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Overview

» Cavity classifications

* The first accelerating cavities
 Basic RF theory

e Cavity parameters

* The pillbox cavity

e TM, TE, and TEM mode cavities
 Lumped circuit description

* (Getting power into a cavity

e New ideas



How do we classify cavities”

Fixed/variable frequency
Accelerating/non-accelerating

By electromagnetic mode type
Travelling wave/standing wave
Normal conducting/superconducting



Accelerating cavities by fixed/variable frequency

Acceleration with changing Acceleration with constant
particle velocity particle velocity

low-3 synchrotrons (protons,
ions)

low-3 FFAGs
(protons, ions)

electron linacs
cyclotrons

high-f3 synchrotrons (electrons,
protons, ions)

low-[3 proton/ion linacs

high-3 FFAGs
(electrons, protons, ions)




Accelerating cavities by fixed/variable frequency

Acceleration with changing Acceleration with constant
particle velocity particle velocity

Materials with adjustable permeability
in the cavity volume, e.g. ferrites or
Finemet®: allows to tune f.

Wideband RF amplifiers

Typically low voltages, high losses

In Linacs: cell length adapts to particle
velocity

In Cyclotrons: the particle path
becomes longer with higher energy.
The same narrowband RF amplifiers
for all cavities.

* The same narrowband RF amplifiers
for all cavities.

* Only one type of cavity needed. Mass
production.

* High cavity gradients.




Non-accelerating cavities

RF deflection Longitudinal
manipulation

Forming bunches out of a continuous beam
(coasting beam or ion source beam).
Keep bunches longitudinally confined during

e Beam chopping at low energies. .
transport or acceleration.

e Beam funnelling at low energy. Phase rotation to reduce or increase momentum

. - spread.
* CRAB crossing of colliding beams. Inducing longitudinal emittance growth.

Bunch merging (e.g. via slip-stacking) or bunch
splitting.

See Longitudinal dynamics & RF manipulations

See G. Burt, Transverse deflecting cavities




THE FIRST ACCELERATING
CAVITIES

Or why we put RF fields in a box..



Not yet a cavity:
The Wideroe Linac (1927)
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T-mode operation:

dnftubes — Bunch in every 2nd gap

The RF phase changes by |80%, while the particles travel from one tube to the next



Why wasn’t this good enough?

* [he Wideroe Linac was enclosed by a glass

tube.

* At higher frequenc

tubes started radiating energy (|
antennas): less power was used for
acceleration.
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= [ he Widerde Linac was only usable for
very low-velocity particles.
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19406: Alvarez put a cavity around the Wideroe
| INnac and created a resonant structure

* While the resonator fields point in the
‘wrong  direction, the particles are shielded
by the drift tubes.

e WW2 brought the development of high-

bower, high-frequency RF tubes for radar

technology.

= [ herefore most of the early accelerators

operated at this frequency (including
Linacl, LinacZ, and the SPS at CERN)

0-mode operation: bunch in every gap
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Basic RF theory

Going from a waveguide to a RF cavity



Complex notation for time-harmonic fields

In Radio Frequency we are usually dealing with sine-waves, which are sometimes modulated in phase or In
amplrtude. This means we will concentrate on time-harmonic solutions of Maxwells Equations. For this purpose we
introduce the time-harmonic notation, which can be used for all linear processes. (Electric and magnetic fields can
be linearly superimposed.)

Let us assume a time-harmonic electric field with amplitude Eo and phase : E(t) = Eycos (wt + ©)

this corresponds to the Real part of: E(t)=* {Eoewem} = R {cos (wt + ) + isin (wt + @)}

by defining a complex amplitude (or phasor): E = EOQW

we can write: E(t)=%*R {Eeiwt}

from now on we will only use complex amplitudes and write them without tilde:

Eo cos (wt + ¢) — Ee“t—E



Why should we do that”?

e Simplified, shorter expressions

* [ime derivations become very simple

d d -~ . -
@E(t) >the“"t — jwhe™"
d
>th = wkh

Only valid for harmonic time dependence



Complex notation of Maxwells Equations

The use of phasors yields the following form:

K
VXH:iwe(l—i—)E(I) v.E=% (I11)
WE 3
VXE=—wuH (11) V. -H =0 (IV)
V.
/ - 1/
The general wave equations become: e — 1€
]CQ — CUQME /
V’E -V (V-E) = —k°E | =
with the wavenumber 5 . K
V°H = —k’H = W UE (1 — z—)
WE
Remark: in conducting media k becomes complex (with a complex dielectric constant).
In non-conducting charge-free media the wave equations simplify to:
V2H — _2H with the wave number k= w ue = 0_2

y .




Solution of the wave equation

To find the electric and magnetic fields in free space, In wave-guides or In cavities, one needs to solve the wave
equation In the appropriate coordinate system (cartesian, cylindric, spherical).

A common approach to solve the wave equation for wave guides is to define a vector potential for TE and TM
waves, so that electric and magnetic fields can be calculated from:

Ef =V xA'? and HM=v xAM
H'* =V x (VxA'™) and E'™ =V x (Vx A"

In both cases the vector potential fulfills the wave equation,
VA = —k*A  with k* = w?ue

which can then be solved for different coordinate systems for TE and T™M waves and which has usually just one
vector component:

A=Ae.



Nomenclature of modes In cavities (3 Indices)
and waveguides (2 Indices)

E-field parallel to axis, B, =0,
mnp~™ — mnNnp~™ ﬁ
| Mrmnp-mode = Emnp-mode only transverse magn. (TM) components

B-field parallel to axis, E; =0,

_ — - ——-
TEmnp-mode = Hmnp-mode only transverse el. (TE) components

in a circular cavity/this means:

number of full-period variations number of zeros of the axial number of half-period variations
of the field components In the field component in radial of the field components in the
azimuthal-direction direction. longrtudinal-direction

E or B x

cos(me) or sin(mao)

E or B
cos(pmz/l) or sin(pmz/I)

E. or B, x
I (Tmnr/ Re)




Solution of the wave equation (circular wave guides)

For circular wave guides we obtain for the vector potential.

ATMITE — 03 (ker) cos(me)e™ % with  k, = \/k2 — k2
using H'M =V xA and E'"™ =V x(VxA)

results in the following field components for TM waves:

E. == agl;’ = —CEte ] (ker) cos(mep)

E, =-2X 85?‘ = C2%= ], (ker) sin(mep)

E, = :E A, = C’fg Jm (ker) cos(mp) et
H, = %85?; = — O (ker) sin(mep)

H, = ag:j‘ = —Ck.J p (ker) cos(mep)

|m are Bessel functions of the first kind and of m'th order



Bessel functions of the first kind




Wave propagation in a cylindrical pipe (conducting walls)

let us consider the simplest accelerating mode (electric field in z-direction): m=0, n=1, TMoj

using Jo(r) = =Ju(r)

E, =C%E] (k)

Ez — —CZ SJO(I‘CCT) e—ikzzz

W

2T W
propagation constant: k§ = k% — k? wave number: k= — = —
C

A

kc 1s determined by the boundary conditions of the wave-guide

E=0= FE,(r=a)=0= Jy(kca) =0 = k.a = 2.405



Wave propagation in a cylindrical pipe (conducting walls)

and from k. = — =

we can calculate the cut-off frequency for the TMo; mode In a cylindrical pipe

TMO1 field configuration

|
>

E-field
B-field

from k7 = k® — k- we also get the dispersion relation
*TMoi waves propagate for: W > We *

*and are exponentially damped for: W < We
*the phase velocity Is: w w? — w? w2J

Uph = — L2 — __
jo,
]‘Cz 2z




Dispersion relation (Brillouin diagram)

group velocity:

dw

/Ug’l“:d_kZJ

phase velocity:

?Jph —

W

k2

Yy

* Fach frequency corresponds to a certain phase
velocity,

* The phase velocity is always larger than c! (at
W=We: k=0 and vpn=00),

* Synchronism with RF (necessary for acceleration)
Is impossible because a particle would have to
travel at v=vpn>c!

* tnergy (and therefore information) travels at the
oroup velocity vg<c,



oW can we slow down phase velocity’?
|t e

speed bumps?
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How can we slow down the phase velocity”?

v

put some obstacles into the wave-guide: e.g: discs
h

2a 2b

L

Only then can we achieve synchronism between the particles and
the phase velocity of the RF wave.



Dispersion relation for disc-loaded circular wave-guides

. reflected wave
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Example of a 2/3 =& travelling wave structure

A
synchronism condition: d = (63) with 0~ 1

y
pulsed RF
Power 9
source —mode
3
Electric field  RF wall currents RF
\ ' load
5 d .




Travellng wave structures

*Since the particles gain energy the EM-wave Is
damped along the structure (“constant
impedance structure”). But by changing the bore
diameter one can decrease the group velocrty
from cell to cell and obtain a “constant-gradient”
structure. Here one can operate In all cells near
the break-down limit and thus achieve a higher
average energy gain.

High-gradient, high-frequency traveling wave
structures are mostly used for very short (us)
pulses, and can reach high efficiencies, and high
accelerating gradients (up to 100 MV/m, CLIC).

*Generally used for electrons at 3= 1,

See also W. Wuensch: high-beta cavities
CLIC prototype structure CERN-PHOTO0-202202-013-8



BasIC cavity parameters



ENnergy gain in a cavity

We drill two holes at the cavity axis to let the beam pass, and assume the field distribution does not get disturbed:

E.(r=20,z,t) = E(0, z) cos(wt + ¢)

L/2
AW =q / E(0, z) cos(wt + ) = qVu'T cos ¢
_L/2
L/2 Y
with: Vg = / E(0,2)dz = EyL
L2 )
L/2 L/2
[ E(0,z)cos(wt(z))dz [ E(0,z)sin(wt(z))dz
L) _L/2
1 = /3 tan ¢ /3
and Transit Time Factor T: [ E(0,2)dz [ E(0,2)dz
—L/2 —L/2

—_———
=0 if E(0,2) 1s symmetric to z=0




Transit Ime Factor

he Panofsky equation AW = qEoT'Leosp |

The Iransit lime Factor gives the ratio between the energy gained
in an RF field and a DC field and is therefore < |. It takes into
account that the electric field changes its phase during the passage

of the beam.
z 27z
T we assume that the velocity change i1s small, we can say that Wt = W= Bx
L/2
[ E(0,z)cos (2577—;) dz
—L)2
which simplifies the Transit Time Factor to: T — / e
[ E(0,z)dz

—L/2




Shunt impedance

2
R = ‘% shunt impedance
2

— (Vg) effective shunt impedance

_ R, _ _E;g h : d it ] h

= T =3, S unt 1impedance per unit lengt

2

7T% = % — (;E,S/TL) eff. shunt impedance per unit length

.

The shunt impedance gives a measure of how much accelerating voltage Vo one can get with a given
power Pq, which Is dissipated In the cavity walls.

Above we have used the linac definition of the shunt impedance, but sometimes also the I
circuit definition is used (more on that later). 5 2P,




3 db banawidth

amplitude
race 2 Response 3 Stimulus 4 MkrfAnalysis tate 5 B
F Bandw oth | N = P

P S21 [og Mag S00.0mdB/ Ref -53.50dB

!
'''''''

»1 3459.6303810 MHz -51.446 dB

S SATHEEND W 0 L R S
345.6303930 MMz
349.6261770 MMz
349 .6346090 MMz
-52.00 414¢4
loss: =51.446 dB
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Q and (R/Q)

The Quality factor Q describes the bandwidth of a resonator and Is defined as the ratio of reactive
power (stored energy) to real power lost In the cavity walls:

W wW
Aw Pd Yy

Together with the shunt iImpedance we can define another figure of mertit, which Is used to
maximize the energy gain In a given length for a certain power loss.

322

.

This quantity Is iIndependent from the surface losses and gualifies only the geometry of the cavity!



Flling time of a cavity

The dissipated power In the cavity walls must be equal to the rate of P, = aW _ wolV
change of the stored energy: at T Qo

Qo = 2"
As a solution we find an exponential decay for the energy: W(t) = Woe™*  with
For a loaded cavity (e.g. equipped with a power coupler) the filling time _ 2Q1

Ty
constant changes to: Wo

(Qi will be derived later)

.

(Comment: one can also define tau as 7 = % ), then W (t) -
0




1he Pillbox cavity

- a typical TM mode cavity -




1he pilloox cavity

A lumped element resonator transformed into a pillbox cavity




1he pilloox cavity

..an empty cylinder with
conducting walls:

with longitudinal electric fielc
and transverse magnetic fi

TMoio mode (Q,r2),

‘no field dependence on z and @,

ﬁ

frequency I1s determined by
radius r=a:

B 2.405¢
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E, < Jo(k,r)
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The typical TM mode cavity L=

- normal conducting, standing wave -

ol >

,,,,,,,,,,,,, OO O
................ 00000
- SN 00000
-usually C is Increased to concentrate the R 00000
electric field lines along the axis, - 00000
~~~~~~~~ Vv 00000
. TSR e S e
*diameter of the cavities is in the order of A/2, “/ 00000
: : ~ : TS SSNNN Y VD
which makes them suitable for frequencies ST 50003
i T SO G O00O0(
> 100 MHz - GHz range, ~m o 00009
-exist as single/multi-cell, normal/ oo ceee ]
superconducting, EEEEENSN EEREREE
*Q e$E-dS
-usually fixed frequency, _ X _ZJ-
V.. [E.ds




Fleld distribution In a pilloox cavity

Using again the vector potential for circular waves and superimposing 2 waves: one in positive and one in
negative z-direction | |
AZM/TE = CJ,, (k1) cos(my) (e_”“zz + eZkzz)
N —— —
2 cos(k,z)

We can derive all TM field

| H'M = v x A™ and E'™ =V x (V x ATM)
components using:

E. == aéz@ = 12C kzj?“ J’ (k1) cos(myp) sin(k, 2)
E, =-2X 881? = —12C TZ;’? Jm (k1) sin(m) sin(k, 2)
E., = % ., = iQij—iJm(krr) cos(m) cos(k, z)
H, = iaai‘; = =207 Jp, (kyr) sin(mep) cos(k, z)
H, = 85% = —2Ck,.J (k1) cos(mp) cos(k, z)

.




Fleld distribution In a pilloox cavity

applying the boundary conditions we can define the wave numbers:

a ET(Z:O/L)yEQO(Z:O/L):O ikz:f
O ------ }Z Ey(r=a),E,(r=a),H.(r=a)=0 ikr:%m

which gives us a discrete set of frequencies:

2 > . 2
C 27 L a

The mode with lowest frequency Is the TMoio mode:

2.405¢ B, =—i2020Jo(2r) = EgJo(dr)
| = 2 with s
— Hy, = 2000,(%r) = =di(%er)




Transit time factor (pilloox cavity)

In a pillbox cavity (TMoio mode) the accelerating field has no dependence on z, which simplifies
our expression for | to:

L/2
22
_J/Q E(0, z) cos (W) dz n (E—f\’)
L= L/2 - L
[ E(0,z)dz B
_L/2

et us assume relativistic particles (B=1) and a cavity length of L=A/2 (which can be cascaded to
m-mode multi-cell cavities):

9
T:—:QMJ

T




Accelerating voltage (pilloox)

accelerating voltage: Vgee = Vo' = EoL1 = EgL

* [he accelerating voltage Is a strong function of the transit

time factor. 1% Fr T T T T T I (g
* |t therefore depends on the gap length (L), and the speed 10 &l :zzz
of the particle (). 10 4| 1759
a — 1769

e tspecially in multi-cell cavities, which are used over a wide g 1

velocity range (e.g. SC multi-cell cavities for protons), this 10°
effect must be taken into account carefully.

monopole modes

5-cell cavity (3¢=0.65),
7044MHz

e Also HOMs depend on the depend on the particle
speed!

1073 AN D S § B £ St i B S (R
050 055 060 0.65 0.70 0.75 0.80
p




Qo (pillbox)

quality factor

* [he quality factor is a func

wW Ziw La 1 La
©o = Py  2RgurfL+a 5SL+9O< Ve
With the skin depth 5 — 2
(not derived here) Vo wuk

lon of the material constants (el. conductance, permeabillity), the

frequency, and the geomet

ry of the cavity.

* Since the material I1s usually fixed (Cu), one can optimize the quality factor by optimizing the

seometry of the cavity.

* Higher frequencies yield higher quality factors (only true for normal conducting cavities).



Shunt impedance (pilloox)

. L
(VOT)Q Z() S111 m) L2
L

effective shunt impedance R = — L
P, WRsurfjl (j()l) UES CL(CL—|—L)

 Depends on material parameters, the transit time factor
and the geometry.

e [hisis why most normal conducting cavities have noses.

e Noses Increase I and focus the electric field between
them.

SC Elliptical

* Why do SC cavities not have noses!

5 =




Frequency and (R/Q) in pillboxes

frequency

(R/Q)

diameter:

* (R/Q) does not de
transit time factor a

frequency.

DEI

nd

2.405¢
2Ta

f =

@ WWJ%(jm)

d on any material parameters, but Is |

the geometry and Is inversely propor

(R) 2c Sin (Z—f) L
N — L

7L 2
g ¢

*|n all TM mode cavities, the frequency Is strongly influenced by the cavity

nfluenced by the

lonal to the



Multl-cell TM-mode cavities

*ror coupled multi-cell structures one power
source can be used for many cells.

Here we assume a MO0 mode In each cell.

*A model of equivalent LC circuits 1s used to

ntroduce the coupling between cells, and can be

used to determine the resulting single cell
frequencies.

* [he mode names (0, ..,T1/2, .., M) correspond to the
phase difference between the gaps.
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" v/1+ kcos(nm/N)

dispersion relation
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To be continued



