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First liquefaction of helium (1908)

Leiden « cascade » to 
produce liquid hydrogen

Helium liquefaction stage with
liquid hydrogen precooling
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Unsuccessful attempt to solidify helium
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Hint of a quantum effect…?
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F. London

Zero-point (quantum) energy
prevents helium from solidifying
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Discovery of He II phase transition (1928)
Helium phase diagram (1933)

W.H. Keesom
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Phase diagram of helium
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First signs of unusual thermal behaviour of He II (1935-1937)
J.O. Wilhem, A.D. Misener and A.R. Clark (Toronto)

W.H. Keesom and A. Keesom (Leiden)
J.F. Allen, R. Peierls and M.Z. Uddin (Cambridge)

• the viscosity of liquid He drops down below 2.2 K

• the thermal conductivity of liquid He increases below 2.2 K

Vaporization of liquid helium under applied heat load

He I (T=2.4 K) He II (T=2.1 K)
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Discovery of superfluidity in He II (1938)
P.L. Kapitsa (Moscow)

• Viscosity of liquid helium below the lambda point, Nature 141, 74 (Jan. 1938)

– through a 0.5 µm slit, liquid He does not flow above 2.2 K but flows very easily 
below 2.2 K

– the viscosity of helium II  is at least 1500 times less than that of helium I

– by analogy with superconductors, ... the helium below the lambda-point enters a 
special state which might be called superfluid
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Discovery of superfluidity in He II (1938)
J.F. Allen & A.D. Misener (Cambridge)

• Flow of liquid helium II, Nature 141, 75 (Jan. 1938)

– through thin capillaries and below 2.2 K, the flow of liquid He is nearly independent 
of the pressure difference and of the capillary cross section

– the observed type of flow ... in which the velocity becomes almost independent of 
pressure, most certainly cannot be treated as laminar or even as ordinary turbulent 
flow. Consequently, any known formula cannot, from our data, give a value of the 
viscosity which would have much meaning
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Theoretical approaches to superfluid helium [1/4]
Bose-Einstein condensation

Fritz London

it seems difficult not to imagine a connexion with the
condensation phenomenon of the Bose-Einstein
statistics... On the other hand, it is obvious that a
model which is so far away from reality that it
simplifies liquid helium to an ideal gas…
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Bose-Einstein condensation in gas of particles
(from W. Ketterle)
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Theoretical approaches to superfluid helium [2/4]
Two-fluid model

Laszlo Tisza

liquid He should have two components:
• condensed atoms would be the superfluid component 

which has zero viscosity and carries no entropy 
• non-condensed atoms would be a normal viscous 

component carrying all the entropy of the whole fluid
• the  respective densities ρs and ρn would only depend on T 

(ρs + ρn = ρ )
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Theoretical approaches to superfluid helium [3/4]
Quasi-particle description

Lev Davidovich Landau

• L. Tisza suggested that helium II should be considered 
as a degenerate ideal Bose gas... This point of view, 
however, cannot be considered as satisfactory... 
nothing would prevent atoms in a normal state from 
colliding with excited atoms, i.e. when moving through 
the liquid they would experience a friction and there 
would be no superfluidity at all

• every weakly excited state can be considered as an 
aggregate of single elementary excitations: 

⁻ sound quanta (phonons) ε = cp
⁻ elementary vortices (rotons) ε = Δ + (p-p0)

2/2µ

• dissipation requires emission of either phonons or 
rotons, that is a minimum velocity
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Theoretical approaches to superfluid helium [4/4]
Quasi-particle description
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Two-fluid model of He II

Phenomenological model

Two interpenetrating fluids

= s + n

Normal & superfluid fractions varying with T

 v = s vs + n vn

 s= n sn since ss = 0

All entropy carried by normal component

Physical basis of the two-fluid model

• Collective excitations constitute the normal 
component (Landau)

• B-E condensate in liquid (Penrose & Onsager) 
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He II behaviour explained by two-fluid model [1/2]

• Film flow
– Frictionless flow of surface tension film

• Measured viscosity depends on the 
measurement method
– Frictionless leakage through capillary

channels

– Finite viscosity by rotating cylinder
method

• Andronikashvili experiment
– Rotating cylinder replaced by stack of 

finely-spaced disks

– Only normal component entrained by 
stack rotation

– Effective moment of inertia depends on 
normal fluid density, varies with
temperature
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He II behaviour explained by two-fluid model [2/2]

• Thermal transport by counterflow

• Thermomechanical
– Fountain effect

– Superfluid pump

• Longitudinal wave propagation
– Two fluids in phase: first sound

(~240 m/s)

– Two fluids in antiphase: second 
sound (~20 m/s)
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Thermophysical properties of helium

• A convenient property software, used in the Cryogenics course, is REFPROP 
by NIST, which unfortunately does not cover the superfluid range.

• In this we use HEPAK by CRYODATA

– Valid from 0.8 K (or the melting line) to 1500 K temperature

– Valid up to 1000 bar pressure (20’000 bar between 80 and 300 K)

• Some HEPAK functions are available in EXCEL, in particular HeCalc which
returns the calculated value of the thermodynamic property to the calling
program

HeCalc(Index, Phase, Input1, Value1, Input2, value2, Unit)

• Contact  person: Rob van Weelderen, TE-CRG
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Benefits of He II cooling

• Lower the operating temperature

– Achieve higher magnetic field through increase of critical current density of 
superconductor

– Minimize overall energy dissipation in RF cavities

• Enhance heat transfer

– At solid-liquid interface  conductor cooling

– In the bulk liquid

 device/system cooling scheme

 calorimetry in isothermal bath
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Critical current density of superconductors
for high-field accelerator magnets  
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Optimization of operating temperature
for superconducting RF cavities

• BCS theory RBCS =  (A w2 /T)  exp (-B Tc/T)

• For practical materials RS =   RBCS +  R0

• Refrigeration (Carnot) Pa =   P (Ta/T  - 1)

 depending upon w and R0, optimum operating temperature for 
superconducting cavities
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Enhancement of heat transfer

• Low viscosity  permeation

• Very high specific heat  stabilization

– 105 times that of the conductor (Cu + SC) per unit mass

– 2 x 103 times that of the conductor per unit volume

• Very high thermal conductivity  heat transport

– 103 times that of cryogenic-grade OFHC copper

– peaking at 1.9 K

Full benefit of these transport properties can only be reaped by
appropriate design providing good wetting of the superconductors and
percolation paths in the insulation, often in conflict with other technical
requirements
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Specific heat of liquid helium and copper
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Equivalent thermal conductivity of He II p
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Solid-liquid interface: Kapitza conductance

Experimental data for Copper

(S. Van Sciver, "Helium Cryogenics")

hK ~ T 3

Valid for small heat flux (when DT<<T)
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Application of high thermal conductivity
Calorimetry in isothermal He II bath

• For slow thermal transients, the He II bath is
quasi-isothermal: a single temperature
measurement allows to estimate heat
deposition/generation Q'

- at constant P Q' = Mbath dH/dt|1

- at constant V Q' = Mbath dE/dt|1

• Mbath can be estimated by in situ calibration, 
using applied heating power W'

- at constant P W' = Mbath dH/dt|2

- at constant V W' = Mbath dE/dt|2

T

Q'

W'
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Calorimetry of magnet quench in He II bath 

Time evolution of bath temperature

Correlation with electrical measurements
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Precision thermometry allows calorimetric detection
of faulty joints in LHC at safe powering level
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Current Total (measured)
Nominal 
Splices*

Add. local 
dissipation

Uncertainty

[A] [mW/m] [W] [W] [W] [W] 

3000 4.4 1.0 0.4 0.6 0.6

5000 14.9 3.2 1.1 2.1 0.6

7000 32.2 6.9 2.1 4.8 0.6

→ Local resistance:  ~90 nW, confirmed by electrical measurement
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Pressurized vs saturated He II
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Advantages & drawbacks of He II p

• Advantages
– limits the risk of air inleaks and contamination in large and complex 

cryogenic systems

– for electrical devices, limits the risk of electrical breakdown at fairly 
low voltage due to the bad dielectric characteristics of helium 
vapour (Paschen curve)

– better stabilizer for heat buffering

• Drawbacks
– one more level of heat transfer 

– additional process equipment (pressurized-to-saturated helium II 
heat exchanger)
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Paschen curve for gaseous He at 20 °C 
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Working with superfluid helium at atmospheric pressure 

He I

He II

Tl

Tl−e

Cooling
HX

« Roubeau bath »: He II conduction
prevents from lowering the bath
temperature well below Tl
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« Claudet bath »: restriction in
cryostat allows subooling He II bath
to temperatures well below Tl

P atm

4.2 K
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A practical Claudet bath
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Conduction cooling in static He II p

Cross-section: A
Length: L
Power: 
Heat Flux: 

A

Q
q


 =

Q

• Gorter-Mellink law: 

• Experimental work of Bon Mardion, Claudet & Seyfert:
• m ≈ 3.4
• tabulation of X(T) 
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Note 1: this is a non-linear formula 
for conduction  use proper units!
Note 2: m = 1 for classical solid 
conduction (Fourier’s law)
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Thermal conduction integral function of He II p
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Conduction cooling: a numerical example

A = 1 cm2

L = 1 m = 100 cm  (Units!)
T1 = 1.9 K ➔ X(T1) = 200
T2 = 1.8 K ➔ X(T2) = 360

Then: q3.4.L = 360 - 200    ➔ q3.4 = 1.6  ➔ q = 1.15 W/cm2
. . .

Comparison with "good solid conductor", e.g. Copper

L

ΔT
kq = with k = thermal conductivity at 1.8 K

Cu type k [W/m.K] DT [K] L [m] q [mW/cm2]

OFHC 120 0.1 1 1.2

DHP 3 0.1 1 0.03

He II conducts heat 1000 times better than OFHC Cu

L

A

T1 T2 

Q
.
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Steady-state conduction duct in He II
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Tore Supra (WEST) tokamak at CEA Cadarache, France
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He IIp conduction cooling of Tore Supra coils
CEA Cadarache
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He IIp conduction cooling of 45 T hybrid magnet
NHFML Tallahassee 
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Problem 1: Steady-state conduction in He II

Consider a 8-m long duct cooling a superconducting magnet by conduction in 
pressurized superfluid helium at 1 bar, from a cold source at 1.8 K.

1. Calculate the diameter of the duct to maintain the magnet at 1.9 K if its total heat 
load is 20 W

2. Calculate the diameter of the duct if its length is doubled to 16 m, same magnet 
heat load and temperature conditions

3. With the duct length and diameter of question 1, what will be the magnet 
temperature if its heat load is increased to 25 W?

4. Is there a maximum heat flux that the duct of question 1 can conduct to the cold 
source? Calculate this maximum heat flux and the corresponding heat flow with the 
duct diameter and length of question 1.
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Problem 2: Cooldown of liquid helium duct to superfluid state

Consider a duct that cools a superconducting magnet by conduction in 
pressurized superfluid helium at 1 bar from a cold source at 1.8 K. The magnet 
and the duct are initially filled with saturated liquid helium at 4.2 K. At time zero, 
the end of the duct opposite the magnet is put in contact with the cold source.   

1. Sketch the temperature profile along the duct and explain what happens

2. Calculate the velocity of the superfluid/normal fluid front (at T lambda) in the duct 
as a function of its distance x to the cold source

3. Calculate the time taken by the front at T lambda to reach the magnet, as a 
function of the distance L to the magnet. Calculate for L=8 m.
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Heat transfer across
electrical insulation of LHC 

superconducting cable

Conduction in polyimide
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The LHC: 1716 main superconducting magnets
cooled at 1.9 K in 3 km long strings:

how to transport the heat over such distances?
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Conduction cooling of accelerator string: the fin problem 

Distance : z
Linear heat load: x

G-M law applied on dz:

Energy conservation:
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Conduction in He II with linear applied heat load 
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Cooling of the LHC magnet strings by two-phase flow of He IIs

• Heat exchanger tube in copper with a diameter DN50
• Overall thermal conductance: ~ 100 W/m.K
(i.e., for 1W/m, a temperature difference of 10 mK)
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The He II bayonet heat exchanger tube

Measured overall heat transfer factor across DN50 tube: 100 W/m.K as long as 
some He II s liquid is present
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Cross-section of LHC magnet in cryostat
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LHC magnet string cooling scheme

107 m
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Temperature profile of LHC sector 

3.3 km
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Challenges of power refrigeration at 1.8 K
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Cycles for refrigeration below 2 K
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Warm pumping unit for LHC magnet tests
3 stages of Roots + 1 stage rotary-vane pumps

6 g/s @ 10 mbar (1/160 of LHC!)
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Cold hydrodynamic helium compressors

Air Liquide IHI
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Specific features of LHC cold compressors 
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Cold versus «warm» (RT) compression

Criterion Cold compression «Warm» compression

Type of machine Hydrodynamic Volumetric

Examples of machines Centrifugal, axial-
centrifugal

Rotary vane pump, roots,
liquid ring, screw

Rejection of heat of 
compression

- +

Limitation of volume flow-
rate (size of compressor)

+ -

Efficiency of heat
exchange (size of HX)

+ -

Lubrication of compressor - +

Pressure ratio per stage 
of compressor

- +

Compliance to variable 
flow & inlet conditions

- +
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Operating ranges
of volumetric & hydrodynamic compressors

Pressure
ratio

Flow

N1 N2 N3

Pressure
ratio

Flow

N1

N2

N3

Stall line

Choke line

Volumetric (ideal) Hydrodynamic

Speed  N1 < N2 < N3

Speed limit
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Flow compliance of “mixed” compression
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N1

Flow (variable)
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Simplified flow-schemes of the 1.8 K refrigeration units of LHC
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Performance of LHC cold compressors
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Warm sub-atmospheric screw compressors

Compound two-stage screw compressor

WCS at CERN:
125 g/s @ 0.6 bar

or
4600 m3/h @ 15 °C

Mycom
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Warm sub-atmospheric screw compressors

Kaeser

WCS at CERN:
125 g/s @ 0.35 bar

or
2 x 3900 m3/h @ 15 °C

Ph. Lebrun The technology of superfluid helium 70



Isothermal efficiency of warm subatmospheric compressors
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C.O.P. of LHC 1.8 K units
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Range of application of low-pressure helium compression techniques
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Problem 3: Adiabatic compression of low-pressure gaseous helium

One wishes to produce 120 W refrigeration at 1.8 K by compressing gaseous 
helium at the corresponding saturation pressure of 16.4 mbar, up to atmospheric 
pressure (1 bar), where it can then be recovered in a gas bag or enter the LP side 
of a helium liquefier.

1. Calculate the corresponding mass flow-rate.

2. Calculate the corresponding volume flow-rate:

a) for a cold compressor handling the gas at 4 K, with a density 0.198 kg/m3,

b) for a conventional “warm” vacuum pump handling the gas at room 
temperature (290 K), with a density of 0.00272 kg/m3.

3. Assuming reversible adiabatic compression and taking helium as an ideal gas, 
calculate the compression power in both cases.

4. Redo the calculations of compression power using real thermodynamic properties 
of helium. Was the ideal gas approximation justified?   
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Problem 4: Production of saturated superfluid by J-T expansion

Consider Joule-Thomson expansion of saturated helium at 4.2 K through a valve, 
down to the pressure corresponding to a saturation temperature of 1.8 K.  

1. What is the saturation pressure of helium at 1.8 K?

2. Which thermodynamic function of state remains constant in the expansion?

3. Calculate the fraction of vapour produced in the expansion, and the remaining
fraction of liquid. What do you conclude about the efficiency of the process to 
produce saturated superfluid helium?

4. A heat exchanger is introduced before the expansion valve, to subcool the liquid by 
the returning cold vapour. What are the temperatures of the two streams at the 
cold end of the heat exchanger? What are the temperatures of the two streams at 
the warm end of the heat exchanger? Calculate the fraction of vapour produced in 
the expansion, and the remaining fraction of liquid, What do you conclude about 
the efficiency of the process?

5. What are the design and construction challenges of the heat exchanger?   
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Enthalpy of helium at 1 bar and 16 mbar
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Efficiency of Joule-Thomson expansion

Sub-cooling T1’ [K] H3-H2 [J/g] H3-H0 [J/g] [%]

without 4.5 12.6 23.4 54

with 2.2 20.4 23.4 87

Sub-cooling efficiency :
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Benefit of subcooling before J-T expansion
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Subcooling HX technologies investigated for LHC

Stainless steel sheet

Perforated
copper plates
with SS Spacers

SS coiled tubes Mass-flow: 4.5 g/s
DP VLP stream: < 1 mbar
Sub-cooling T: < 2.2 K

DATE

SNLS

Romabau
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Helium II to vacuum leak-tightness 

• Design and construction rules applicable for 
cryogenic equipment operating with normal 
liquid helium are sufficient to ensure helium 
II leak-tightness

– In a crack in the wall of the helium II vessel of 
a cryostat, the leaking helium will vaporize 
when it reaches saturation pressure some way 
along the crack

– The leakage rate will be controlled by the flow 
of vapour downstream – as for a normal 
helium leak

• Prefer all-welded austenitic stainless steel 
construction, using automatic welding to 
reduce human error

• Enforce systematic pressure- and leak-
testing after cold shock

He II
VLP
GHe

Helium vessel Vacuum space
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Protection against air inleaks

• Motor shaft of warm sub-atmospheric compressors placed at the
discharge side to work above atmospheric pressure.

• For sub-atmospheric circuits which are not under guard vacuum or not
completely welded, apply helium guard protection on dynamic seal of
valves, on instrumentation ports, on safety relief valves and on critical
static seals

I

VLP circuits
Safety valves Instrumentation and components

not completely welded,
without double O-ring joints

Static seal
with double 
O-ring joints

HP helium

PT

Evacuation
for periodic rinsing

He guard header
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High-field magnets for high-frequency NMR
900 MHz  21.2 T
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ISEULT 11.7 T whole-body MRI magnet
CEA Saclay (France)

Pressurized He II at 1.8 K at 1.2 bar

Insulator/separator of conductors creates 
cooling channels in magnet coil

Magnet cooled by conduction from satellite 
cryostat
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The ISEULT magnet in its cryostat
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42.5 T hybrid magnet at LNCMI, Grenoble

25 + 9    +    8,5               = 42,5 T

NbTi superconducting solenoid in superfluid He + Bitter coil + Polyhelix coil
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Axion detection by conversion to photons: MADMAX

Study for Max Planck Institute, based on large-bore, high-field
superconducting NbTi dipole magnet (hollow conductor) cooled by 
superfluid helium
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The European X-ray FEL
DESY, Hamburg (Germany)

Very brilliant, ultra-short 
(100 fs) pulses of X-rays 
down to 0.1 nm

Based on s.c. e linac

Beam energy 17.5 GeV

Beam power 600 kW

Linac length 1.7 km

928 superconducting RF 
cavities operated at 2 K
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European Spallation Source
Lund (Sweden)

Long-pulse neutron source

- 5 MW, 2 GeV proton beam

- 62.5 mA

- 2.86 ms pulse length

- 14 Hz

- Low losses

- High availability > 95 %

- High efficiency
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The Linear Coherent Light Source II (LCLS II)
SLAC, Stanford (USA)

High-brightness, high repetition rate FEL for soft and hard X-rays 

35 cryomodules at 1.3 GHz

2 cryomodules at 3.9 GHz 

4 cold segments

Cryogenic plant

~4 kW @ 2 K

+

1.5 kW @ 4.5 K

+

12 kW @ 40-50 K
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The International Linear Collider (ILC) project

Damping rings Polarised electron source

e+ source

Ring to Main Linac (RTML)

(including bunch compressors)

e- Main Linac

e+ Main Linac

10 cryoplants, each 19 kW @ 4.5 K of which 3.6 kW @ 2 K
82 metric tons of He
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Future Circular Collider (FCC) study at CERN

e+ e- collider
Collision energy 90 to 350 GeV
Very high luminosity
SC RF system at 4.5 K and/or 2 K

Hadron collider
16 T  100 TeV for 100 km
20 T  100 TeV for 80 km
High-field SC magnets at 1.9 K

Quasi-circular tunnel of 
80-100 km perimeter

Ph. Lebrun The technology of superfluid helium 93



Conclusion and outlook

• From a laboratory curiosity and a hot research topic in condensed-
matter physics, superfluid helium has become a state-of-the-art
cryogen for cooling large superconducting devices such as high-energy
accelerators, tokamaks and research magnets

• Projects such as TORE SUPRA, CEBAF, SNS and LHC have triggered
vigorous development programmes in laboratories and industry
concerning flow and heat transfer, refrigeration techniques,
instrumentation and engineering

• Superfluid helium remains an enabling technology for NMR magnets
and future large projects using high-field superconducting devices,
e.g. the European X-FEL, ESS, ILC.

• The unique hydrodynamic properties of the fluid can also be used per
se, e.g. in turbulence research
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