

Introduction Afternoon Courses Hands-on

19 June 2023

Frank Tecker et al., Hands-on Introduction RF CAS 2023

1

Hands-on courses

- 4 different topics, 4 groups rotate through every 2 days
 - Group assignment shown this afternoon
- RF measurements 1 (1st floor: Harvard 1 and 2)
- RF measurements 2 (2nd floor: Oxford 1 and 2)
 - 12 experiments about 1 hour each, rotate through them

• RF simulations

- CST Microwave Studio (on your own computer, we have a few laptops)
- in this auditorium (in the back)
- Longitudinal Tracking
 - in this auditorium
 - in Python (on your own computers, we have a few laptops)

Logistics – Hands-on groups

Hands-on Groups

Group 1	Group 2	Group 3	Group 4
Afshan Ashraf	Amelia Edwards	Mathieu Taquet	Michael Frey
lessandro Cuttin	Anthony Gilfellon	Agnieszka Zwozniak	Arnaud Madur
ndriy Ushakov	Bastian Lorbeer	Alice Lucie Vanel	Chunlong Li
irk Emil Karlsen-Baeck	Bernhard Schriefer	Artur Krawczyk	Ehtisham Khan
urcu Yildirim	Bhagat-Taaj Sian	Conor Jenkins	Evgenij Plechov
nen Kang	Diego Barrientos	Davide Lanaia	Fabian Metzger
nristian Herr	Domenic Nicosia	Denis Joassin	Gabriela Moreno
ominic April	Eduardo Martínez López	Erik van der Kraaij	Jake Sawyer
ulia Gnemmi	Jens Zappai	Hikmet Bursali	Jilei Sun
iangyu Zhu	Laurence Wroe	Ioan-Charly T'Kint	Joan Revoltós i Barberà
iodong Jiang	Leandro Intelisano	Jessica Golm	Lazar Nikitovic
ngMing XIE	Leon Kronshorst	Jorik Belmans	LIN GUO
er Rodriguez	Leonard Thiele	Krzysztof Guła	Marcel Hun
an Karpov	Maciej Suminski	Marco Niccolini	Mariangela Marchi
Li	Marc Ladiges	Mateusz Szczepaniak	Markus Wolf
ge Giner Navarro	Marco Diomede	Mattia Schaer	Michail Zampetakis
kas Braisz	Michela Neroni	Pablo Martinez-Reviriego	Niall Stapley
ıaman Shafqat	MuYuan Wang	Pawel Borowiec	Nikolay Shurkhno
e Marqversen	Mykhailo Zhovner	Ping Wang	Pierrick HAMEL
trick Krkotic	Nils-Oliver Fröhlich	Quantang Zhao	Qi Chen
ilin He	Pablo Echevarria Fernandez	Robert Abel	Reza Bazrafshan
non Karau	Quentin Vuillemin	Sebastian Goeller	Robin Svärd
zie Sheehy	Sam Pitman	Simone Chicarella	Shahnam Gorgi Zadeh
bias Loewner	Tiancai Jiang	Timo Fanselow	Shilong Li
ali Porshyn	WEI QIN	Yasuhiro Fuwa	Szymon Myalski
anisa Promdee	Xinghao Ding	Yosri Jlassi Victoria Bjelland	
enhao Huang	Zhengrong Wu		

Logistics – Hands-on groups

Days	20-21/6	23-24/6	26-27/6	28-29/6	
Group 1	Longitudinal Tracking	CST - RF Simulation	RF Meas. Block B	RF Meas. Block A	RF Meas. 1st floor Block A Harvard
Group 2	RF Meas. Block A	Longitudinal Tracking	CST - RF Simulation	RF Meas. Block B	RF Meas. 2nd floor Block B Oxford
Group 3	RF Meas. Block B	RF Meas. Block A	Longitudinal Tracking	CST - RF Simulation	
Group 4	CST - RF Simulation	RF Meas. Block B	RF Meas. Block A	Longitudinal Tracking	

Hands-on RF Measurements – Teaser

- Spin-off from the CAS Advanced Course afternoon hands-on sessions
 - But...

- Much more students (>100), and fortunately also more instructors (10)
 - Students: (large) spread in background knowledge and experience on RF measurements
 - Teams of 4..5 students with a good spread
 - Instructors: Professionals and (semi)-amateurs
 - In RF you always are a student!
- More experimental setups
 - 12 experimental tables with VNAs, SAs, oscilloscopes, RF generators and more
 - Unfortunately located on different floors
 - All students will execute each experiment
 - > Still, some changes, alterations on individual experiments may occur over the 2-weeks
 - Additional after-hours experiments
 - "Happy hour with Piotr" on request

Hands-on RF Measurements – Block A, 1st floor (Harvard)

- Cylindrical cavity characterization (single cell, "pillbox" like) 1 hour Instructors: Yegor, Manfred
 - Understanding eigen-modes and fields
 - Characterizing the accelerating mode in terms of Q_L , Q_0 , f_{res} , under / over / critical coupling, Smith chart, etc.
- **2.** Bead-pull measurement: R/Q characterization of a cavity 1 hour Instructors: Christine, Yegor
 - Slater theorem, S11 frequency- and S21 phase shift methods
- Cavity operations in a feed-back loop and in time-domain 1½ hour Instructors: Ben (1st week), Heiko (2nd week)
 - Understanding low-level RF controls and beam excited signals on a cavity
- 4. Beam-coupling impedance measurement ½...1 hour Instructor: Manfred
 - On a stretched-wire coaxial test setup
- 5. High-frequency measurements of waveguide components 1 hour Instructors: Alexey, Manfred
 - WG calibration, characterization of 2-port WG components, e.g., BP filter, isolator, etc.
- 6. RF-characterization of material properties 1 hour Instructors: Christine, Piotr
 - With a "golden" cavity, or waveguide or strip-line setup
 - Also, fun with tobacco box resonators!

- 1. Traveling-wave structure 1 hour Instructors: Andrea, Nuria
 - VNA characterization of a traveling-wave accelerating structure
- 2. VNA measurement techniques in frequency and time-domain 1 hour Instructors: Nuria, Alexey
 - Calibration, (differential) time-domain, (advanced) TDR (Γ and Z), virtual ports, port extension, gating, transformations.
- **3.** Passive n-port characterization, impedance matching exercise 1 hour Instructors: Nuria, Andrea
 - Filters, (LPF, BPF, HPF), couplers (180°, 90°, x dB directional, rate-race, etc.), circulator, equalizer, etc.
 - $\lambda/4$ lossless TL as impedance transformer, impedance matching with a 3-stub tuner
- 4. Measurements on non-linear and active RF components 1 hour Instructor: Michele, Piotr
 - Amplifiers (NF, gain, IP3, power sweep, etc.), mixers
- 5. Characterization of beam pickups, radar 1 hour

Instructors: Piotr, Alexey

- Characterization of EM beam pickup (split-plane, button, strip-line, cavity) in FD and TD, fun with radar!
- 6. Basics on AM and FM 1 hour

Instructors: Michele, Piotr

- AM, FM, narrowband FM, in time and frequency-domain

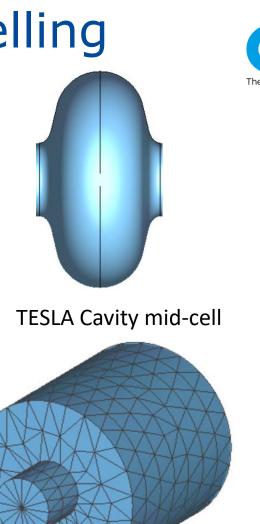
2023 CAS course on "RF for Accelerators": RF Measurements – M. Wendt

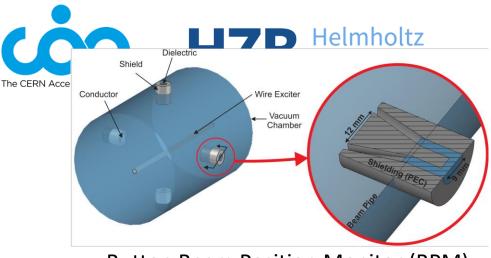
Special Topic RF Course – Numerical Analysis of RF Problems

N. Baboi, H. Glock, A. Neumann, R. Singh, S. Udongwo, C. Vollinger, M. Wendt

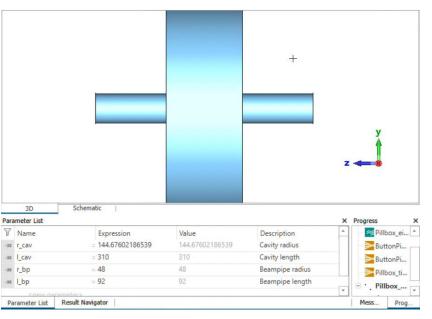
Supervisors: Dr. Shahnam Gorgi Zadeh. Dr. Rama Calaga. Prof. Ursula van Rienei

Content


- Parametric modelling
- Eigenmode simulation
- Time domain and Wakefield simulation
- Particle in Cell (PIC) simulation

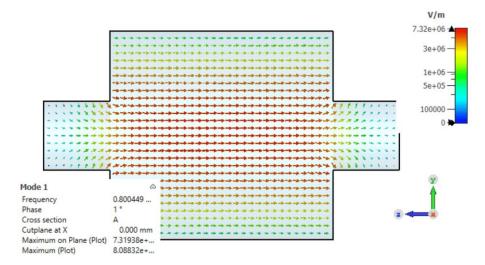

Parametric Modelling

Traditio et Innovatio

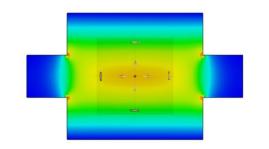

 Parametric modelling is a feature in CAD software that allows designers to create and modify 2D or 3D models flexibly and efficiently.

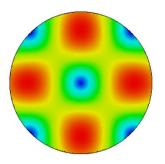
Universität Rostock

Button Beam Position Monitor (BPM)


Parametric Modelling

Pillbox Cavity

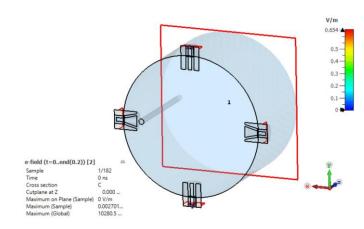

Eigenmode Simulation

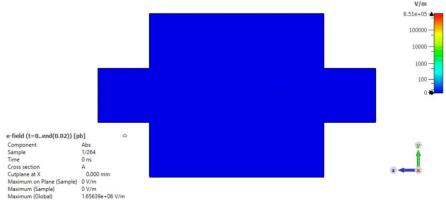


 Eigenmode analysis is a method for analysing the resonant modes of an electromagnetic system.

TM010 mode electric field simulation

TM010 mode electric field contour


HOM electric field contour


Time Domain and Wakefield Simulations

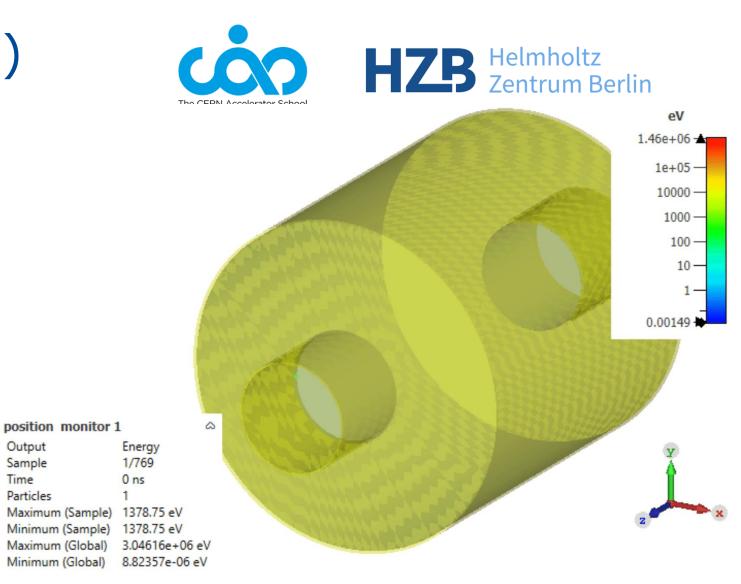
HZB Helmholtz Zentrum Berlin

 Wakefield solver is essentially an extension of a time-domain solver to simulate the interaction of charged particle beams with the environment.

Time domain simulation of a button BPM excited by a wire

Wakefield Simulation of a pillbox cavity

Particle in Cell (PIC) Simulation


 PIC simulation is a tool for simulating the behaviour of charged particle beams in complex electromagnetic environments

In the tutorial, multipacting is simulated in a pillbox cavity.

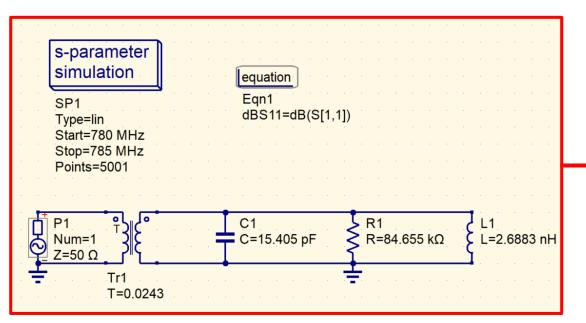
Traditio et Innovatio

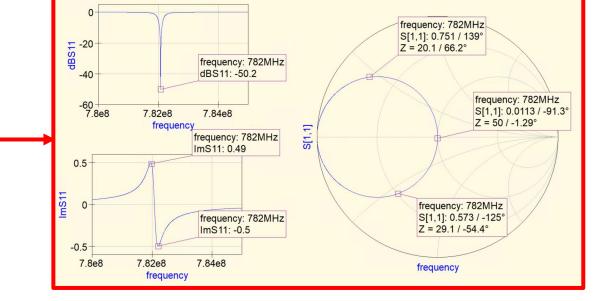
Universität

Rostock

Multipacting in pillbox cavity

Output Sample


Time


Particles

Equivalent Circuit Analysis - Qucs Studio

 Equivalent circuit simulations provide a simplified representation of complex systems, enabling efficient analysis and prediction of system behaviour.

RLC equivalent circuit of a resonant mode.

Transmission curves and Smith's chart of the equivalent circuit