interTwin WP5 & synergies with ESCAPE

Enrique Garcia
CERN Digital Twins Kick-off meeting
05 Dec 2022
interTwin WP5 tasks

- **Bi weekly** meetings, **Tuesdays at 10h00**

- **T5.1** Federated compute infra (HTC, HPC, Cloud, Quantum)
 - Provide **software solutions** to enable resource provisioning on the wide range of comp providers.
 - Lead by INFN (Diego Ciangottini)

- **T5.2** Federated data infra
 - Support **data requirements** of digital Twins.
 - Lead by DESY (Paul Millar)

- **T5.3** Federation services and policies
 - **Security and accountability** for users and providers
 - Lead by UKRI (Ian Neilson)

- **T5.4** AI-based orchestrator
 - **Orchestrate** data and compute **resources** "intelligently" (taking into account data location and performance metrics).
 - Lead by INFN (Marica Antonacci)
WP5 Heads up

- **Survey** (19 Questions) to providers (9 Nov) - start a button-up approach
 - Computing resources
 - Data and storage
 - Policies

- **Aim** is to receive input
 - Interfaces
 - Existing solutions
 - Ready to support R&D

- To date: 6 (out of 8) answers WP5 - Drive folder
 - PSNC, EODC, GRNET, IZUM-JSI, UKRI and FZJ

- F2F meeting at Madrid (Jan '23)
 - Align requirements, expected foreseen baseline, what needs to be extended...
T5.1 - Computing resources

- From survey:
 - In general all providers will contribute:
 - Cloud + HPC/HTC (batch system + Slurm - mainly) computing resources.
 - Most entering the Peta/Exascale, other “smaller”.
 - Some providers support CVMFS (framework to bring software to sites).
 - Most providers allow container execution (apptainer, Singularity, udocker).
 - With some limitations (see policies)
T5.1 - Computing resources

- From WP5:
 - Open discussion / brainstorming. Lots of points to be aware of:
 - HPC and HEP use-cases will be different!
 - **HPCs:**
 - High degree of communication between sites + nodes
 - Generally **optimised** for different HPC architectures.
 - Exposing details of HPCs architectures is what abstraction layer tends to do.
 - **HEP:**
 - High level of parallelisation (no cross-node communication)
 - **HTCondor** the solution for both?
 - We should be aware of bandwidth limitation between sites.
 - CVMFS and containers
 - **Potential overlap** (but limited by site policies - root privileges /internet connection)
 - **Combination** of both can be ideal.
 - Mounting different FS on HPC systems / workers nodes (problem to be investigated)
T5.2 - Data and storage infrastructure

- **From survey:**
 - Heterogeneity
 - Plenty of storages, configurations and file transfer protocols.
 - Some *caching architectures* implemented in certain sites.

- **From WP5:**
 - Ongoing discussion between WLCG (ESCAPE data lake) model and DEDL (DestinE Data Lake) infrastructure.
 - DEDL still *partly in design phase*. From first discussion:
 - Stronger knowledge architecture: expected Jan '23.
 - Procurement-driven. No large data movements planned - *co-locate computing resources close to storage*. How resources will be collocated?
 - ECMWF is responsible of the app that will run in the DEDL.
 - EUMETSAT provides de platform
 - Use cases should come from core (WP6) thematic modules (WP7)
T5.3 - Policies

- From survey:
 - Heterogeneity. No major commonalities either
 - No common/defined AAI framework
 - Common ground: HPC are happy to grant access to people using federated identities (EOSC Future AAI model ?)
 - Neither monitoring infrastructure.
 - Some providers do not allow root privileges
 - Others do not allow internet connection to computing nodes...
 - Connection through ssh and just following data center policies
T5.4 - AI-based orchestrator

- Not addressed yet
Synergies with ESCAPE

● **Data management.**
 ○ If chosen, the Data Lake infrastructure:
 ■ **RUCIO** instance (should interTwin use the same one?)
 ● FTS (File Transfer System)
 ● Gfal2
 ● CRIC...

● **Software.**
 ○ Everything points to the use of CVMFS in interTwin.
 ○ ESCAPE: No distributed/federated software instances.
 ■ Multiple container registries, git instances, heterogeneity in "good practices"/software lifecycles

● **Use of Analysis platforms / Running workflows and pipelines.**
 ○ Missing common ground. Dependent of the experiment / collaboration / field.
Synergies with ESCAPE

● Analysis platform.
 ○ ESCAPE provided a toolkit to be used in different partners resources.
 ○ CERN team:
 ■ Built an analysis platform.
 ■ Connected to the ESCAPE Data Lake (ESCAPE RUCIO instance, based on WLCG)
 ■ JupyterHub interface (notebook service)
 ● Hide DL complexity
 ● Allows interactive analysis and use batch systems
 ■ Connecting with computing resources
 ● local cluster
 ● remote resources (Cloud + HPC + [HTC])
 ■ Running end-to-end workflows (testing Reana)
 ● Workflow definition (need to satisfy everybody needs)
ESCAPE/EOSC Future VRE tech horizon

- Virtual Research Environment (VRE)
- Moving current infrastructure towards an IaC deployment (terraform).
- Connecting with (more) remote computing (EOSC) resources.