

Group Presentation

Technical Training: Cryostat Engineering for SC devices CERN, 7-9 November 2022

Map

Inspired by P. Duschene and JP. Thermeau

Task 1.1. Table of design parameters

ltem	Description	Value	Comments		
1 a.	helium tank thickness	7 mm	Press. vessel (1 mm) vs bucking (15 mm, SF 3; 7 mm, SF 1.5)		
1 b.	vacuum vessel diameter and thickness	1400 mm, (30 mm) 20 mm	Diameter to contain all the parts. With reinforcements (LHC concept). 304L.		
1 c.	Thermal shield thickness	4 mm (MLI 20 layers) + 2 mm support (5083)	Slides 45 – 46. Diameter to contain cavities and pipes. (69/37.7)*(pi*0.6)^2/2/85/ 20 slide 90		
1 d.	Supports (mechanics and thermal)	16 pieces 50x50x400 mm3	Mech. Computation: Tsai-Wu ply failure vertical (SF>10), conservative against lateral load		
1 e.	See previous slide				

Task 1.2. Table of Static Heat Loads and mass flows

Source of HL	HL (W) @ 4.2 K		HL (W) @ 50 K	4.2 K liquid boil-off (g/s)	Liquefaction load (g/s)	Thermal shield mass flow (g/s) (with T _{in} =50K, T _{out} =55 K)
Supports conduction	(0.56 X 16) 9		-		-	-
Beam tube cones conduction	uction 5.5		-		-	-
RF Couplers conduction (uncooled)	(77.7 X 4) 310.8	-			-	
RF Couplers conduction (ideal vapor cooling)	-	(2.4 X 4) 9.3	-			-
Radiation, with thermal shield @ 50 K	hermal shield 0.24 (70 taken by shield)				-	
Radiation, without thermal shield	diation, without thermal 270 eld		-		-	-
Radiation from beam tube ? cones		-		-	-	
Totals						

Spare slides

Supports conduction **Thermal Conduction** ? $\dot{q} = -\frac{A}{L} \int_{Toold}^{Twarm} k(T) dT$ Unit Inputs [K] Tcold 4.2 Twarm 300 [K] 62 Material G10-Normal NIST _cTwarm k(T)dT0.112 [W/mm] J_Tcold [mm] 500 D/a/a 50 [mm] 50 e/e/b [mm] 2500 [mm2] 3 Q. 0.56 [W]

Beam tube cones conduction

pi/4*(204^2 - 200^2)/500 * 30.6 pi/4*(204^2 - 200^2)/500 * 0.92 RF Coupler Ø200 x 2

$$t = \frac{q \cdot L^2}{2 \cdot k \cdot \Delta T_{\max}}$$

Spare slides

(CÉRN)
NY
. 7

Acier inoxydable 18-8	300 80 4	0,20 0,12 0,10
	- 1	0,000
	300	0,25
Aluminium commercial brut	80	0,12
	4	0,07
	- Constant of the	Calls Base a MM

Thermal Radiat	ion with inter	mediate t	thermal shield with MLI (*)	_
$q_{w-sh} = \frac{\sigma Aav \left(T_{warm}^4 - T_{sh}^4\right)}{\left(N+1\right)\left(\frac{2}{\varepsilon_{avsh}} - 1\right)}$	$q_{sh-c} = \frac{1}{\frac{1-\varepsilon_{sh}}{\varepsilon_{sh}}}$	$\frac{\sigma (T_{sh}^4 - T_{col}^4)}{\frac{\varepsilon_{sh}}{A_{sh}} + \frac{1}{A_{sh}F_{shc}}}$	$\frac{q_{sh}}{r_{sh}} = \frac{1 - \varepsilon_c}{\varepsilon_c A_c} \qquad \qquad$?
Inputs		Unit	Comment	
Tcold	4.2	[K]		
Twarm	293	[K]		
Tsh	50	[K]		
Ac	8	[m2]		
Aw	44	[m2]		
Ash	37	[m2]		
Fshc	0.22			
σ	5.67E-08	[W/m2.K4]		
εcold	0.1			
εwarm	0.2			
εsh	0.12			
No MLI layers on thermal shield	20			
εav sh	0.16		average between shield and warm vessel	
Aav	40.5		average between shield and warm vessel	
q _{w-sh}	70.02	[W]	heat load from warm vessel to thermal shield	
q _{sh-c}	0.2447	[W]	heat load from thermal shield to cold surface	
q _{sh}	69.78	[W]	thermal shield cooling power (from energy conservation)

q_{sh} * this formulation is conservative (x1.5 wrt MLI sample data) at the thermal shield for geometry ratios and temperature ranges close to those of the LHC cryostats. Between thermal shield and cold surface (without MLI) it strongly depends on Tsh, and depends on emissivities.

Thermal Radiat	ion with inter	mediate t	thermal shield with MLI (*)
$q_{w-sh} = \frac{\sigma \operatorname{Aav}(T_{warm}^4 - T_{sh}^4)}{(N+1)\left(\frac{2}{\varepsilon_{avsh}} - 1\right)}$	$q_{sh-c} = \frac{1-\varepsilon}{\frac{1-\varepsilon}{\varepsilon_{sh}A}}$	$\frac{\sigma (T_{sh}^4 - T_{co}^4)}{\frac{\sigma_{sh}}{\sigma_{sh}} + \frac{1}{A_{sh}F_{shc}}}$	$\frac{d}{dt} + \frac{1 - \varepsilon_c}{\varepsilon_c A_c} \qquad \qquad$
Inputs		Unit	Comment
Tcold	4.2	[K]	
Twarm	293	[K]	
Tsh	269.75	[K]	
Ac	8	[m2]	
Aw	44	[m2]	
Ash	37	[m2]	
Fshc	0.22		
σ	5.67E-08	[W/m2.K4]	
εcold	0.1		
εwarm	0.2		
εsh	0.12		
No MLI layers on thermal shield	1		
ɛav sh	0.16		average between shield and warm vessel
Aav	40.5		average between shield and warm vessel
q _{w-sh}	207.20	[W]	heat load from warm vessel to thermal shield
q _{sh-c}	207.3007	[W]	heat load from thermal shield to cold surface
q _{sh}	-0.10	[W]	thermal shield cooling power (from energy conservation)

* this formulation is conservative (x1.5 wrt MLI sample data) at the thermal shield for geometry ratios and temperature ranges close to those of the LHC cryostats. Between thermal shield and cold surface (without MLI) it strongly depends on Tsh, and depends on amiccivitiac