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First liquefaction of helium (1908)

Leiden « cascade » to Helium liquefaction stage with
produce liquid hydrogen liquid hydrogen precooling
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HEIKE K AMERLINGH ONNES

Investigations into the properties of substances at
low temperatures, which have led, amongst other

things, to the preparation of liquid helium

Nobel Lecture, December 11, 1913
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Unsuccessful attempt to solidify helium

Naturally the question arose as to whether helium can also be converted

into the solid state. An experiment aimed at lowering the temperature of

helium sutfticiently by evaporating it without supply of heat was not suc-

cessful, and only served to reach the lowest temperature recorded up to that
time.

The evaporation of even a very small quantity, when the pressure of the
vapour is small, demands the continuous carrying away ot colossal volumes
of vapour. With vacuum pumps of very large capacity we succeeded in
lowering the pressure to 0.2 millimetre. The temperature then reached was
1.15.K according to the law of vapour pressure found. (Ot course we can only
make an estimate here. The working out ot the thermometry of these low
temperatures with, amongst other things, the aid of the Knudsen hot wire
manometer is still in its initial stages.) Since it would have needed new equip-
ment, I deferred the question as to whether helium can be made to freeze in

tavour of other, more urgent problems, which could be tackled with the
equipment available.
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Hint of a quantum effect...?
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Fig. 1. Density of liquid helium as a function of temperature
(after Kamerlingh Onnes and Boks?).

It is very noticeable that the experiments indicate that the density of the
helium, which at first quickly drops with the temperature, reaches a maxi-
mum at 2.2°K approximately, and if one goes down tfurther even drops
again. Such an extreme could possibly be connected with the quantum the-
OrYV.
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Zero point energy~
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Fi%. 15. The potential energy of the close-packed structure, ®. ., and of the
T, configuration suggested by Keesom and Taconis, ®x 1. The curve Ko
gives the zero point energy of eq. (6), $5.. The solid circles refer to the ex- F London
perimental energy content of condensed He4 and He3 at 0°K. The open citcles -
refer to the “‘experimental zero point energies,’’ defined as the difference
between the experimental total energies and the lowest potential energy.
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Discovery of He II phase transition (1928)
Helium phase diagram (1933)
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W.H. Keesom

THERMODYDAMIC DIAGRAMS OF LIQUID HELIUM
by W. H. KEESOM and Miss A. P. KEESOM

Supplement No. 76b to the Communications from the Kamerlingh
. Onnes Laboratory at Leiden )
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Phase diagram of helium
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First signs of unusual thermal behaviour of He II (1935-1937)
J.0. Wilhem, A.D. Misener and A.R. Clark (Toronto)
W.H. Keesom and A. Keesom (Leiden)
J.F. Allen, R. Peierls and M.Z. Uddin (Cambridge)

the viscosity of liquid He drops down below 2.2 K
the thermal conductivity of liquid He increases below 2.2 K

Vaporization of liquid helium under applied heat load

He I (T=2.4 K) He II (T=2.1 K)
Ph. Lebrun The technology of superfluid helium 11



Discovery of superfluidity in He II (1938)
P.L. Kapitsa (Moscow)
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o Viscosity of liquid helium below the lambda point, Nature 141, 74 (Jan. 1938)

— through a 0.5 um slit, liquid He does not flow above 2.2 K but flows very easily
below 2.2 K
— the viscosity of helium II is at least 1500 times less than that of helium I

— by analogy with superconductors, ... the helium below the lambda-point enters a
special state which might be called superfiuid

Ph. Lebrun The technology of superfluid helium 12



Discovery of superfluidity in He II (1938)
J.F. Allen & A.D. Misener (Cambridge)

Flow of liguid helium II, Nature 141, 75 (Jan. 1938)

— through thin capillaries and below 2.2 K, the flow of liquid He is nearly independent
of the pressure difference and of the capillary cross section

— the observed type of flow ... in which the velocity becomes almost independent of
pressure, most certainly cannot be treated as laminar or even as ordinary turbulent
flow. Consequently, any known formula cannot, from our data, give a value of the
viscosity which would have much meaning

Ph. Lebrun The technology of superfluid helium 13



Fritz London
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Theoretical approaches to superfluid helium [1/4]

Bose-Einstein condensation

644
the effective mass m* being of the order of magnitude
of the mass of the atoms. But in the present case
we are obliged to apply Bose-Einstein statistics
instead of Fermi statistics.

(3) In his well-known papers, Einstein has already
discussed a peculiar condensation phenomenon of the
‘Bose-Einstein’ gas ; but in the course of time the
degeneracy of the Bose-Einstein gas has rather got
the reputation of having only a purely imaginary
existence. Thus it is perhaps not generally known
that this condensation phenomenon actually repre-
sents a discontinuity of the derivative of the specific
heat (phase transition of third order). In the accom-
panying figure the specific heat (Cy) of an ideal Bose-
Einstein gas is represented as a function of 7'/7’, where

2 n ) 23
To = 3k \ 3615/ °*
With m* = the mass of a He atom and with the mol.

N
volumei;‘i = 276 cm.? one obtains T’y = 3:09°. For

m M slha asanifla hant ia sioan e

NATURE

APRIL 9, 1938, Vor. 141

expected to furnish quantitative insight into the
properties of liquid helium.

The conception here proposed might also throw
a light on the peculiar transport phenomena observed
with He II (enormous conductivity of heat®, ex-
tremely small viscosity® and also the strange fountain
phenomenon recently discovered by Allen and Jones®). -

A detailed discussion of these questions will be
published in the Journal de Physique.

F. Loxpox.
- Institut Henri Poincaré,
Paris.
March 5.

! Frohlich, H., Physica, 4, 630 (1937).

' Allen, J. F., and Jones, H., NATURE, 141, 243 (1938).

$ Simon, F., NATURE, 133, 520 (1934).

¢ London, F., Proe. Roy. Soc., A, 153, 576 (1936).

i Physica, 2, 557 (1935); Keesom, W. H,, and Kecesom,
H. P, Physica, 3, 359 (mse;; Allen, J. F., Peierls, R., and Zaki Uddin,
M., Narure, 140, 62 (1937).

¢ Burton, B. ¥, NATCRE, 135, 265 (1035) ;: Kapitza, P., NATURE,
%l%..,g)-l (1938); Allen, J. F. and Misener, A. D., NATURE, 141, 75

condensation

It seems difficult not to imagine a connexion with the
phenomenon of the Bose-Einstein
statistics... On the other hand, it is obvious that a
model which is so far away from reality that it
simplifies liguid helium to an ideal gas...

The technology of superfluid helium
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Bose-Einstein condensation in gas of particles
(from W. Ketterle)

High
ol ! ™ Temperature T:
f \ thermal velocity v
density d3
o Y "Billiard balls"
Low
ﬁ ;ﬁ,%é { % Temperature T:
VN De Broglie wavelength

AdB=h/mv o« T-1/2
?Z \/L‘ J\‘\/ 2 "Wave packets"

T=Tcrit:
Bose-Einstein
Condensation

i =d
"Matter wave overlap"

Pure Bose
condensate
"Giant matter wave"
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Laszlo Tisza

Ph. Lebrun

Two-fluid model

Transport Phenomena in Helium II

. LoNpON! has recently proposed a new conception
f helium II, according to which this liquid can be
vegarded as a degenerate Bose-Einstein gas, that is,
8 a system in whith one fraction of the substance—
8y, n atoms per cm.*—is distributed over the excited
states in a way determined by the temps-ature, while
rest—n,—n atoms Fer em.3—is ‘condénsed’ in the
pst energy level. If 7', denotes the temperature
degeneracy, the ratio n/n, is given by
S s nfng = (T[T,)* for T < T, (1)
r an ideal Bose-Einstein gas, according to London,
& = 3/2, but for the real fluid one should rather
linsert & = 5 in order to fit Keesom’s specific heat

Theoretical approaches to superfluid helium [2/4]

Supplemént to NATURE of May 21, 1938 913
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to heat flow. This picture can account for the great
values of the heating current required to maintain a
temperature difference at the ends of the capillary®.
Simultaneous measurements of the heating current
and the total convection of substance could provide
us with information about the relative magnitude of
the processes (a) and (b).

A detailed discussion of the problem will be given
in the Journal de Physique. I am greatly indebted
to Dr. F. London for the opportunity of seeing his
paper before publication. L. TiszA.
Laboratoire de Physique Expérimentale,

Collége de France,
Paris. April 16.

liguid He should have two components:

« condensed atoms would be the superfluid component
which has zero viscosity and carries no entropy

« non-condensed atoms would be a normal viscous
component carrying all the entropy of the whole fluid

« the respective densities p. and p, would only depend on T

(bs +p, =p)

The technology of superfluid helium 16




““ Theoretical approaches to superfluid helium [3/4]
Quasi-particle description

« L. Tisza suggested that helium II should be considered
as a degenerate ideal Bose gas... This point of view,
however, cannot be considered as satisfactory...
nothing would prevent atoms in a normal state from
colliding with excited atoms, i.e. when moving through
the liguid they would experience a friction and there
would be no superfluidity at all

« every weakly excited state can be considered as an
aggregate of single elementary excitations:
- sound guanta (phonons) € = ¢p
(p— po)? - elementary vortices (rotons) € = A + (p-py)/2u

21

Lev Davidovich Landau

e =hw=A+

« dissipation requires emission of either phonons or
rotons, that is a minimum velocity

Ph. Lebrun The technology of superfluid helium 17



Theoretical approaches to superfluid helium [4/4]
Quasi-particle description

A Roton branch

R
E=hw=&+(ﬁ Po)

2
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Two-fluid model of He II

1.0

Phenomenological model

Two interpenetrating fluids ps

P
P= Ps T Py
Normal & superfluid fractions varying with T

A-pt

pv=pSVS+ann P

pS=p,S,sinces, =0 05 10 15 20 25
T(K)

All entropy carried by normal component

Physical basis of the two-fluid model

e Collective excitations constitute the normal
component (Landau)

e B-FE condensate in liguid (Penrose & Onsager)

Ph. Lebrun The technology of superfluid helium 19



He II behaviour explained by two-fluid model [1/2]
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measurement method

— Frictionless leakage through capillary
channels

— Finite viscosity by rotating cylinder
method

Andronikashvili experiment

— Rotating cylinder replaced by stack of
finely-spaced disks

— Only normal component entrained by
stack rotation

— Effective moment of inertia depends on T Ep———
normal fluid density, varies with = -
temperature = -_§“‘:§
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He II behaviour explained by two-fluid model [2/2]

e Thermal transport by counterflow

e Thermomechanical
— Fountain effect
— Superfluid pump
e Longitudinal wave propagation

— Two fluids in phase: first sound
(~240 m/s)

— Two fluids in antiphase: second
sound (~20 m/s)

- fountain

—liquid level

heater

—superleak
—He-ll

heat in | conversion normal to superfluid
*\j/ Vn
T.5 VY < Vs -
v < V. H L
< S
conversion superfluid to normal \l/heatout

Ph. Lebrun The technology of superfluid helium
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Thermophysical properties of helium

e A convenient property software, used in the Cryogenics course, is REFPROP
by NIST, which unfortunately does not cover the superfluid range.
e In this we use HEPAK by CRYODATA
— Valid from 0.8 K (or the melting line) to 1500 K temperature
— Valid up to 1000 bar pressure (20°000 bar between 80 and 300 K)

e Some HEPAK functions are available in EXCEL, in particular HeCalc which
returns the calculated value of the thermodynamic property to the calling
program

HeCalc(Index, Phase, Inputl, Valuel, Input2, value2, Unit)

e (Contact person: Rob van Weelderen, TE-CRG

Ph. Lebrun The technology of superfluid helium 22
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Benefits of He II cooling

Lower the operating temperature

— Achieve higher magnetic field through increase of critical current density of
superconductor

— Minimize overall energy dissipation in RF cavities

Enhance heat transfer
— At solid-liquid interface = conductor cooling
— In the bulk liquid
= device/system cooling scheme
= calorimetry in isothermal bath

The technology of superfluid helium
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Jc [A/mm2]

Ph. Lebrun

Critical current density of superconductors
for high-field accelerator magnets

-=Nb-Ti @ 4.2 K
-=-Nb-Ti @ 1.9 K
-=Nb3Sn @ 4.2 K
-=-Nb3Sn @ 1.9 K
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Optimization of operating temperature
for superconducting RF cavities

e BCS theory Rgcs = (A w?/T) exp (-BT/T)
e For practical materials Re = Rges + Ry
o Refrigeration (Carnot) P, = P (T,/T - 1)

= depending upon o and R, optimum operating temperature for
superconducting cavities

1000

: Niobium — —Cavity loss
: N Racs - - - Carnot efficiency
o — Cooling power
100 - ! 2]
| };\“‘a | c
| P
R [Q] % @
10 ?\g <
N e
R:es =300 \\ e ° s
| '\.\ ! | |
[ I T - . \ . | 1 1.5 2

2 3 4 s 6 7
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Enhancement of heat transfer

e Low viscosity = permeation
e Very high specific heat = stabilization
— 10° times that of the conductor (Cu + SC) per unit mass
— 2 x 103 times that of the conductor per unit volume
e Very high thermal conductivity = heat transport
— 103 times that of cryogenic-grade OFHC copper
— peaking at 1.9 K

Full benefit of these transport properties can only be reaped by
appropriate design providing good wetting of the superconductors and
percolation paths in the insulation, often in conflict with other technical
requirements

Ph. Lebrun The technology of superfluid helium 27



100
10
3
o 1
S,
T 0,1
(b
<
© 0,01
3‘?—)
Q 0,001
)
0,0001
0,00001

Ph. Lebrun

Specific heat of liquid helium and copper
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Equivalent thermal conductivity of He II p

/ Non-linear conductivity! (see later)
2000 / |
K(T,q) = § 2 v Helium II
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500 /
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Solid-liquid interface: Kapitza conductance
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i Heat exchange surface
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Application of high thermal conductivity
Calorimetry in isothermal He II bath

For slow thermal transients, the He II bath is
quasi-isothermal: a single temperature
measurement allows to estimate heat
deposition/generation Q'

- at constant P Q' = My, dH/dt|,
- at constant V Q' = M., dE/dt|,

M, ., Can be estimated by /n situ calibration,
using applied heating power W'

- at constant P W' =M, dH/dt|,
- at constant V W' = M, dE/dt|,

Ph. Lebrun The technology of superfluid helium
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Calorimetry of magnet quench in He II bath

Time evolution of bath temperature
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Precision thermometry allows calorimetric detection
of faulty joints in LHC at safe powering level
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- Local resistance: ~90 nQ, confirmed by electrical measurement
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Pressurized vs saturated He II
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Advantages & drawbacks of He II p

e Advantages
— limits the risk of air inleaks and contamination in large and complex
cryogenic systems
— for electrical devices, limits the risk of electrical breakdown at fairly
low voltage due to the bad dielectric characteristics of helium

vapour (Paschen curve)
— better stabilizer for heat buffering

e Drawbacks
— one more level of heat transfer
— additional process equipment (pressurized-to-saturated helium II
heat exchanger)

Ph. Lebrun The technology of superfluid helium
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Potential difference, Vr, [kV]

Ph. Lebrun

Paschen curve for gaseous He at 20 °C
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e.g., 1.6 kPa pressure and 6 mm gap
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Working with superfluid helium at atmospheric pressure

P atm
4.2 K
He I
____________ T
Cooling
He II HX
>

N

« Roubeau bath »: He II conduction
prevents from lowering the bath
temperature well below T,

P atm

Cooling
HX

>

He II

\ T<<T, /

« Claudet bath »: restriction in
cryostat allows subooling He II bath
to temperatures well below T,
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A practical Claudet bath

g "
:

1-13
,——""f
1 bar, T=4.2K ]
He I | T 7
.“-.
— T, T0
N A {%N % -6

FN |

™~

—p= He lip
.l
>
4] %76 "
(a) (b)

Figure 1. a) Claudet bath principle: 1 — constriction, 2 — He IIs/He IIp heat exchanger, 3 —
J-T valve, 4 — recuperative heat exchanger, 5 —vacuum pump; b) NED cryostat scheme: 1 —
He I vessel, 2 — vacuum container, 3 — He IIp vessel, 4 — He IIs vessel, 5 — J-T valve, 6 —
recuperative heat exchanger, 7 — heat exchanger pipe. 8/9 — external/internal radiation
shield, 10 — A-plate, 11 — A-valve, 12 — insert radiation shields, 13 — A-plate supports, 14 —
foam msulation, 15 — instrumentation ports, TO — T7 temperature measurement points

Ph. Lebrun The technology of superfluid helium



Conduction cooling in static He II p

Cross-section: A
Q Length: L
L Power: Q 0
Heat Flux: q = N

T, T2
e Gorter-Mellink law: qg"-L= X(Tz)_x(Tl)

e Experimental work of Bon Mardion, Claudet & Seyfert:

em= 34
e tabulation of X(T) 600
\\
—~ 400
-
X
Note 1: this is a non-linear formula 200 T
for conduction = use proper units! |
0
Note 2: m = 1 for classical solid
conduction (Fourier’s law) 13 15 #7[K]1-9 2.1

Ph. Lebrun The technology of superfluid helium



X(T) + 3%
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Thermal conduction integral function of He II p

X(Te)—X(Tw) = ¢>4 L
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Conduction cooling: a numerical example

A A=1cm?
Q L=1m =100 cm (Units!)
L T,=19K =2 X(T,) =200
. . T,=1.8K 2> X(T,) =360

Thén: @g34L=360-200 = @**=1.6 = q=1.15W/cm?

Comparison with "good solid conductor”, e.g. Copper

4= k-ATT with k = thermal conductivity at 1.8 K

Cu type k [W/m.K] AT [K] L [m] q [mW/cm?]
OFHC 120 0.1 1 1.2
DHP 3 0.1 1 0.03

He II conducts heat 1000 times better than OFHC Cu

Ph. Lebrun The technology of superfluid helium

42




Steady-state conduction duct in He II
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%0 100
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Tore Supra (WEST) tokamak at CEA Cadarache, France

The technology of superfluid helium

44



He IIp conduction cooling of Tore Supra coils
CEA Cadarache

= 5057
Refrigerator
| |
80K | 4.0K ; 1.75K
|
- _,>
5 q -650 ]
NI m—
O e S—

Figure 2 Schematic design of the cryogenic system. 1, 1.8 K coil; Figure 3 1 atm He Il circuit. 1, 12 Current leads; 2, cold burst
discs; 3, thermal ballast= 1500 dm?3; 4, six He |l pipes; 5, cryogenic

2, 1.75 K cold box; 3, static pressurized superfluid helium; 4, thick
casing total weight = 120 tonnes; 5, 80 K shield total weight =22 line; 6, 1.7 K cold source; 7, cold valves; 8, safety valves

tonnes; 6, thermal ballast; 7, 20 000 dm3 He tank
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He IIp conduction cooling of 45 T hybrid magnet
NHFML Tallahassee
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Problem 1: Steady-state conduction in He II

Consider a 8-m long duct cooling a superconducting magnet by conduction in
pressurized superfluid helium at 1 bar, from a cold source at 1.8 K.

1.

Calculate the diameter of the duct to maintain the magnet at 1.9 K if its total heat
load is 20 W

Calculate the diameter of the duct if its length is doubled to 16 m, same magnet
heat load and temperature conditions

With the duct length and diameter of question 1, what will be the magnet
temperature if its heat load is increased to 25 W?

Is there a maximum heat flux that the duct of question 1 can conduct to the cold
source? Calculate this maximum heat flux and the corresponding heat flow with the
duct diameter and length of question 1.
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Problem 2: Cooldown of liquid helium duct to superfluid state

Consider a duct that cools a superconducting magnet by conduction in
pressurized superfluid helium at 1 bar from a cold source at 1.8 K. The magnet
and the duct are initially filled with saturated liquid helium at 4.2 K. At time zero,
the end of the duct opposite the magnet is put in contact with the cold source.

1. Sketch the temperature profile along the duct and explain what happens

2. Calculate the velocity of the superfluid/normal fluid front (at T lambda) in the duct
as a function of its distance x to the cold source

3. Calculate the time taken by the front at T lambda to reach the magnet, as a
function of the distance L to the magnet. Calculate for L=8 m.
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Conduction in polyimide

Adhesive polyimide
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The LHC: 1716 main superconducting magnets
cooled at 1.9 K in 3 km long strings:
how to transport the heat over such distances?

B
A
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Conduction cooling of accelerator string: the fin problem

A
k% Qo Distance : z
N —— —0+ d ) 3 y4 '
@ Q OO Q Q> Grot Linear heat load: &
g ; \ q+dg

T, Edz T T,
G-M law applied on dz: G>*-dz =dX (T)
Energy conservation: dg= é .dz > dz = é -dq

A S

then, 0404 =-2-0X(T) > G =44 [X(T,)-X(T,)]

Calling Q. the total heat load on the string of length L:

Qui=L-C¢=0p A = ,i: qlt_Ot

Hence, qu-“ L =4.4 -[X (TE)—X(T1)]
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Conduction in He II with linear applied heat load
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saturated He I, flowing heat exchanger tube
pressurized He ll, static

<- -

"= %

magnet sc bus bar connection

helium vessel

e Heat exchanger tube in copper with a diameter DN50
e Overall thermal conductance: ~ 100 W/m.K
(i.e., for 1W/m, a temperature difference of 10 mK)
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Measured overall heat transfer factor across DN50 tube: 100 W/m.K as long as
some He II s liquid is present
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Cross-section of LHC magnet in cryostat
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LHC magnet string cooling scheme

(75K, 19 bar)
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Temperature profile of LHC sector
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Saturated Vapour Temperature:1. 79K
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Challenges of power refrigeration at 1.8 K

Compression > 80

Large mass flow-rate of low-density He vapor initially at low temperature

Pressure [kPa]
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must be compressed efficiently across high pressure ratio
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Cycles for refrigeration below 2 K

Sub-atmospheric
Sub-atmospheric compressor pp
compressor MP @ 1 @
\ HP HP 2] g HP
@ LP LP LP
L
)
5
O GJE — — —
)
o @ o
2 CC 2 2
© @ o
v CcC Y CC N2
L0 L0 10
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LHe LHe
e CcC CcC
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| | | 1\Sub-cooling | |
L X L _~~X heat exchanger L X
Heat load Heat load Heat load
"Warm” “Integral Cold” "Mixed”
Compression Compression Compression
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Warm pumping unit for LHC magnet tests

3 stages of Roots + 1 stage rotary-vane pumps
6 g/s @ 10 mbar (1/160 of LHC!)
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Cold hydrodynamic helium compressors

¢’ 4

Air Liquide IHI
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Specific features of LHC cold compressors

5O : | |
§ jo Active | 3-phase induction
; = magnetic Electrical motor
= 2 bearings (rotational speed:
QB 200 to 700 Hz)
il | :
—_ Fixed-vane
‘ diffuser

Outlet ?// -
z T | ~ Spiral volute.
O E \ - . '
C S i ;
> 3 i: |
2 g | Axial-centrifugal
O | | Impeller (3D)

Pressure ratio Inlet

2 to 3.5 ;
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Cold versus «warm» (RT) compression

m Cold compression «Warm>» compression

Type of machine Hydrodynamic Volumetric

Examples of machines Centrifugal, axial- Rotary vane pump, roots,
centrifugal liquid ring, screw

Rejection of heat of i +

compression

Limitation of volume flow- + i

rate (size of compressor)

Efficiency of heat + :

exchange (size of HX)

Lubrication of compressor _ n

Pressure ratio per stage i N

of compressor

Compliance to variable i +

flow & inlet conditions
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Operating ranges
of volumetric & hydrodynamic compressors

Speed < < N3

Pressure Pressure
ratio ratio Stall line
N3 ..
‘ N3 Speed limit
Choke line
FIow‘ Flow‘
Volumetric (ideal) Hydrodynamic
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Flow compliance of "mixed” compression

Flow (variable)

P out (7ixed) P inter | Stall line
N3 Volumetric
Volumetric
Choke line

P inter

Hydrodynamic
Pin (fixed) R

Flow

For fixed overall inlet & outlet conditions, coupling of the two machines
via P inter maintains the operating point in the allowed range
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Simplified flow-schemes of the 1.8 K refrigeration units of LHC
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WCS at CERN:
125 g/s @ 0.6 bar
or
4600 m3/h @ 15 °C
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Warm sub-atmospheric screw compressors

''''''''
»

WCS at CERN:
125 g/s @ 0.35 bar
or

2 x 3900 m3/h @ 15 °C

Kaeser
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Isothermal efficiency of warm subatmospheric compressors
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C.O.P. of LHC 1.8 K units
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Range of application of low-pressure helium compression techniques
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Problem 3: Adiabatic compression of low-pressure gaseous helium

One wishes to produce 120 W refrigeration at 1.8 K by compressing gaseous
helium at the corresponding saturation pressure of 16.4 mbar, up to atmospheric

pressure (1 bar), where it can then be recovered in a gas bag or enter the LP side
of a helium liquefier.

1. Calculate the corresponding mass flow-rate.
2. Calculate the corresponding volume flow-rate:

a) for a cold compressor handling the gas at 4 K, with a density 0.198 kg/m3,

b) for a conventional “warm” vacuum pump handling the gas at room
temperature (290 K), with a density of 0.00272 kg/m3.

3. Assuming reversible adiabatic compression and taking helium as an ideal gas,
calculate the compression power in both cases.

4. Redo the calculations of compression power using real thermodynamic properties
of helium. Was the ideal gas approximation justified?
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Problem 4: Production of saturated superfluid by J-T expansion

Consider Joule-Thomson expansion of saturated helium at 4.2 K through a valve,
down to the pressure corresponding to a saturation temperature of 1.8 K.

1.
2.
3.

What is the saturation pressure of helium at 1.8 K?
Which thermodynamic function of state remains constant in the expansion?

Calculate the fraction of vapour produced in the expansion, and the remaining
fraction of liquid. What do you conclude about the efficiency of the process to
produce saturated superfluid helium?

A heat exchanger is introduced before the expansion valve, to subcool the liquid by
the returning cold vapour. What are the temperatures of the two streams at the
cold end of the heat exchanger? What are the temperatures of the two streams at
the warm end of the heat exchanger? Calculate the fraction of vapour produced in
the expansion, and the remaining fraction of liquid, What do you conclude about
the efficiency of the process?

What are the design and construction challenges of the heat exchanger?
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Efficiency of Joule-Thomson expansion

LHe  sub-cooling

LHe Al 1¢ // HX
m : lexpansion expansion

3 2 valve 3¢ valve

A A
Sat. He IT — . Sat. He IT — .
1.8 K. 16 mbar 5| Q 1.8 K, 16 mbar 5| Q

H3 B Hz
Sub-cooling efficiency : Nse =

H3 — HO <€—— Enthalpy of pure liquid

without 4.5 12.6 23.4 54
with 2.2 20.4 23.4 87
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Benefit of subcooling before J-T expansion
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Mass-flow: 4.5 g/s

AP VLP stream: < 1 mbar

Sub-cooling T: < 2.2 K

Perforated
copper plates ©
with SS Spacers |

.....
.
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Helium II to vacuum leak-tightness

. : . Helium I
e Design and construction rules applicable for €ium Vvesse acuum space
cryogenic equipment operating with normal

liquid helium are sufficient to ensure helium VLP

IT leak-tightness GHe
— In a crack in the wall of the helium II vessel of

a cryostat, the leaking helium will vaporize
when it reaches saturation pressure some way
along the crack

— The leakage rate will be controlled by the flow
of vapour downstream — as for a normal
helium leak

o Prefer all-welded austenitic stainless steel
construction, using automatic welding to
reduce human error

e Enforce systematic pressure- and leak-
testing after cold shock
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Protection against air inleaks

e Motor shaft of warm sub-atmospheric compressors placed at the
discharge side to work above atmospheric pressure.

e For sub-atmospheric circuits which are not under guard vacuum or not
completely welded, apply helium guard protection on dynamic seal of
valves, on instrumentation ports, on safety relief valves and on critical
static seals

He guard header % W HP helium

X X Eﬂ % Evacuation
for periodic rinsing
o
~ o« s N

L
VLP circuits
Safety valves Instrumentation and components Static seal
not completely welded, with double
without double O-ring joints O-ring joints
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e Applications
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High-field magnets for high-frequency NMR
900 MHz & 21.2 T
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http://en.wikipedia.org/wiki/Image:HWB-NMRv900.jpg

ISEULT 11.7 T whole-body MRI magnet
CEA Saclay (France)

Pressurized He IT at 1.8 K at 1.2 bar

Insulator/separator of conductors creates
cooling channels in magnet coil

Magnet cooled by conduction from satellite

AP=5D
AP =1 bar (CRIOTEC)
Open at 1.4 bars E am,_ - gun
Reéseau de 1
récupération %
(gazométre)
AP=1{.7 bars
Teia
171a
AP=0.7 bars AP = 0.02 bars Cryostat aimant
i / ! AP=0.02 bars
N - ——
SRVI i ! ars abs

Cryostat satellite
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The ISEULT magnet in its cryostat
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Axion detection by conversion to photons: MADMAX

Study for Max Planck Institute, based on large-bore, high-field
superconducting NbTi dipole magnet (hollow conductor) cooled by
superfluid helium

Design Constrains _

Bore Diameter 1250 mm 2 fengpy
Overall Length <6900 mm

Magnet Length <5900 mm

Overall Mass 200 tons

Bpeak (10%LL@1.8K) <12T

Specification

FoM (Z =0 mm) 100 T2m?2
FoM (Z = £1000 mm) > 90 T?°m?
B Field Homogeneity (H) +£5%
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The European X-ray FEL
DESY, Hamburg (Germany)

Experimental Hall (PossiPle future extension)

N\ _ 3.4km _
\ 2 1 2 .
N , - Very brilliant, ultra-short
\ C \ e o, . v R S A
~ . d ¢ ) e = = (100 fs) pulses of X-rays
i down to 0.1 nm

Based on s.c. e linac
Undulators | =~
and Photon _ 3\

.v-: i
'x',
1

Beam energy 17.5 GeV

3 e
Beamlines, -

Beam power 600 kW

1.2 km » Linac length 1.7 km
N - 928 superconducting RF
,* Iserbrook()\/A- S B e ey "‘ cavities operated at 2 K
Distribution . ’ ’ - 25kW @ 2K
System Linac Tunnel, 2 km Injector
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European Spallation Source
Lund (Sweden)

Long-pulse neutron source
-5 MW, 2 GeV proton beam
-62.5 mA

- 2.86 ms pulse length

- 14 Hz

- Low losses

- High availability > 95 %
- High efficiency

Accelerator cryoplant ;’

10 kW @ 4.5 K equivalent, of which 2.2 kW @ 2 K [ifes g'

L NS

sl 57 2] WH e - o7 (4 A2 [ H -
Cim>» €Eom> S2md> €39m> <€56m> €<77m > € 179m —>

seurce

75 keV 3.6 MeV 90 MeV 216 MeV 5371 MeV
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The Linear Coherent Light Source II (LCLS II)
SLAC, Stanford (USA)

High- brlghtness hlgh repetltlon rate FEL for soft and hard X-rays

Cryogenic plant

35 cryomodules at 1.3 GHz ~4 kW @ 2 K

2 cryomodules at 3.9 GHz +
4 cold segments 1.5kwWw @ 4.5K
+

12 kW @ 40-50 K

4 GeV SC Linac 4 GeV, 0.3mA, 1.2 MW 0.2-1.3 keV (120 kW

...I“W"u"‘l.""\. / *IIIIILIIIIIIII\
AN [NENENE RN EEEN
SCRF Linac in 15t km Cu Linac
of SLAC tunnel Existing LCLS 1.0-25keV (120 Hz)
1.0 - 5 keV (120 kW)
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The International Linear Collider (ILC) project

Polarised electron source
e+ Main Linac

Damping rings

‘“\“\)\\3“'{

Ring to Main Linac (RTML)
(including bunch compressors)
‘ .

wa\“““‘? =

e- Main Linac

R4000

CRYOMODULE r

WANVEGUIDE
KLYSTRON

196045 |

- e+ source
10 cryoplants, each 19 kW @ 4.5 K of which 3.6 kW @ 2 K :
82 metric tons of He : — _
92
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Hadron collider
16 T = 100 TeV for 100 km
20 T = 100 TeV for 80 km
High-field SC magnets at 1.9 K

Quasi-circular tunnel of
80-100 km perimeter

‘ ' Schematic of an
‘ ' 80-100 km long
‘ ' circular tunnel
A ¢ Y 4

e+ e- collider
Collision energy 90 to 350 GeV
Very high luminosity
SC RF system at 4.5 K and/or 2 K
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Conclusion and outlook

From a laboratory curiosity and a hot research topic in condensed-
matter physics, superfluid helium has become a state-of-the-art
cryogen for cooling large superconducting devices such as high-energy
accelerators, tokamaks and research magnets

Projects such as TORE SUPRA, CEBAF, SNS and LHC have triggered
vigorous development programmes in laboratories and industry
concerning flow and heat transfer, refrigeration techniques,
instrumentation and engineering

Superfluid helium remains an enabling technology for NMR magnets
and future large projects using high-field superconducting devices,
e.g. the European X-FEL, ESS, ILC.

The unique hydrodynamic properties of the fluid can also be used per
se, e.g. in turbulence research
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