FCC Feasibility Study Status

Plenary ECFA meeting, 18 November 2022

Michael Benedikt, Frank Zimmermann, CERN on behalf of the FCC collaboration and FCCIS DS team

SPS

FCC

LHC

http://cern.ch/fcc

Work supported by the **European Commission** under the **HORIZON 2020 projects EuroCirCol**, grant agreement 654305; **EASITrain**, grant agreement no. 764879; **ARIES**, grant agreement 730871, **FCCIS**, grant agreement 951754, and **E-JADE**, contract no. 645479

photo: J. Wenninger

Snowmass Highlights related to FCC

S&T

Collider Science

FNAL, Lia Merminga

Accelerator Frontier "Message"

Vision: Fermilab continues to be the leading U.S. center for CMS and second leading center in the world after our partner CERN

Steve Gourlay et al.

Snowmass 2021

CERN is our European sister laboratory and our strong partner in many areas

Major decadal goals

- Maximize science from LHC Runs 2 and 3 data ROC is back in Operations!
- Execute HL-LHC AUP and CMS Detector Upgrade Projects
- Advance R&D towards FCC @CERN

	FY22	FY23	FY24	FY25	FY26	FY27	FY28	FY29	
LHC	Opera	tions							
HL-LHC AUP	Const	ruction					(5)		
HL-LHC CMS	Const	ruction				9			
FCC @CERN	R&D /	Prototy	ping						
Future facility @ FNAL			Physics	studies /	Pre-con	ceptual (designs		

On Colliders: We need an integrated future collider R&D program to engage in the design and to coordinate the development of the next generation collider projects:

- To address in an integrated fashion the technical challenges of promising future collider concepts that are not covered by the existing General Accelerator R&D (GARD) program.
- To enable synergistic U.S. engagement in ongoing global efforts (e.g., FCC, ILC, IMCC)
- To develop collider concepts and proposals for options feasible to be hosted in the U.S. (e.g., CCC, HELEN, Muon Collider, etc)

Circular Electron Positron Collider

- CEPC is intended to be an international project growing HEP community & support for basic sciences in China
- CDR completed in 2018, TDR scheduled for 2023, engineering design study soon ...
- Extensive R&D underway, construction of light sources providing training and validation
- Very tight schedule matched to China's 5-year plan scheme; proposed to begin construction in 15th 5-YP (~2027)
- CEPC being evaluated in two tracks: (1) China initialized large science projects, (2) CAS particle physics facility
- If CEPC is approved and realized, it may be a Higgs factory providing data in the 2030s
- If FCC-ee is approved earlier than CEPC, the group will join force with FCC and contribute in a very significant way

Xinchou Lou, IHEP

Opportunities for synergy and cooperation between various Higgs factories:

recent FCC-ee beam optics development

Points A, D, G & J (experimental straights)

Katsunobu Oide

reviews of surface site requirements, 3-4 October 2022

Review of SRF Systems Layout with Associated CE and TI Concepts

Reviewers: Sergey Belomestnykh (FNAL), Alain Chabert (SFTRF), Erk Jensen (CERN, retired), Peter Mcintosh (STFC), Andrew Parker (University of Cambridge – Chairperson), Thomas Peterson (SLAC), Laurent Tavian (CERN), Silvia Verdu Andres (BNL) Frank Zimmermann (CERN – Secretary)

- constructive feedback on general progress with RF concepts
- underlining importance of energy efficiency, incl. making use of waste heat
- full support for high-Q SRF R&D program on bulk Nb and Nb/Cu cavities
- suggestion for higher Q_0 for 800 MHz bulk Nb cavities (3E10 instead 2E10)
- support for separation of collider and booster RF in different locations
- recommendation to continues high-efficiency RF power source R&D with industrial partners to reduce overall power consumption

Beam current [A]

1.400

0.140

0.135

CIRCULAR updated FCC-ee RF parameters, incl. 10% margin

O. Brunner, F. Peauger

07-Nov-22 Ne	Test in vertical cryostat o	Test in vertical cryostat of bare cavity. RF parameters for FCCee with helium tank and				Test in cryomodule configuration (with FPC) 5		tion (with	Operation in the machine		machine	
	Eacc (MV/m)	Q0	Eacc (MV/m	n) C	20	Eacc (N	/IV/m)		Q0	Eacc (MV/m)		Q0
1-cell 400 MHz	6.9	3.3E+09	6.6	3.21	E+09	6.3	3	3.	.0E+09	5.7		2.7E+09
2-cell 400 MHz	13.2	3.3E+09	12.6	3.21	E+09	12	2	3.	.0E+09	10.8		2.7E+09
5-cell 800 MHz	27.6	3.6E+10	26.3	3.5	E+10	.0 25		3.	.3E+10	<mark>22.5</mark>		3.0E+10
			Total # c	Total # of cryo-modules (entire FCC ee program) = 14x2					x2+65+109	2+65+109+134 = <u>336</u>		
07-Nov-22	Z			W		Н		_	•	ttbar2		
	per beam	booster	per beam	booster	2	beams	booste	er	2 beams	s 2 beam	าร	booster
Frequency [MHz]] 400	800	400	800		400	800		400	800		800
RF voltage [MV]	120	140	1050	1050		2100	2100)	2100	9200		11300
Eacc [MV/m]	5.72	5.34	10.95	21.55	1	10.78	22.42	2	10.78	22.52		22.50
# cell / cav	1	5	2	5		2	5		2	5		5
Vcavity [MV]	2.14	5.00	8.20	20.19		8.08	21.00)	8.08	21.10		21.08
#cells	56	140	256	260		520	500		520	2180		2680
# cavities	56	28	128	52		260	100		260	436		536
# CM	<u>14</u>	7	32	13		65	25		<u>65</u>	<u>109</u>		<u>134</u>
T operation [K]	4.5	2	4.5	2		4.5	2		4.5	2		2
dyn losses/cav [W	/] 19	0.4	147	6		142	6		142	43		6
stat losses/cav [W	/] 8	8	8	8		8	8		8	8		8
Qext	6.0E+04	2.5E+05	1.1E+06	8.3E+06	1.	1E+06	8.6E+C) 6	9.4E+06	4.2E+0	6	4.6E+07
Detuning [kHz]	9.777	5.606	0.472	0.131		0.096	0.025	5	0.031	0.028		0.005
Pcav [kW]	962	192	385	95		379	99		45	202		18
Energy [GeV]	45.6	45.6	80.0	80.0	1	120.0	120.0)		182.5		182.5
energy loss [MV]	38.49	38.49	364.63	364.63	18	345.94	1845.9	94		9875.14		9875.14

0.0135

0.0534

0.005

0.010

0.010

0.001

integration studies: FCC-ee RF section (ttbar), point L

reviews of surface site requirements, 3-4 October 2022

Review of CE and TI requirements for FCC experimental sites

Reviewers: Austin Ball (STFC), Alain Chabert (SFTRF), Peter Krizan (Jozef Stefan Institute), Rolf Lindner (CERN), Andrew Parker (University of Cambridge – Chairperson), Roberto Tenchini (INFN Sezione di Pisa), Frank Zimmermann (CERN – Secretary)

- endorses the baseline concept for the FCC experiment site underground structures of an experimental cavern with a single experimental shaft for the main detector, linked via a transfer tunnel to the service cavern, with a second shaft (cf. CMS),
- suggests detailed study of implications of the stray field from unshielded FCChh detector magnets and to consider alternatives with shielded magnet systems.

FCC-ee MDI developments - examples

Novel outer support tube for central beam pipe and vertex detector

- Vertex detector supported by the beam pipe
- Outer Tracker (1 barrel and 6 disks) fixed to the support tube

Manuela Boscolo, Fabrizio Palla, Filippo Bosi

	Total Power [kW]	Mean Energy [MeV]
Z	370	1.7
ww	236	7.2
ZH	147	22.9
Тор	77	62.3
		1-1011
	I.P.	
	IP IP	

IR heat load distribution

FCC workshops in 2nd half of 2022

- **eeFACT'22** FCC-ee progress; power & performance assessment for future e⁺e⁻colliders, Frascati (INFN);12-16 Sep'22 https://agenda.infn.it/event/21199/
- **FCC-ee energy calibration & polarization**, incl. possible exp's at KIT and LNF, CERN; 19-30 Sep'22 https://indico.cern.ch/event/1181966
- **ECLOUD'22** e.g. Vlasov solver for e-cloud driven instabilities; lessons from LHC & SuperKEKB; predictions & countermeasures for FCC-ee/FCC-hh and for EIC, La Biodola (INFN); 25 Sep 1 Oct'22 https://agenda.infn.it/event/28336/
- FCC-ee MDI workshop including IR mock-up at LNF; CERN 17-28 Oct'22 https://indico.cern.ch/event/1186798/
- FCC-ee beam instrumentation workshop; 21-22 Nov'22 https://indico.cern.ch/event/1209598/
- First joint FCC France&Italy workshop on Higgs, Top, EW, HF and SM physics; Lyon, 21-23 November'22, https://indico.in2p3.fr/event/27968/
- FCCIS workshop 2022 including first meeting of FCC FS SAC; 5-9 Dec'22 https://indico.cern.ch/event/1203316/

FCCIS workshop 5 – 9 December 2022

	Monday	Tuesday	Wed.	Thurs.	Friday
9h30 –10h00	FCC StudyStatus+Goals, FCCIS, SAC charge, Michael Benedikt				WP2 summary
10h00-10h15	questions and discussion				WP3 summary
10h15-10h45	coffee break				
10h45 – 11h30	FCC Physics & Detectors, Patrick Janot or Christophe Grojean	WP2-5 parallel sessions			WP4 summary
11h30 – 12h15	FCC Acc. status, R&D beyond FCCIS, Tor Raubenheimer				WP5 summary
12h15-13h30	lunch break				
13h30-14h00	FCC Technical Infrastructure status, Klaus Hanke				
14h00-14h30	FCC Civil Engineering status, Tim Watson				
14h30-15h00	FCCIS WP2 overview, Ilya Agapov				
15h00 – 15h30	FCCIS WP3 overview, Johannes Gutleber	WP2-5 pa	_	joint	
		ses	sions		
15h30 – 16h00	coffee break				
16h00 - 16h30	FCCIS WP4 overview, Emanuela Sirtori				
16h30 - 17h00	FCCIS WP5 overview, Marcin Chrzaszcz				
18h00	Welcome drink		dinner?		

Electron Ion Collider (EIC)

US EIC Electron Storage Ring similar to, but more challenging than, FCC-ee

beam parameters almost identical, but twice the maximum electron beam current, or half the bunch spacing, and lower beam energy

>10 areas of common interest identified by the FCC and EIC design teams, addressed through joint EIC-FCC working groups, still evolving

EIC will start beam operation about a decade prior to FCC-ee

The EIC will provide another invaluable opportunity to train next generation of accelerator physicists on an operating collider, to test hardware prototypes, beam control schemes, etc.

	EIC	FCC-ee-Z
Beam energy [GeV]	10 (18)	45.6 (80)
Bunch population [10 ¹¹]	1.7	1.7
Bunch spacing [ns]	10	15, 17.5 or 20
Beam current [A]	2.5 (0.27)	1.39
SR power / beam /meter [W/m]	7000	600
Critical photon energy [keV]	9 (54)	19 (100)

FCC-EIC Joint Workshop Series

1st working meeting EIC-FCC on polarized beam operation

• CERN, 19-23 September 2022, in conjunction with the 2nd FCC EPOL workshop https://indico.cern.ch/event/1181966/

2nd FCC-EIC joint working meeting on beam dynamics, stability, impedances, feedback, vacuum and MDI

CERN, 17-21 October 2022, in conjunction with the FCC-ee MDI working meeting https://indico.cern.ch/event/1186798/

3rd FCC-EIC joint working meeting on SRF

JLAB/Washington area, March 2023

Preferred implementation PA31-1.0/2.0

- 1. PA Ferney Voltaire (FR) site scientifique
- 2. **PB Présinge/Choulex** (CH) site technique
- 3. PD Nangy (FR) technique (P1), scientifique (P2)
- 4. **PF Etaux** (FR) technique
- 5. **PG Charvonnex/Groisy** (FR) scientifique
- 6. **PH Cercier** (FR) technique
- 7. PJ Vulbens/Dingy en Vuache (FR)
- technique (P1), scientifique (P2)
- 8. PL Challex (FR) technique

Progress with regional activities

- CERN visits of Elus from Departments Haute Savoie, Ain and Canton Geneva
- Information meetings and exchanges with presidents and prefets of Ain and Haute Savoie to prepare regional activities
- All communes concerned by FCC trace were approached directly via information letters co-signed by Prefet de la region ARA and CERN DG for France and Conseiller d'Etat de Geneve and CERN DG for Switzerland.
- Consultations with individual communes presently ongoing, first contact with all 42 completed before end of year.
- Technical discussions on territorial implementation, water use, excavation material reuse, etc. started with department 74 Haute Savoie.

Accompanying communication material for site investigations

Brochure (digital & printing)

Website: fcc-faisabilite.eu

Video

Upcoming: FAQ + Calendar.

FCCIS - H2020 Mining the Future Competition

www.cern.ch/miningthefuture

The Mining the Future contest by the FCC collaboration, CERN and Montanuniversität Leoben, with the support of the EU-funded **H2020 FCCIS project identified sustainable** reuse solutions for these excavated materials.

Mining

the

IEIOs

Marketing campaign: >3 million people reached

Audience reach	Total reach 3.3M	Total on Facebook 992.6K	Total on Twitter 2.3M	Total on LinkedIn 20.4K
	Monthly reach 67.8K	On Facebook O.3	Monthly on Twitter 67.8K	Monthly on LinkedIn O.O N/A
Engagements	Total engagement 168.0K	Total on Facebook	Total on Twitter 51.8K	Total on Linkedin 21.4K
	Monthly engagement	Total on Facebook	Monthly on Twitter 737.0	Monhtly on Linkedin O.O N/A
Website visits	Total page views	Total visitors 4K		
	Monthly page views 649.0	Monthly visitors 315		
Interest in applying	Total downloads 253	Total clicks to Zenodo	Total clicks to apply	
	Monthly downloads	Monthly clicks to Zenodo	Monthly clicks to apply	

FCCIS – H2020 Mining the future competition results

- Four consortia were qualified for the second stage.
- All four proposals could contribute to an integrated molasse reuse concept, adapted to regional opportunities.

 AMBERG consortium: In-situ characterisation (Crossbelt elemental analyzer) and preparation for use as construction material on site (spray-concrete with binder from bio-mineral materials), Production of construction elements withouth cement/concrete.

BG consortium: online-analysis and preparation of Molasse for construction elements from sandstone, sabd, filing material for concrete, low-carbon concrete, terra cotta bricks, etc.

ARCADIS consortium: usage of clay and sand materials enriched with limestone as stabiliser for production of bricks by pressurizing, mobile plants for on-site production of bricks, replacement of construction materials with high CO2 bilan during production;

EDAPHOS consortium: Combining mineral (Molasse) material and organic material to produce fertile soil with on-site production plants by using mikrobiology to accelerate humus creation. Fertile soil as top layer for agricultural use, recultivation.

FCC FS status summary

Following 2020 European Strategy Update, organisation structure and major milestones & deliverables for the FCC Feasibility Study (FCC FS) approved by CERN Council in June 2021. Entire FCC government structure (members of SC, CB, SAC, CG) established (summer 2022).

Main activities: developing & confirming concrete implementation scenario, in collaboration with host state authorities, including environmental impact analysis, and accompanied by machine optimisation, physics studies and technology R&D - via global collaboration, supported by EC H2020 Design Study FCCIS and Swiss CHART. Goal: demonstrate feasibility by 2025/26

Next milestone is the mid-term review, autumn 2023.

Long term goal: world-leading HEP infrastructure for 21st century to push particlephysics precision and energy frontiers far beyond present limits

Spare slides

SR energy loss / turn [GeV]

long. damping time [turns]

horizontal beta* [m]

vertical beta* [mm]

total RF voltage 400/800 MHz [GV]

horizontal geometric emittance [nm]

rms bunch length with SR / BS [mm]

beam lifetime rad Bhabha + BS [min]

total integrated luminosity / year [ab⁻¹/yr]

vertical geom. emittance [pm]

vertical rms IP spot size [nm]

beam-beam parameter ξ_x / ξ_v

luminosity per IP [10³⁴ cm⁻²s⁻¹]

horizontal rms IP spot size [μm]

0.37

1.0/0

216

0.2

2.17

4.34

21

66

0.011/0.111

3.55 / 8.01

19.4

9.3

18

1.869

2.08/0

64.5

0.3

0.64

1.29

14

36

0.0187/0.129

3.34 / 6.0

7.3

3.5

6

0.0391

0.120/0

1170

0.1

8.0

0.71

1.42

8

34

0.004/ .159

4.38 / 14.5

182

87

19

K. Oide, D. Shatilov,

ttbar

182.5

5.0

36

2.64

10.0

4.0/7.25

18.5

1.6

1.49

2.98

39

69

0.096/0.138

2.02 / 2.95

1.33

0.65

9

COLLIDER Stage 1	: update	ed parar	neters
Parameter [4 IPs, 91.2 km, T _{rev} =0.3 ms]	Z	ww	H (ZH)
beam energy [GeV]	45	80	120
beam current [mA]	1280	135	26.7
number bunches/beam	10000	880	248
bunch intensity [10 ¹¹]	2.43	2.91	2.04

Stage 2: FCC-hh (pp) collider parameters

parameter	FCC	C-hh	HL-LHC	LHC
collision energy cms [TeV]	100		14	14
dipole field [T]	~17 (~16 comb.function)		8.33	8.33
circumference [km]	91.2		26.7	26.7
beam current [A]	0.5		1.1	0.58
bunch intensity [10 ¹¹]	1 1		2.2	1.15
bunch spacing [ns]	25 25		25	25
synchr. rad. power / ring [kW]	2700		7.3	3.6
SR power / length [W/m/ap.]	32.1		0.33	0.17
long. emit. damping time [h]	0.	45	12.9	12.9
beta* [m]	1.1 0.3		0.15 (min.)	0.55
normalized emittance [μm]	2.2		2.5	3.75
peak luminosity [10 ³⁴ cm ⁻² s ⁻¹]	5 30		5 (lev.)	1
events/bunch crossing	170 1000		132	27
stored energy/beam [GJ]	7.8		0.7	0.36