

Helium Cryostats for Superconducting Devices

Vittorio Parma CERN – SY/RF Group

Technical Training: Cryostat Engineering for helium superconducting devices CERN, 7-9 November 2022

Cryostats by their application

- Helium cryostats for SC devices, functions and requirements
- Examples of cryostats
- Mechanical design and construction of cryostats:
 - Materials for cryostats and their properties
 - Pressure/vacuum vessels, codes, and norms
 - Supporting systems
- Heat transfer mechanisms at cryogenic temperatures:
 - Thermal radiation and thermal design solutions (thermal shielding, MLI)
 - Thermal conduction and thermal design solutions (feedthroughs, heat intercepts)
- Notions of cryogenic safety
- Calculation tool: Cryostat Toolbox v.1.1

1 h

1 h

1 h

A few examples at CERN

A few examples at CERN transfer lines, valve boxes

Functions of a SC device cryostat

Main function: house a SC device to enable it's operation.

Two technical requirements:

1. Mechanical housing of the device:

• Supporting, accurate positioning and alignment of SC devices in accelerators

2. Thermal efficiency:

- Cooling at cryogenic T (steady state, CD, WU)
- Low T preservation \rightarrow optimal thermal insulation

Often conflicting \rightarrow calls for trade off design solutions

Many other complementary functions and requirements...:

- Cryogenics operation and control → specific equipment (piping, ph.separators, valves, instrumentation etc.)
- SC device powering: → magnet current leads, cavity RF power couplers/HOMs, etc.
- Integration of instrumentation (beam, vacuum, cryo, control/diagnostics, etc.) \rightarrow feed-throughs
- magnetic shielding
- Maintainability (accessibility ports)
- Handling and transport features

• ...

Accelerator architecture and cryostat layouts

Some key aspects:

- Continuity of SC magnets
 electrical circuits
- Thermal efficiency of continuous cryostats with integrated cryo-distribution
- C/W transitions: costs and heat loads
- RT equipment needs (e.g. beam instrumentation, beam sect. valves, non-SC magnets, etc.)
- Segmentation for maintainability (e.g. SRF CM can be replaced)
- Staged machine installation (e.g. SRF energy increase)

→ No general rule, but "long" machines opt for continuous cryostats to maximize:

- Dipole magnetic length in circular machines (like LHC)
- Real estate accelerating gradient in linacs (XFEL, ILC)

Housing and alignment requirements in accelerators

 Accurate & reproducible alignment of the SC device w.r.t. a machine reference network
 Survey measures fiducials on the critical

- Survey measures fiducials on the cryostat vessel (not the device inside the vessel!)
- Typically alignment within a few tenths of mm w.r.t. nominal

Aligning elements in a ring

→ Survey assumes that the cryostat and the inner SC device are rigid bodies !
→ Alignment is done by adjusting external jacks

Housing and alignment requirements in accelerators

- Cryostats/SC device are not rigid bodies
- SC devices are "weakly" supported inside the cryostat (for thermal efficiency)
- Cryostat vessels are (generally) "relatively" rigid, and not subject to "excessive" permanent deformation
- SC device supporting system has to be designed to guarantee a known thermo-mechanical behaviour to ensure:
- Cryostat design: "Accurate & reproducible positioning of the SC device w.r.t. to cryostat fiducials"

With no internal measurment of the position of the SC device (costly for large machines)

Positioning of SC magnets

 \checkmark Position of the beam tube axis

- Measure magnetic field (main, multipoles) at warm and at cold (cold/warm correlation)
- Dipole magnet positioning accuracy:
 - x-z errors : more tolerant (field has no horizontal axis). (e.g. LHC < 0.48 mm radial (r.m.s.) after 1 year)
 - roll angle (about y) errors: sensitive (gives a kick out of orbit plane) (e.g. LHC < 0.7 mrad (r.m.s.) after 1 year)
- Quadrupole magnet positioning tolerances:
 - x-z errors : sensitive (magnetic axis). (e.g. LHC < 0.37 mn radial (rms) after 1 year)
 - roll angle (about z) errors: more tolerant (e.g. LHC < 1 mrad (rms) after 1 year)

Computed magnetic flux map at $B_0=10$ Tesla

LHC geometrical stability: survey measurements

• Cold mass position stability w.r.t. fiducials measurements on 20 cryo-dipoles After transport to the tunnel

Quad CM positional stability and reproducibility at cold

	Horizontal		Vertical	
Arc SSS (392 units)	Mean	St.Dev.	Mean	St.Dev.
	[mm]	[mm]	[mm]	[mm]
Positional reproducibility after 1 cool-down/warm-up cycle	-0.08	0.42	0.04	0.43
Cool-down movements	-0.17	0.22	-1.3	0.36

Survey measurements with laser tracker

Positioning of SRF cavities

- In general, less stringent positioning tolerances. Also, cavities are smaller and lighter than magnets → less demanding support systems
- Main effects of misalignment:
 - ✓ increased beam losses
 - ✓ beam emittance growth
- Typical figures (r.m.s.):
 ✓ ILC: radial ~0.3 mm, tilt ~0.3 mrad
 - ✓ HIE Isolde CM (next slide):
 - Cavities: transverse < ±0.45 mm</p>
 - Solenoid: transverse < ±0.23 mm</p>

Mechanical accuracy in cryostats assembly

- Positioning accuracy is ensured by precision fitting at assembly
- Machining IT Grade range: 8-10
- Typical close fits: H7/g6

1 0.1 B

Application, Process	Tolerance (µm)	IT Grade
Slip blocks, reference gages	1-2	1
High quality gages, plus gages	2-3	2
Good quality gages, gap gages	3-5	3
Fits produced by lapping	4-10	4
Ball bearings, Diomand or fine boring, fine grinding	5-12	5
Grinding, fine honing	6-20	6
High quality turning, broaching	12-35	7
Center lathe turning and boring, reaming	14-50	8
Horizontal or vertical boring machine	30-80	9
Milling, slotting, planing, metal rolling or extrusion	50-100	10
Drilling, rough turning and boring, precision tubing	70-140	11
Light press work, tube drawing	120-240	12
Press work, tube rolling	150-500	13
Die casting or molding, rubber moulding	250-1000	14
Stamping	400-1400	15
Sand casting, flame cutting	500-2000	16

CERN

Positioning *reproducibility* in cryostats assembly

- Positioning reproducibility on:
- 1. Every cryo-assembly throughout lifetime (transport, thermal-cycles, etc.) \rightarrow design concepts
- 2. Across total population of cryo-assemblies \rightarrow quality & cost

Design concepts:

- Cryostat components in elastic domain (limited local plasticity)
- Stress relieving for dimensional stability (vacuum vessels after welding)
- Reproducibility to thermal cycles (limited plays & stick-slips, no micro-cracking etc.)
- No creep
- ...

→ Prototyping and testing are <u>mandatory</u> !

Heat Loads and thermal design

- Static Heat Loads
 - Very much cryostat related (supports, shielding, feedthroughs, etc.)
 - \rightarrow always present when machine is cold
- Dynamic Heat Loads
 - ➤ inherent to SC device operation (e.g. resistive heating)
 - > and beam interaction (e.g. synchrotron radiation, HOM)
 - → Dominant but only present during machine operation (duty cycles)
- Ensure operation T of the SC device (T_{op})
 - > T_{op} depends on SC needs (normally below 25 K) → helium
 - \blacktriangleright helium phase diagram \rightarrow choice of useful working points (p. T)
- Thermal design for thermodynamically efficient operation (i.e. minimal W_{el} of cryoplant):
 - > Steady state helium heat transfer from the source (SC device, thermal shields, etc.) and transport to the cryoplant $\rightarrow \Delta T$ budgets, heat and helium mass flows, pressures
 - CD/WU phases → thermo-mechanical transients of SC device, cryogenic cooling power → ΔT budgets, mass flows, pressures

Temperature mapping and Heat Loads

Inspired by P. Duschene and JP. Thermeau

What temperature and pressure ?

Pressurized He II, Magnets (LHC, Tore Supra) Pressurized He I, Magnets (HERA, Tevatron)

Higher press. to limit voltage breakdown (Paschen curve in He)

- Saturated He II, SRF (CEBAF, TTF, SNS, EXFEL, ESS, ILC)
 - Pool boiling, He I, SRF (HERA, LEP, LHC, KEKB)
 - Supercritical helium: cooling of thermal shielding

Refrigeration efficiency (Carnot principle)

- Extracts a heat load at Tc < RT and rejects it at Tw (normally RT)
- Carnot cycle: minimum mechanical work (i.e. Maximum Coefficient of Performance, COP_{max}), depends <u>solely on Tw and Tc</u>
- All real machines have a lower efficiency (non-reversible transformations), expressed in fraction of COP_{max}

$$\begin{aligned} & \begin{array}{c} Qc + W = Qw \\ Qw \\ Work (W) \end{array} & \begin{array}{c} 1^{st} \text{ and } 2^{nd} \text{ laws of } \\ \frac{Qw}{Tw} \geq \frac{Qc}{Tc} \end{array} & \begin{array}{c} \rightarrow W \geq Qc \frac{Tw - Tc}{Tc} = \frac{Qc}{COP_{max}} \end{aligned} \end{aligned}$$

$$(COP_{max} (Carnot) = \frac{Tc}{Tw - Tc} \\ COP_{max} (Carnot) = \frac{Tc}{Tw - Tc} \end{aligned}$$
Efficiency of a real machine is expressed in *fraction (or %) of Carnot*.
$$W = \frac{1}{COP} Qc = \frac{1}{x\% COP_{max}} Qc \\ W = \frac{1}{x\% COP_{max}} Qc \end{aligned}$$

Efficiency for large cryoplants

State-of-the-art figures for large cryo-plants (LHC-like, ~18 kW @ 4.5K):

- COP @ 2 K \rightarrow ~ 15% of Carnot (990 W_{el}/W_{th})
- COP @ 4.5 K \rightarrow ~ 30% of Carnot (210 W_{el}/W_{th})
- COP @ 50 K \rightarrow ~ 30% of Carnot (16 W_{el}/W_{th})

(Green, "The Cost of Helium Refrigerators and Coolers for Superconducting Devices as a Function of Cooling at 4 K", AIP Conference Proceedings 985, 872 (2008))

LHC magnet Cryostats Main dipole ALIGNMENT TARGET MAIN QUADRUPOLE BUS-BARS HEAT EXCHANGER PIPE SUPERINSULATION SUPERCONDUCTING COILS BEAM PIPE SHRINKING CYLINDER / HE I-VESSEL • Static Heat Loads: IRON YOKE ✓ 0.25 W/m at 1.9 K VACUUM VESSEL ✓ 5 W/m at 50-65 K THERMAL SHIELD AUXILIARY BUS-BARS AUSTENITIC STEEL COLLARS BEAM SCREEN Dynamic Heat Loads (resistive) heating + beam induced effects): **IRON INSERT** INSTRUMENTATION WIRES ✓ ~ 0.2 W/m at 1.9 K FILLER PIECE 0 **DIPOLE BUS-BARS** SUPPORT POST

HIE Isolde Cryomodule: No MLI

~~

 $\land \rightarrow$

	Nominal [W]
To GHE circuit 50-75K	362
To LHE circuit 4.5K	70
+ liquefaction load 0.03 g/s	

- Radiation heat load Thermal shield supports
- Reservoir thermalisation
- Suspension sheets thermalisation
- RF cables thermalisation
- GHe Bayonets (CM side)
- Instrumentation
- Dynamic load

Static and dynamic heat load to the LHe circuit.

Static and dynamic heat load to the GHe circuit.

Hera Dipole

4.7 T, 75mm 9m (4.5 K)

HERA dipole. 1 Helium vessel containing cold mass, 2 Suspension, 3 Radiation shield, 4 Vacuum vessel, 5 Helium pipes.

Tevatron Dipole

4.5 T, 76 mm 6m (4.6 K)

Hi Lumi LHC focusing quadrupole triplets

- NbTi SC magnets operated at 1.9 K (superfluid)
- Larger cold mass to be fitted within LHC dipole outer vacuum vessel diameter (tunnel limitations)
- Conical support posts for better mechanical stability
- Optical position survey and motorized external jacks (alignment in highly irradiated environment)

Typical breakdown of a SC device cryostat

- Helium tank (containing SC device)
- Internal (cold) supporting system
- Thermal shielding with MLI
- Vacuum vessel
- Cryogenic piping
- Instrumentation feedthroughs
- RF Couplers/HOM (for SRF)
- Current leads (for SC magnets)
- Magnetic shielding (for SRF, as needed)
- External supporting/aligning system

LCLS-II 1.3 GHz cryomodule (SLAC)

Thank you for your attention

4

T

References and selected bibliography

CERN

- A.Bejan, Heat Transfer, J.Wiley & Sons, Inc
- CRYOGENIE, SES APPLICATIONS EN SUPRACONDUCTIVITE, IIF/IIR 1995, Techniques de l'ingenieur.
- Superconducting Magnets, M.Wilson, Oxford Science Publications
- R.R.Conte, Éléments de Cryogénie, Masson & Cie, Éditeurs.
- Steven W. Van Sciver, Helium Cryogenics (Second Edition), The International Cryogenics Monograph Series, Springer.
- K. Mendelssohn, The quest for absolute zero, McGraw Hill (1966)
- R.B. Scott, Cryogenic engineering, Van Nostrand, Princeton (1959)
- G.G. Haselden, Cryogenic fundamentals, Academic Press, London (1971)
- R.A. Barron, Cryogenic systems, Oxford University Press, New York (1985)
- B.A. Hands, Cryogenic engineering, Academic Press, London (1986)
- S.W. van Sciver, Helium cryogenics, Plenum Press, New York (1986)
- K.D. Timmerhaus & T.M. Flynn, Cryogenic process engineering, Plenum Press, New York (1989)
- Proceedings of CAS School on Superconductivity and Cryogenics for Particle Accelerators and Detectors, Erice (2002)
 - G. Vandoni, Heat transfer
- Proceedings of CAS School on Superconductivity, Erice (2013)
 - B. Boudoy, Heat transfer and cooling techniques at low temperature
- J.Ekin, Experimental Techniques for Low-Temperature Measurements: Cryostat Design, Material Properties and Superconductor Critical-Current Testing
- CRYOCOMP® is a database code of the state and thermal properties for technical materials.
- NIST Cryogenic Materials database: http://www.cryogenics.nist.gov/MPropsMAY/material%20properties.htm