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Overview
• Cavity classifications


• The first accelerating cavities


• Basic RF theory


• Cavity parameters


• The pillbox cavity


• TM, TE, and TEM mode cavities


• Lumped circuit description


• Getting power into a cavity


• New ideas



• Fixed/variable frequency

• Accelerating/non-accelerating

• By electromagnetic mode type

• Travelling wave/standing wave

• Normal conducting/superconducting

How do we classify cavities?




Accelerating cavities by fixed/variable frequency

low-β synchrotrons (protons, 
ions)

high-β synchrotrons (electrons, 
protons, ions)

electron linacs

low-β proton/ion linacs

cyclotrons

low-β FFAGs 
(protons, ions)

high-β FFAGs
(electrons, protons, ions)

Acceleration with constant 
particle velocity

Acceleration with changing 
particle velocity

variable RF
frequency
(~revolution 
frequency)

fixed RF 
frequency



Accelerating cavities by fixed/variable frequency

• Materials with adjustable permeability 
in the cavity volume, e.g. ferrites or 
Finemet®: allows to tune f.

• Wideband RF amplifiers
• Typically low voltages, high losses

• The same narrowband RF amplifiers 
for all cavities.

• Only one type of cavity needed. Mass 
production. 

• High cavity gradients. 

• In Linacs: cell length adapts to particle 
velocity 

• In Cyclotrons: the particle path 
becomes longer with higher energy.

• The same narrowband RF amplifiers 
for all cavities.

Acceleration with constant 
particle velocity

Acceleration with changing 
particle velocity

variable RF
frequency
(~revolution 
frequency)

fixed RF 
frequency

See H. Klingbeil, Magnetic Alloy / Ferrite Cavities



Non-accelerating cavities

• Beam chopping at low energies.

• Beam funnelling at low energy.

• CRAB crossing of colliding beams.

• Forming bunches out of a continuous beam 
(coasting beam or ion source beam).

• Keep bunches longitudinally confined during 
transport or acceleration.

• Phase rotation to reduce or increase momentum 
spread. 

• Inducing longitudinal emittance growth.
• Bunch merging (e.g. via slip-stacking) or bunch 

splitting.    

Longitudinal 
manipulation

RF deflection

See G. Burt, Transverse deflecting cavities
See Longitudinal dynamics & RF manipulations



THE FIRST ACCELERATING 
CAVITIES


Or why we put RF fields in a box..



Not yet a cavity: 

The Wideröe Linac (1927)

period length 
increases with 
velocity: 

energy gain:

E-field

particles

π-mode operation:
Bunch in every 2nd gap

The RF phase changes by 180°, while the particles travel from one tube to the next

Crucial inventions: RF power 
sources & synchronism 

between RF and particles



Why wasn’t this good enough?

10 MHz proton 
acceleration

• The Wideröe Linac was enclosed by a glass 
tube.

• At higher frequencies (> 10 MHz), the drift 
tubes started radiating energy (like 
antennas): less power was used for 
acceleration. 

• At low frequencies and with rising particle 
energy, the length of the drift tubes 
becomes quickly unpractical. 

➡The Wideröe Linac was only usable for 
very low-velocity particles. 
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1946: Alvarez put a cavity around the Wideröe 
Linac and created a resonant structure

• While the resonator fields point in the 
“wrong” direction, the particles are shielded 
by the drift tubes. 

• WW2 brought the development of high-
power, high-frequency RF tubes for radar 
technology.  

➡Therefore most of the early accelerators 
operated at this frequency (including 
Linac1, Linac2, and the SPS at CERN)

0-mode operation: bunch in every gap



SPS, 200 MHz travelling wave cavity Linac4, 350 MHz drift 
tube linac

Linac1, 200 MHz drift 
tube linac



Basic RF theory

Going from a waveguide to a RF cavity



Complex notation for time-harmonic fields
In Radio Frequency we are usually dealing with sine-waves, which are sometimes modulated in phase or in 
amplitude. This means we will concentrate on time-harmonic solutions of Maxwells Equations. For this purpose we 
introduce the time-harmonic notation, which can be used for all linear processes. (Electric and magnetic fields can 
be linearly superimposed.)

Let us assume a time-harmonic electric field with amplitude E0 and phase φ:

this corresponds to the Real part of:

by defining a complex amplitude (or phasor):

we can write: 

from now on we will only use complex amplitudes and write them without tilde:

E(t) = <
n
Ẽei�t

o

E(t) = E0 cos (�t+ ⇥)

E(t) = �
�
E0e

i⇥ei�t
 
= � {cos (�t+ ⇥) + i sin (�t+ ⇥)}

Ẽ = E0e
i�

E0 cos (�t+ ⇥)�!Ẽei�t�!E



Why should we do that?
• Simplified, shorter expressions

• Time derivations become very simple

d

dt
E(t)�! d

dt
Ẽei�t = i�Ẽei�t

�! d

dt
E = i�E

Only valid for harmonic time dependence



Complex notation of Maxwells Equations
The use of phasors yields the following form:

� ·E =
�V
⇥

(III)

� ·H = 0 (IV )

The general wave equations become: 

with the wavenumber 

Remark: in conducting media k becomes complex (with a complex dielectric constant). 
In non-conducting charge-free media the wave equations simplify to:

⇥2
E�⇥ (⇥ ·E) = �k2E

⇥2
H = �k2H

r2
E = �k2E

r2
H = �k2H

with the wave number k2 = �2µ⇥ =
�2

c2

r⇥H = i⇥⇤
⇣
1� i

�

⇥⇤

⌘
E (I)

r⇥E = �i⇥µH (II)

k2 = ⇥2µ⇤

= ⇥2µ⇤
⇣
1� i

�

⇥⇤

⌘

�0 � i�00



Solution of the wave equation
To find the electric and magnetic fields in free space, in wave-guides or in cavities, one needs to solve the wave 
equation in the appropriate coordinate system (cartesian, cylindric, spherical). 

A common approach to solve the wave equation for wave guides is to define a vector potential for TE and TM 
waves, so that electric and magnetic fields can be calculated from: 

In both cases the vector potential fulfills the wave equation,

r2A = �k2A with k2 = �2µ⇥

which can then be solved for different coordinate systems for TE and TM waves and which has usually just one 
vector component:

A = Azez

E
TE = r⇥A

TE and H
TM = r⇥A

TM

H
TE = r⇥ (r⇥A

TE) and E
TM = r⇥ (r⇥A

TM )



Nomenclature of modes in cavities (3 indices) 

and waveguides (2 indices)

number of full-period variations 
of the field components in the 
azimuthal-direction

TMmnp-mode = Emnp-mode

TEmnp-mode = Hmnp-mode

number of zeros of the axial 
field component in radial 
direction.

number of half-period variations 
of the field components in the 
longitudinal-direction

E-field parallel to axis, Bz =0, 
only transverse magn. (TM) components

B-field parallel to axis, Ez =0, 
only transverse el. (TE) components

in a circular cavity this means: 



Solution of the wave equation (circular wave guides)
For circular wave guides we obtain for the vector potential:

results in the following field components for TM waves:

Jm are Bessel functions of the first kind and of m’th order

using 

ATM/TE
z = CJm(kcr) cos(m�)e�ikzz with kz =

p
k2 � k2c

Er = i
�⇥

⌅H�

⌅z = �C kzkc
�⇥ J’m(kcr) cos(m�)

E⇤ = � i
�⇥

⌅Hr
⌅z = Cmkz

�⇥r Jm(kcr) sin(m�)

Ez = ik2
c

�⇥ Az = C ik2
c

�⇥ Jm(kcr) cos(m�)

Hr = 1
r
⌅Az
⌅⇤ = �Cm

r Jm(kcr) sin(m�)

H⇤ = �⌅Az
⌅r = �CkcJ’m(kcr) cos(m�)

9
>>>>>>>>>=

>>>>>>>>>;

e�ikzz

H
TM = r⇥A and E

TM = r⇥ (r⇥A)



Bessel functions of the first kind



Wave propagation in a cylindrical pipe (conducting walls)

propagation constant: wave number:

let us consider the simplest accelerating mode (electric field in z-direction): m=0,  n=1, TM01

using J 0
0(r) = �J1(r)

kc is determined by the boundary conditions of the wave-guide

a

Er = C
kzkc
�⇥ J1(kcr)

Ez = �C
ik2

c
�⇥ J0(kcr)

H⇤ = CkcJ1(kcr)

9
>>=

>>;
e
�ikzz

Ek = 0 ) Ez(r = a) = 0 ) J0(kca) = 0 ) kca = 2.405

Z



TM01 field configuration

E-field
B-field

λp

•TM01 waves propagate for :
•and are exponentially damped for :
•the phase velocity is: 

from                          we also get the dispersion relation

and from we can calculate the cut-off frequency for the TM01 mode in a cylindrical pipe

�c =
2.405c

a

k2z =
�2 � �2

c

c2
=

�2

v2ph

Wave propagation in a cylindrical pipe (conducting walls)



Dispersion relation (Brillouin diagram)
•Each frequency corresponds to a certain phase 
velocity,

•The phase velocity is always larger than c! (at 
ω=ωc: kz=0 and vph=∞),

•Synchronism with RF (necessary for acceleration) 
is impossible because a particle would have to 
travel at v=vph>c!

•Energy (and therefore information) travels at the 
group velocity vgr<c,

group velocity: phase velocity:



How can we slow down phase velocity?

speed bumps?



How can we slow down the phase velocity?

put some obstacles into the wave-guide: e.g: discs

2b

L

2a

h

Only then can we achieve synchronism between the particles and 
the phase velocity of the RF wave.



Dispersion relation for disc-loaded circular wave-guides
damping:

kz0

ω

2π
3L

reflected wave

vph = c

−

2π
L

2π
L−

π
L

π
L

ωc

ωπ

typical operating point



Example of a 2/3 𝛑 travelling wave structure
synchronism condition:



Travelling wave structures

•Since the particles gain energy the EM-wave is 
damped along the structure (“constant 
impedance structure”). But by changing the bore 
diameter one can decrease the group velocity 
from cell to cell and obtain  a “constant-gradient” 
structure. Here one can operate in all cells near 
the break-down limit and thus achieve a higher 
average energy gain.

•High-gradient, high-frequency traveling wave 
structures are mostly used for very short (us) 
pulses, and can reach high efficiencies, and high 
accelerating gradients (up to 100 MV/m, CLIC). 

•Generally used for electrons at β≈1,

CLIC prototype structure CERN-PHOTO-202202-013-8
See also W. Wuensch: high-beta cavities



Basic cavity parameters



Energy gain in a cavity
We drill two holes at the cavity axis to let the beam pass, and assume the field distribution does not get disturbed: 

with: 

and Transit Time Factor T: 

T =

L/2R

�L/2

E(0, z) cos(⇥t(z))dz

L/2R

�L/2

E(0, z)dz

� tan�

L/2R

�L/2

E(0, z) sin(⇥t(z))dz

L/2R

�L/2

E(0, z)dz

| {z }
=0 if E(0,z) is symmetric to z=0

V0 =

L/2Z

�L/2

E(0, z)dz = E0L

Ez(r = 0, z, t) = E(0, z) cos(�t+ ⇥)

�W = q

L/2Z

�L/2

E(0, z) cos(�t+ ⇥) = qV0T cos⇥



Transit Time Factor
The Panofsky equation

The Transit Time Factor gives the ratio between the energy gained 
in an RF field and a DC field and is therefore < 1. It takes into 
account that the electric field changes its phase during the passage 
of the beam. 

If we assume that the velocity change is small, we can say that ⌅t ⇡ ⌅
z

v
=

2⇤z

�⇥

which simplifies the Transit Time Factor to: T =

L/2R

�L/2

E(0, z) cos
⇣

2⇤z
�⇥

⌘
dz

L/2R

�L/2

E(0, z)dz

�W = qE0TL cos�



Shunt impedance

The shunt impedance gives a measure of how much accelerating voltage V0 one can get with a given 
power Pd, which is dissipated in the cavity walls. 

Above we have used the linac definition of the shunt impedance, but sometimes also the 
circuit definition is used (more on that later). 

Rs = V 2
0

Pd
shunt impedance

R = (V0T )2

Pd
e�ective shunt impedance

Z = Rs
L = E2

0
Pd/L

shunt impedance per unit length

ZT 2 = R
L = (E0T )2

Pd/L
e�. shunt impedance per unit length

Rc
S =

V 2
0

2Pd



3 db bandwidth

32

frequency

amplitude

Δω

3db



Q and (R/Q)
The Quality factor Q describes the bandwidth of a resonator and is defined as the ratio of reactive 
power (stored energy) to real power lost in the cavity walls:

Together with the shunt impedance we can define another figure of merit, which is used to 
maximize the energy gain in a given length for a certain power loss. 

✓
R

Q

◆
=

(V0T )2

�W

This quantity is independent from the surface losses and qualifies only the geometry of the cavity! 

Q =
�

��
=

�W

Pd



Filling time of a cavity
The dissipated power in the cavity walls must be equal to the rate of 
change of the stored energy:

Pd = �dW

dt
=

�0W

Q0

Q0 =
�0W

Pc

As a solution we find an exponential decay for the energy: W (t) = W0e
� 2t

� with � =
2Q0

⇥0

(Comment: one can also define tau as               ), then� =
Q0

⇥0

For a loaded cavity (e.g. equipped with a power coupler) the filling time 
constant changes to:

�l =
2Ql

⇥0

W (t) / e�
t
�

(Ql will be derived later)



The Pillbox cavity

- a typical TM mode cavity -



The pillbox cavity

A lumped element resonator transformed into a pillbox cavity

L

C

L

C



The pillbox cavity

•with longitudinal electric field 
and transverse magnetic fields: 
TM010 mode (φ,r,z),

•no field dependence on z and φ, 
frequency is determined by 
radius r=a:

...an empty cylinder with 
conducting walls:

electric fields magnetic fields

z

Ez / J0(krr)

H� / J1(krr)
f =

2.405c

2�a

R



The typical TM mode cavity

- normal conducting, standing wave -

•usually C is increased to concentrate the 
electric field lines along the axis,

•diameter of the cavities is in the order of λ/2, 
which makes them suitable for frequencies 
>100 MHz - GHz range,

•exist as single/multi-cell, normal/
superconducting,

•usually fixed frequency, 



Field distribution in a pillbox cavity
Using again the vector potential for circular waves and superimposing 2 waves: one in positive and one in 
negative z-direction

We can derive all TM field 
components using: H

TM = r⇥A
TM and E

TM = r⇥ (r⇥A
TM )

ATM/TE
z = CJm(krr) cos(m�)

�
e�ikzz + eikzz

�
| {z }

2 cos(kzz)

Er = i
�⇥

⌅H�

⌅z = i2C kzkr
�⇥ J’m(krr) cos(m�) sin(kzz)

E⇤ = � i
�⇥

⌅Hr
⌅z = �i2Cmkz

�⇥r Jm(krr) sin(m�) sin(kzz)

Ez = ik2
r

�⇥ Az = i2C k2
r

�⇥Jm(krr) cos(m�) cos(kzz)

Hr = 1
r
⌅Az
⌅⇤ = �2Cm

r Jm(krr) sin(m�) cos(kzz)

H⇤ = �⌅Az
⌅r = �2CkrJ’m(krr) cos(m�) cos(kzz)



Field distribution in a pillbox cavity
applying the boundary conditions we can define the wave numbers:

which gives us a discrete set of frequencies:

The mode with lowest frequency is the TM010 mode: 

f =
2.405c

2�a
with

dispersion relation

Ez = �i2C j201
a2�⇥J0(

j01
a r) = E0J0(

j01
a r)

H⇤ = 2C j01
a J1(

j01
a r) =

E0

Z0
J1(

j01
a r)

Er(z = 0/L), E�(z = 0/L) = 0 ) kz =
n�

L

E�(r = a), Ez(r = a), Hr(r = a) = 0 ) kr =
jm
a

k2 =
⇥2

c2
= k2z + k2r ) fnm =

c

2�

s
⇣n�
L

⌘2
+

✓
jm
a

◆2

r

a

z



Transit time factor (pillbox cavity)
In a pillbox cavity (TM010 mode) the accelerating field has no dependence on z, which simplifies 
our expression for T to:

Let us assume relativistic particles (β≈1) and a cavity length of L=λ/2 (which can be cascaded to 
π-mode multi-cell cavities):

T =
2

�
= 0.64

T =

L/2R

�L/2

E(0, z) cos
⇣

2⇤z
�⇥

⌘
dz

L/2R

�L/2

E(0, z)dz

=
sin

⇣
⇤L
�⇥

⌘

⇤L
�⇥



Accelerating voltage (pillbox)

accelerating voltage: 

•The accelerating voltage is a strong function of the transit 
time factor.

• It therefore depends on the gap length (L), and the speed 
of the particle (β). 

• Especially in multi-cell cavities, which are used over a wide 
velocity range (e.g. SC multi-cell cavities for protons), this 
effect must be taken into account carefully. 

•Also HOMs depend on the depend on the particle 
speed! β

0.50 0.55 0.60 0.65 0.70 0.75 0.80

]
Ω

R
/Q

 [

−310

−210

−110

1

10

210

310  [MHz]:nf

703.5

704.4

1759

1769

4/5π

monopole modes

Vacc = V0T = E0LT = E0L
sin(⇤L�⇥ )

⇤L
�⇥

5-cell cavity (βg=0.65), 
704.4 MHz



Q0 (pillbox)
quality factor 

•The quality factor is a function of the material constants (el. conductance, permeability), the 
frequency, and the geometry of the cavity. 

•Since the material is usually fixed (Cu), one can optimize the quality factor by optimizing the 
geometry of the cavity.

•Higher frequencies yield higher quality factors (only true for normal conducting cavities).

Q0 =
⇥W

Pd
=

Z2
0⇥

2Rsurf

La

L+ a
=

1

�s

La

L+ a
/

p
⇥

�s =

r
2

⇤µ⇥
With the skin depth 
(not derived here)



Shunt impedance (pillbox)
effective shunt impedance

• Depends on material parameters, the transit time factor 
and the geometry.

• This is why most normal conducting cavities have noses. 

• Noses increase T and focus the electric field between 
them.

• Why do SC cavities not have noses? 

DTL CCDTL

CCL SC Elliptical

R =
(V0T )2

Pd
=

Z0

�RsurfJ2
1 (j01)

sin
⇣

⇤L
�⇥

⌘

⇤L
�⇥

L2

a(a+ L)



Frequency and (R/Q) in pillboxes
f =

2.405c

2�a
frequency

(R/Q) 

•In all TM mode cavities, the frequency is strongly influenced by the cavity 
diameter. 

•(R/Q) does not depend on any material parameters, but is influenced by the 
transit time factor and the geometry and is inversely proportional to the 
frequency.

✓
R

Q

◆
=

2c

⇥�J2
1 (j01)

sin
⇣

⇤L
�⇥

⌘

⇤L
�⇥

L

a2



Multi-cell TM-mode cavities
•For coupled multi-cell structures one power 
source can be used for many cells.

•Here we assume a TM010 mode in each cell.
•A model of equivalent LC circuits is used to 
introduce the coupling between cells, and can be 
used to determine the resulting single cell 
frequencies. 

•The mode names (0, ..,π/2, .., π) correspond to the 
phase difference between the gaps.

dispersion relation
0 ππ/2

ω0√

1− k

ω0√

1+ k

⇥n =
⇥0p

1 + k cos(n�/N)



To be continued


