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„There is nothing more practical than a good theory!”,
Kurt Lewin (1890 - 1947), German-American psychologist

• When dealing with electromagnetic phenomena, we have a very good 

theory in form of Maxwell’s equations

• As it is a good theory, it is not just relevant for theory enthusiasts, but 

indeed it is very practical and useful to gain insight in electromagnetic 

phenomena relevant for accelerators

• In this talk: Recapitulation of Maxwell’s equations, conservation 

principles, classes of fields, some selected solutions and their properties



Fields
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Fields describe states in space:

1. Scalar fields are scalar-valued (single number) functions            which depend 

on the location    and on the time

2. Vector fields are vector-valued (magnitude and direction) functions            

which depend on the location    and on the time

for Cartesian coordinate system

Note: Vector-valued functions are denoted bold-faced in the talk



Example Scalar Field
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Temperature distribution            of car (infrared image)



Example Vector Field
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Velocity field             (sketch) of Müggelspree in autumn



Decomposition of Fields on Plane into Normal and Tangential Components
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Fields on a plane can be split into:

1. Normal component being 

perpendicular to the plane

2. Tangential component being 

inside the plane, i.e. parallel to the plane



Evaluation of Normal Component
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Normal component is obtained 

by following dot product:



Evaluation of Tangential Component
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Tangential component is obtained by 

following cross products:



Maxwell‘s Equations in Integral Representation
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Figure: https://upload.wikimedia.org/wikipedia/commons/thumb/1/1e/James_Clerk_Maxwell_big.jpg/390px-

James_Clerk_Maxwell_big.jpg



Gauss‘ Law (for Electricity) in Integral Form
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Electric charges       or electric charge densities              generate electric flux densities              !

total electric flux through 

Gaussian surface             

total electric charge enclosed 

in Gaussian surface             

+

Gaussian surface             



Quick Quiz – Value of Net Flux through Surface? (I / II) 
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total electric flux through 

Gaussian surface             

+



+

Quick Quiz – Value of Net Flux through Surface? (II / II) 
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total electric flux through 

Gaussian surface             

• Total electric flux through the Gaussian surface equals 

zero since no charges are contained in the volume!

• In other words: total amount of flux flowing into the 

Gaussian surface is equal to total amount of flux flowing 

out of the surface

• Absence of charges in the volume does not mean that the 

electric displacement fields are zero in the volume



Gauss‘ Law for Magnetism in Integral Form

13

Magnetic flux densities             do not have sources, i.e. they are closed field lines!

total magnetic flux through 

Gaussian surface             



Faraday‘s Law of Induction
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Time-dependent magnetic flux densities             generate curled electric field strength            !   



Ampère‘s Law with Maxwell‘s Extension
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Electric current densities             and electric displacement currents densities                    

generate curled magnetic field strengths             !   



Faraday‘s Law of Induction – The Minus Sign - Lenz Law

16 Figure adapted from D. Halliday, R. Resnick, J. Walker, Fundamentals of Physics, John Wiley & Sons Inc., 2014 

The direction of the induced electric field strength tends to produce a current that creates a magnetic flux 

to oppose the change in magnetic flux through the area enclosed by the current loop!

The minus sign in the induction law is also required for Maxwell‘s equations to be energy conserving!



Forces Acting on Charged Particles – Coulomb and Lorentz Force
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+
+



Electric Fields in Dielectric Materials
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• No free charges in ideal dielectric materials, but 

bound charges only able to move at a small distances



Electric Fields in Dielectric Materials
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• No free charges in ideal dielectric materials, but 

bound charges only able to move at a small distances

• Materials can be polarized by applied electric fields



20

• No free charges in ideal dielectric materials, but bound 

charges only able to move at a small distances

• Materials can be polarized by applied electric fields

• Polarization          results from induced displacement of 

bounded electric charges and fields superpose

• Permittivity of free space:

• For linear dielectrics:                                , so 

• Relative permittivity:

Electric Fields in Dielectric Materials



Magnetic Fields in Matter

21

• Magnetic dipoles are present in matter e.g. due to rotation 

of electrons around the nucleus



Magnetic Fields in Matter
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• Magnetic dipoles are present in matter e.g. due to rotation 

of electrons around the nucleus

• Materials can be magnetized by applied



Magnetic Fields in Matter
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• Magnetic dipoles are present in matter e.g. due to rotation 

of electrons around the nucleus

• Materials can be magnetized by applied

• Magnetization            results from induced reorientation of 

magnetic dipoles and fields superpose

• Permeability of free space:

• For linear dielectrics:                               , so 

• Relative permeability:



• Conducting materials in electric fields result in 

electric currents

,

with drift velocity (of negatively charged carriers)

and mobility

• Combining results in Ohm’s law

with conductivity

Conducting Materials in Electric Fields - Ohm’s Law
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-



Continuity Constraints on Interface between two Materials
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Fields on a Perfect Electric Conductor (PEC)
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• Accurate approximation for metal surfaces with high conductivity, 

requiring magnetic fields to be tangential and electric fields to be normal

• Common boundary condition in calculations (equivalent to short circuit)

PEC

tangential electric field is zero

normal component of magnetic field is equal to zero

tangential component of magnetic field is unequal to 

zero, i.e. equal to surface current density

normal component of electric field unequal to zero



Fields on a Perfect Magnetic Conductor (PMC)
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• Hypothetical material requiring magnetic fields to be normal and electric fields to be 

tangential (magnetic analogue of PEC)

• Common boundary condition in calculations (equivalent to open circuit)

PMC

normal component of electric field equals zero

tangential electric field unequal to zero

normal component of magnetic field is unequal to zero

tangential component of magnetic field equals zero



Gauss‘ Law (for Electricity) in Integral Form for (infinitely) small Volumes

28

normalized electric flux through 

infinitely small Gaussian surface             

+



Definition of Divergence in a Cartesian System - Integral Decomposition
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Definition of Divergence in a Cartesian System - Integral Decomposition
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Definition of Divergence in a Cartesian System - Integral Decomposition
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Integral Evaluation using Midpoint Rule (I / II)
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Integral Evaluation using Midpoint Rule (II / II)
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Definition of Divergence in a Cartesian System
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Definition of Divergence Operator in a Cartesian System
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Definition of Divergence Operator in a Cartesian System
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Definition of Divergence Operator in a Cartesian System
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Remarks on Vector Operator Divergence 
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• Divergence acts on a vector field and gives back a scalar field

• Divergence indicates the source strength of the field per unit volume 

(how much vectors diverge in a small neighbourhood around the point)

• Divergence of some characteristic field distributions:

for Cartesian coordinate system del or nabla



Faraday‘s Law of Induction in Integral Form for (infinitely) small Area
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normalized closed line integral on 

boundary of infinitely small area           



Definition of (x-Component) of Curl in a Cartesian System - Integral Decomposition
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Integral Evaluation using Midpoint Rule (I / II)
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Integral Evaluation using Midpoint Rule (II / II)
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Definition of (x-Component) of Curl in a Cartesian System
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Definition of (x-Component) of Curl in a Cartesian System
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Definition of (x-Component) of Curl in a Cartesian System
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Definition of (x-Component) of Curl in a Cartesian System
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Remarks on Vector Operator Curl
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• Acts on a vector field and gives back a vector field!

• Measures the rotation (direction and magnitude) of a vector field in a point

• Curl of some characteristic field distributions:

for Cartesian coordinate system
del or nabla



Directions of Fields Resulting from Curl
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Imagine Curl Operator as a Paddle Wheel

49 Source: https://query.libretexts.org/Kiswahili/Kitabu%3A_Calculus_%28OpenStax%29/16%3A_Vector_Calculus/16.05%3A_Tofauti_na_Curl



Gradient Operator
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• Application to scalar fields, result is a vector field

• Direction points in the direction of largest increase 

from the scalar field at the point

• Magnitude is the slope towards the maximum 

change at the point

for Cartesian coordinate system



Laplace Operator
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for Cartesian coordinate system

For scalar fields:

for Cartesian coordinate system

For vector fields:



Differential operators are linear:

Curl of gradient of a scalar field always results in the zero vector:

Divergence of curl of a vector field always results in zero:

Important Properties of Differential Operators
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Maxwell‘s Equations in Integral and Differential Representation

53

Integral Form Differential Form



Divergence Theorem – Connection between a Volume and Surface Integral
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Volume Integral Surface Integral

source strength 

per unit volume

total net source 

strength in volume
total net flux out 

of volume



Kelvin–Stokes’ Theorem
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Surface Integral Path Integral

curl per unit area

total net curl of area closed path integral 

on boundary of area



Conservation of Charges (in a Point)
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exchange of derivates 

(Schwarz’s theorem)

exploiting Gauss’ 

law of electricity

Conservation of 

charges in a point: 



Conservation of Charges (in a Volume)
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exchange of integration 

and derivation

replace volume integral 

over charge density

Conservation of 

charges in volume: 

apply divergence theorem

replace surface integral over 

current densities



Example: Charged Cube and Test Volume
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test volume

unit cube with 

charge density

moving with 

velocity

3D Sketch

test volume

unit cube with 

charge density

moving with 

velocity

Cutaway View



Case 1: Charged Cube is Moving Outside the Test Volume
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test volume

unit cube with 

charge density

moving with 

velocity



Case 2: Charged Cube is Moving Into the Test Volume
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test volume

unit cube with 

charge density

moving with 

velocity



Case 3: Charged Cube is Moving out of the Test Volume
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test volume

unit cube with 

charge density

moving with 

velocity



Case 4: Charged Cube is Moving outside the Test Volume
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test volume

unit cube with 

charge density

moving with 

velocity



Results from Conservation of Charges
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Conservation of 

charges in a point: 

Conservation of 

charges in volume: 

• If charge in a volume changes, exactly this amount of charge has to be transported 

through the surface of the volume, leading to a current

• Charges are conserved, they neither can be created nor destroyed, but result from 

separation requiring flow of charges, (again leading to currents)

• „Switching on and off“ charges (like a light bulb) violates Maxwell’s equations



Conservation of Energy or Poynting* Theorem (in a Point)
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*John Henry Poynting, engl. physicist, 1852 – 1914

energy flow per unit area 

(Poynting* vector)

Conservation of 

energy in a point: 

change of energy stored in 

magnetic fields per unit volume

change of energy stored in 

electric fields per unit volume

power dissipated per 

unit volume



Conservation of Energy or Poynting* Theorem (in a Volume)
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*John Henry Poynting, engl. physicist, 1852 – 1914

Conservation of 

energy in volume: 

exchange of 

integration 

and derivation

apply 

divergence 

theorem

total energy flow out of volume 

change of energy stored in 

magnetic fields in volume

change of energy stored in 

electric fields in volume

power dissipated  

in volume



Interpretation of Equations
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Conservation of 

energy in a point: 

Conservation of 

energy in volume: 

• Equations balancing change of energy per time (i.e. power)

• Sum of total power propagating out of the volume and power dissipating in the 

volume is equal to loss of energy stored in fields, i.e. energy is conserved

• If no power propagates out of the volume and no power is dissipated in the 

volume, total energy stored in fields is constant (derivative w.r.t. time is zero), but 

field energy may be converted from electric to magnetic fields and vice versa



Classification of Electromagnetic Fields*
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Source Fields Curl Fields

Electrostatics
Stationary 

Currents
Magnetostatics

General Propagation 

of Waves
Quasi-stationary

*Klaus W. Kark, Antennen und Strahlungsfelder - Elektromagnetische Wellen auf Leitungen, 

im Freiraum und ihre Abstrahlung, 3., erweiterte Auflage, Vieweg + Teubner, 2010
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Electrostatics



Electrostatics – Simplifications of Maxwell’s Equations 
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With this approach, we can ensure that induction law is fulfilled (and search for just 

one rather than for three function required):

Electric field strength is curl-free, so it can be expressed gradient of a 

scalar potential



Electrostatics – Derivation of Poisson‘s equation
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Starting with Gauss’ law for electric fields:

Employing the material equation                         (assuming homogeneous material):

Expressing electric fields by scalar potential (                          ) delivers 

Poisson equation for electric potential:               



Electrostatics – A simple example: Capacitor
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A capacitor is free of charges between its plates:

Neglecting stray fields, results in potential solely 

dependent on one spatial direction:

Depicted with CST Studio Suite®

From (given) boundary conditions:

Analytical solution:



Electrostatics – Solution Poisson‘s equation for a Spherical Charge
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Depicted with CST Studio Suite®

Electric Field

Depicted with CST Studio Suite®

Potential
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Magnetostatics



Magnetostatics – Maxwell Simplifications
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With this approach, we can ensure that Gauss’ law for magnetism holds:

The magnetic flux density is divergence-free so that it can be expressed 

as curl of a (Coulomb gauged) vector potential



Magnetostatics – Derivation of Poisson‘s equation
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Starting with Ampère‘s law for the static case:

Employing the material equation                           (assuming homogeneous material):

Expressing magnetic flux density by vector potential (                             ):               

Gives Poisson equation for magnetic vector potential



Magnetostatics – Example: Double Loop Structure*
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Simulated with CST Studio Suite® Evaluated with analytical solution

*B. Jian and W. van Wijngaarden, "Double-loop microtrap for ultracold atoms," J. Opt. Soc. Am. B  30, 238-243 (2013)
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Electromagnetic Waves



Wave Equation arising from Maxwell‘s Equations 
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taking the curl on both sides

exchanging curl and time derivative

applying the material law

assuming constant permeability

using Ampère’s law

deriving expression in brackets



Wave Equation arising from Maxwell‘s Equations (cont.) 
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,,,

applying the material law

for charge-free case

curl-curl equation 

wave equation (with excitation) 



Properties of Solution of Wave Equation
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the general solution reads

Wave equation with excitation 

something traveling

in +z direction

something traveling 

in -z direction with speed c

with speed of light

far from the sources, excitation vanishes

Assume that E has only one component (e.g. x), and the axis of propagation is z:



Waves in Free Space – Plane Wave propagating in +z-Direction
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where

wave number

amplitude of magnetic field

free space impedance

amplitude of power density

All fields satisfy Maxwell’s equations and 

material equations in particular they satisfy:



Waves in Free Space – Plane Wave propagating in +z-Direction
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where

wave number

amplitude of magnetic field

free space impedance

amplitude of power density



Influence on Conducting Matter on Waves (I / II)
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In conducting matter, Ohmic electric current densities will flow:

Replacing the electric current density in the wave equation with the upper relation gives 

Transforming this equation into frequency domain delivers

with complex phasors. Now, consider a plane wave propagation in +z-direction:

Plugging this into the frequency-domain representation of the wave 

equation gives



Influence on Conducting Matter on Waves (II / II)
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The wave number is complex-valued

with the following real and imaginary parts

The real part describes the propagation of the wave while the imaginary part describes the 

exponential decay of the field strength in the conductor

The distance which is required for the fields to drop by a factor of exp(-1) is called skin depth:



Skin Depth / Amplitude Decay in Conducting Matter
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the fields do (almost) not penetrate into the metal. For copper at 1 GHz:                 .

Thus, power loss due to Ohmic currents is relevant only within a layer of thickness    .

If frequency and/or the conductivity are “large”



Fields in Waveguides
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Transverse Electric 

Magnetic Mode (TEM)

Ez = Hz = 0,

fco = 0 GHz

Transverse Electric 

Mode (TE)

Ez = 0,

fco > 0 GHz

Transverse Magnetic 

Mode (TM)

Hz = 0,

fco > 0 GHz

Coaxial Waveguide Rectangular Waveguide Circular Waveguide



Calculation of Waveguide Modes and their Properties
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TEM

Ez = Hz = 0

fco = 0 GHz

TE

Ez = 0

fco > 0 GHz

TM

Hz = 0

fco > 0 GHz

Coaxial Waveguide Rectangular Waveguide Circular Waveguide

Cutoff angular frequency:

Propagation constant:



First Three Waveguide Modes of Considered Waveguides
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TE11

TE11

TM01

TEM

TE11

TE11

TE10

TE20

TE01



Rectangular Waveguide – TE10 Mode (Above Cutoff)
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Rectangular Waveguide – TE20 Mode (Below Cutoff)
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… the wave decays exponentially, k is purely imaginary …



Rectangular Waveguide – TE20 (Above Cutoff)
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… excitation above cutoff frequency, mode can propagate, k is again real …



Eigenmodes – Standing Wave Solutions of the Homogeneous Wave Equation
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Eigenmodes are solutions of the wave equation for the non-excited, loss-free and charge-free case: 

assuming time-harmonic fields

division by cosine term

Helmholtz equation in 3D  with PEC boundary

boundary

Infinite number of solutions characterized by field pattern            

and resonant frequency                         !

boundary

and/or PMC boundary  



Electromagnetic Waves – Standing Wave in a Rectangular Waveguide (TE104)
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Simulated with CST Studio Suite®
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Some Eigenmodes in a “Pillbox” Resonator (R = 10 mm, L = 10 mm) 

TM010 TE111

TE111 TM020
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Backup Slides



TMmn Modes
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Figure courtesy of K. Brackebusch

nth root of mth Bessel function



TEmn Modes
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Figure courtesy of K. Brackebusch

nth root of derivative of mth Bessel function



Gradient Operator
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for Cartesian coordinate system



Example Divergence
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x

y



Phase and Group Velocity
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Wave pulses contains more than one frequency. In general, between 

frequency and wavenumber (wavelength) we have the Dispersion relation 

for free-space waves

we 

define Phase 

velocity

Group 

velocity

the velocity of the wave groupthe velocity of a wave crest

https://en.wikipedia.org/wiki/Group_velocity#/media/File:Wave_group.gif



Example Curl of 3D Field
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Some Remarks in Material Modelling
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Often it is not sufficient to consider the material parameters as constants, because matter can be

• inhomogeneous

• dispersive, so that the material parameters are complex-valued and frequency-dependent:

• anisotropic (directional dependent), so that the material parameters become tensors

• non-linear (and possibly having a hysteresis in addition), so that the material parameters 

are functions on the field strength itself



Lorentz Transformations and Fields

105 https://en.wikipedia.org/wiki/Lorentz_transformation


