
(almost 100% statistical
correlation)

2 Rescaling object (e.g. jet) energies
(quite close to 100% statistical
correlation)

3 Separate simulated samples (no
statistical correlation)

• In the third case one should provide separate bin-wise nuisance parameters for
the systematic variation sample
• This is often a weak point and poorly implemented in the common

tools
29/34
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A Final Look at the New CMS Results

• In the new 2016 analysis
especial quark Final State
Radiation (FSR) and Jet
Energy Resolution (JER)
are constrained to less than
±0.5

• This is explained by the
hadronic W boson resonance

• The constraints are OK, but
the notable pulls are a
point of concern

• Without the constraints, the
total error would be around
±0.5 GeV

30/34



HIP Seminar

Background

Precision
Limit?

In-situ
Systematics

Binning

Consequences

Further
Features

Results

Summary

Sources

A Final Look at the New CMS Results

• In the new 2016 analysis
especial quark Final State
Radiation (FSR) and Jet
Energy Resolution (JER)
are constrained to less than
±0.5

• This is explained by the
hadronic W boson resonance

• The constraints are OK, but
the notable pulls are a
point of concern

• Without the constraints, the
total error would be around
±0.5 GeV

30/34



HIP Seminar

Background

Precision
Limit?

In-situ
Systematics

Binning

Consequences

Further
Features

Results

Summary

Sources

A Final Look at the New CMS Results

• In the new 2016 analysis
especial quark Final State
Radiation (FSR) and Jet
Energy Resolution (JER)
are constrained to less than
±0.5

• This is explained by the
hadronic W boson resonance

• The constraints are OK, but
the notable pulls are a
point of concern

• Without the constraints, the
total error would be around
±0.5 GeV

30/34



HIP Seminar

Background

Precision
Limit?

In-situ
Systematics

Binning

Consequences

Further
Features

Results

Summary

Sources

What to expect for 2017–2018

• The number of recorded events is around 3 times larger in
2017–2018 w.r.t. 2016
• Statistical error for N events is according to Poisson statistics proportional to

1/
√
N

• For systematics that are well constrained by the measured data, one can
optimistically expect similar scaling as for statistical errors

• In consequence, the error scaling factor in 2017–2018 w.r.t. 2016 can go to
1/
√

3 ≈ 0.58

• Other improvements:
• The method is more stable with a binned with also for mt

• The 2016 analysis scales away the even yield both in the central simulation and
systematic variations

• With Poisson statistics the (absolute) event yields are an important part of the
whole picture, so we see including these as an important improvement

31/34
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Historical Review

• One could ask why now?

• Tools have evolved and gotten more wide-spread

• Slow diffusion from one field of study to another:
• The early adopters at the LHC were the Higgs hunters, as can be reviewed from

this profile likelihood article and this article on CMS/ATLAS methods on Higgs
boson searches

• In the top quark community, the methods first spread to inclusive cross-section
measurements, and then to differential cross-section measurements

• At the final step, also precision measurements (such as the mt measurement) are
taking up the tools

32/34
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Summary

• The most precise mt measures at the LHC are currently performed
on the top quark pair topology, based directly on the top quark
decay products

• In early Run 2 it seemed that the precision limit for such mt measurements
had been reached
• This is ruled by irreducible (systematic) error sources

• Profile likelihood methods ruled this as a false assumption
• The systematic errors can be constrained in-situ by the measurement

• Interesting future results coming up on the 2017-2018 CMS Run2 data:
• A first look at these are given in my thesis defence on Tuesday November 22nd

1 pm at Chemicum A129
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• These slides can be reached at tinyurl.com/hiphannu

1 https://cds.cern.ch/record/2674989

2 https://arxiv.org/pdf/1812.10534.pdf

3 https://cds.cern.ch/record/2806509/files/TOP-20-008-pas.pdf

4 https://www.precision.hep.phy.cam.ac.uk/wp-content/people/mitov/

lectures/GraduateLectures/Advanced-Statistics-Verkerke.pdf
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