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Impact of low beta

and normal conducting

low beta:

 space charge forces may be an issue during acceleration

 beam velocity significantly depends on beam energy:  

the local cavity geometry (on axis) must match the local beam energy, in order to preserve the

synchronous rf-phase:  

𝐸 = 0.0015 𝑊0

𝛽 = 0.055

𝐸 = 0.012 𝑊0

𝛽 = 0.15
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Impact of low beta

and normal conducting

normal conducting:

 relevant part of rf-power heats the cavity and does not accelerate the beam:
 increases cost for wall plug power

 local heating -> to be limited to avoid de-tuning / damage

 resonance width of cavity is about 104 times broader w.r.t. (quasi loss free) super 

conducting cavity:
 accordingly lower 𝑄, 𝑅/𝐿 values

 shorter rise / decay times

 allow to change design cavity voltage within some milliseconds

 -> switch ion species between pulses

 no need to deal with infrastructure for liquid helium / nitrogen, thermal shielding, …
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Types of cavities:

Pill box

 most simple cavity: one gap

𝑓 =
1

2𝜋 𝐿𝐶

F. Gerick

gap drift tubedrift tube

 used as bunchers, or for moderate energy correction

 drift tubes may be filled with quadrupoles for focusing

 example: 10 independent pill boxes for energy tuning & 

bunching at GSI UNILAC (≈ 1 MV/gap)

TM010 mode
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Types of cavities:

𝜆 - resonators

principle: a coax line is passed transversely by the beam; acceleration by 𝐸𝑟 :

beam

𝑧

𝑟

 (very) low frequency at reasonable size, i.e., not some meters

 very few gaps: bunching or few acceleration per cavity
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Types of cavities:

𝜆 - resonators

𝜆/4 – resonator :

• Saclay, SPIRAL-2

• peak field: 6.5 MV/m

• frequency (n=1): 88 MHz

𝑧

𝐸𝑟
𝜆/4

short circuit
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Types of cavities:

𝜆 - resonators

𝜆/2 – resonator:

• FZ Jülich prototype

• peak voltage: 0.8 MV/gap

• frequency (n=1): 160 MHz

𝜆/2
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Types of cavities:

Spiral resonators

 low frequency at reasonable size, i.e., not some meters

 few gaps: bunching or moderate acceleration

 principle:
 low frequency calls for large radius 𝑅, but a short cavity should have small 𝑅
 compensating small 𝑅 with large inductivity 𝐿

𝑓 ~
1

𝐿𝐶
~

1

𝐿 𝑅

 prolonging (spiraling) the drift tube suspension

• GSI Darmstadt UNILAC buncher

• peak voltage: 0.18 MV/gap

• frequency: 108 MHz

TM010 mode
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Types of cavities:

Alvarez

 few to many gaps: regular acceleration, strong periodic transverse focusing

 gap & drift tube lengths increase with particle velocity (energy)

 principle:
 attach many pill boxes to each other

 place quadrupoles (or diagnostic devices) inside drift tubes

Drift Tube Linear Accelerator

Luis Walter Alvarez 

1911 - 1988

• CERN Linac-4, 1st DTL cavity

• 28 gaps

• peak voltage: ≤ 0.31 MV/gap

• frequency: 352 MHz

TM010 mode

TDR Linac-4, CERN, (2006)
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Types of cavities:

Inter-digital H-mode (IH)

 few to many gaps: high voltages, some transverse focusing, few drift tubes with quadrupoles

 gap & drift tube lengths increase with particle velocity (energy)

 principle:

 create longitudinal magnetic field 𝐵

 place drift tube supports along 𝐸 = 𝛻 × 𝐵 in order to charge drift tubes

• GSI Darmstadt, 1st HSI cavity

• 53 gaps

• peak voltage: ≤ 750 kV/gap

• frequency: 36 MHz

U. Ratzinger, Proc. Linac Conf. 1996
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Types of cavities:

Crossed-bar H-mode (CH, “spoke“)

 few to many gaps: high voltage, no transverse focusing

 gap & drift tube lengths increase with particle velocity (energy)

 principle:

 create longitudinal magnetic field 𝐵 (higher mode w.r.t. IH-cavity)

 place drift tube supports along 𝐸 = 𝛻 × 𝐵 in order to charge drift tubes

• GSI Darmstadt, 1st p-Linac cavity

• 21 gaps

• peak voltage: ≤ 330 kV/gap

• frequency: 352 MHz

G. Clemente, PRAB, 14, 110101 (2011)
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Types of cavities:

Figures of merit and comparison

 shunt impedance per length R/L:

(gap voltage)^2 per input power

 𝑄: width of resonance 𝑓/Δ𝑓 ->

rise / decay time, scales with 𝑅/𝐿

 (
𝑅

𝐿
) / 𝑄:

concentration of cavity energy at gap

 maximum electric surface field

 preservation of beam quality

 size (H-mode is smaller than Alvarez)

 cost

general scalings
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Types of cavities:

Radio Frequency Quadrupole (RFQ)

 transform dc-beam into bunched beam, keep beam focused

 starts w/o gaps -> ends with many “effective“ gaps, called cells

 effective gap lengths increase with beam energy

 principle:
 create electric field that simultaneously bunches, accelerates, and focuses

 once built: almost everything fixed; just field amplitude can be varied

• SARAF / Israel

• peak voltage: 56 kV

• frequency: 176 MHz

A. Perry et al. Proc. Linac Conf. 2018
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Types of cavities:

Radio Frequency Quadrupole (RFQ)
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Choice of cavity type:

 cavities and their rf-power units are the main cost driver of a linac project (≥ 50%)

 choice is about millions of $, €, CHF, ₤, ...

 it takes a systematic analysis of the specific projects needs:
 “must have“ criteria w.r.t. target beam parameters

 on-campus expertise (today and following 10 years)

 tight budgets limitations

 on-site building limitations

 schedule restrictions

 options, that are not excluded from first principles should be worked out and quantitatively

benchmarked w.r.t.:
 above criteria

 construction cost & risks

 operation cost & flexibility

 output beam quality

 needs for maintenance (amount of spares, competences of staff, ext. suppliers)

 experiences with potential partners
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Choice of cavity type:

Benchmarking for uranium DTL

 GSI replaces a DTL for intense uranium beams: 1.4 – 11.4 MeV/u of acceleration, 50 m long

 four options proposed in 2016:
1. refurbish existing DTL

2. new DTL from Alverez-type cavities

3. new DTL from IH-cavities w/o quadrupoles inside drift tubes, cavities separated by triplets

4. new DTL from IH-cavities with quadrupoles inside few prolonged drift tubes
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Choice of cavity type:

Benchmarking for uranium DTL

 criteria:
 operational flexibility & ease (beam set-up procedure, needs for instrumentation, …)

 operational risks (surface fields, tolerances)

 feasibility of construction and copper plating

 detailed lists with required components & spares incl. mechanical designs

 cost for each option estimated by same(!) experts of corresponding technical departments

 -> cost book of 40 pages

 beam quality: options 2-4 simulated with six different beam scenarios (same person and code)

 … many more

 total of 34 criteria per option have been collected into a table

 options described in dedicated proposals each (≈ 30 pages) by respective proposers

 options presented to dedicated international expert review committee by respective

proposers

 committee evaluated proposals and delivered final report

 final choice by host lab
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Choice of cavity type:

Benchmarking for proton DTL

 TRIUMF proton linac for neutron source: 3 – 10 MeV of acceleration, moderate current

 seven options are considered:
 two Alvarez-cavity options: different scenarios for beam matching before/within DTL

 five CH-cavity options: different number of cavities, # gaps, rf-phases, # focusing quads

M. Abbaslou

LINAC Conf. 

2022
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Choice of cavity type:

Benchmarking for proton DTL

 criteria:
 growth of rms-emittance & beam halo (same person, two codes)

 low beam transmission loss

 long. & transv. DTL acceptance

 power consumption (rf-power and focusing quads)

 total construction cost

 ease of operation

 robustness of design

 final choice at TRIUMF
M. Abbaslou

LINAC Conf. 

2022
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Practical issues:

Dimensions

 cavity radius should allow on-site handling: 𝑅 ≤ 1 𝑚

 dimensions to be accessible by tools and humans: 10 𝑐𝑚 ≤ 𝛽λ =
𝛽𝑐

𝑓
≤ 50 𝑐𝑚

 𝛽 from input energy

 𝑓 according to:

 rf-power sources available on the market (cost !)

 frequencies already used at the lab

 the lower limit may change considerable in near future, in regard of remarkable progress

being made in additive machining (3d-printing)

H. Hähnel, HIAT Conf. 2022
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Practical issues:

Maximum surface field strength

surface field strength 𝐸𝑠 should permit reliable long-term operation including ≈ 5% margin:
 in general, reasonable field strength increases with 𝑓
 the Kilpatrick criterion (late 40ies, empirical) is well known, but respected differently in practice

 modern designs for many-gap cavities vary

from 1.0 𝐸𝐾 ≤ 𝐸𝑠 ≤ 1.7 𝐸𝐾, 𝑓 ≥ 100 MHz

 at lower frequencies, the factor is larger

 it depends a lot on how conservative or

agressive the actual design is

 larger overall surface & duty cycle -> more

conservative

𝑓 𝑀𝐻𝑧 = 1.64 𝐸𝐾
2 𝑒

−
8.5
𝐸𝐾



FAIR GmbH | GSI GmbH Low beta, normal conducting cavities 23

Practical issues:

From MWS file to operating cavity

 very long way, picked with surprises (negative and positive)

 is often underestimated as “engineers‘ and/or mechanics‘ job, will be done some way“

 several years, many meetings, calculations, trials & fails at workshops/suppliers, consulting

experts from other labs, … → prototyping prior to launch series production!

 in the following, just few issues are sketched briefly
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Practical issues:

Material

 inner cavity surface to be plated with copper to minimize Ohmic surface losses, i.e., maximize

shunt impedance 𝑅
-> very few steel types remain, that can be plated adequately

 for long time, mild steel has been chosen for its twice larger heat conductivity

 nowadays, stainless steel is widely preferred:
 much less trouble with erosion inside water cooling channels

 hardly more expensive

 workshops must seperate strictly machining of stainless from mild; many do so by waving mild

 most Cu-plating workshops do not like working with mild as it spoils the basins
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Practical issues:

Critical tolerances

 natural relative bandwidth of rf-power sources is about 10-3

 TM-cavities (𝑓 dominated by radius):
 𝑓 very sensitive to outer radius and roundness of the mantle

 rel. error in radius is rel. error in frequency

 mean outer radius should deviate from design by ≤ 0.3 mm

 corresponding 𝑓-shift can be corrected by so-called plungers

 they reduce effective cavity volume (radius)

 they cannot augment the volume !!!

-> cavity design assumes plungers moved half way in

 plungers do practically not change voltage distribution along gaps

 quads inside drift tubes: transverse positioning of drift tubes to precision of about 0.1 mm

 TE-cavities (𝑓 dominated by capacity between drift tubes)
 𝑓 very sensitive to gap widths

 corresponding 𝑓-shift can be corrected by so-called plungers

 they reduce effective cavity volume (radius)

 they cannot augment the volume !!!

-> cavity design assumes plungers moved half way in

 plungers do significantly change voltage distribution along gaps

C. Xiao et al., NIM A 1027 166295 (2022)
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Practical issues:

Critical tolerances

 quantification of tolerances by dedicated analytical calculations or even FEM simulations

-> values depend on specific project; tight tolerances -> high cost, small market

 way to produce a round cavity mantle depends on what tolerances can be accepted

 rolling causes residual pear-shape at the weld

 drilling (from inside) gives very good roundness but is much more expensive (especially for large 𝑟)



FAIR GmbH | GSI GmbH Low beta, normal conducting cavities 27

Practical issues:

Critical tolerances, intrinsic deformation

 tolerances to be checked during/after production and at delivery on-site (after transport !!)

 dedicated devices probe the piece by touching it (e.g. FARO-arm)

 alternatively, laser scanners are used

 cavities may deform significantly by:

 own mass and gravity (0.x mm)

 pressure from outside after evacuation (0.x mm)

 insufficient cooling or room temperature regulation

 deformations may change resonance-frequency and/or voltage distribution along gaps

 should be evaluated during design phase and anticipated into production drawings
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Practical issues:

Alignment

 most sensitive: magnetic axis of the quads “as built“ (if any) inside the drift tubes. Accordingly, 

internal quads augment alignment efforts significantly !  |∆റ𝑟| ≤ 0.1 mm

 alignment is from inside (beam/quad axis) towards outside (reference marks on cavity mantle)

 quad as “built“ inside drift tube →

 measuring its magnetic axis, i.e., 𝐵 ≔ 0
 storing/marking this information for each drift tube individually

 aligning each drift tube, such that magnetic axis coinsides with design beam axis even …

 … at expense of twisted/rotated drift tubes afterwards

 misaligned 𝐸-fields are much less harmful w.r.t. misaligned 𝐵-fields

 alternative to manual alignment: tight machining tolerances such that it must fit (Alvarez of Linac-4 / CERN)

 each project may have its individually optimized alignment solution

example: alignment of tubes for new

Alvarez cavity / GSI
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Practical issues:

Cooling

 power to be cooled away is given by residual shunt impedance 𝑃𝑐 =
𝑈𝑐𝑎𝑣
2

2𝑅𝑠

 generally, power is absorbed by water at room temperature

 a rule-of-thumb states:
 1 𝑙/sec of water increases temperature by 1°C during absorption of 4.2 kW

 rules works very fine and is confirmed by various simulations, albeit different schemes of water flow, 

channel geometries, etc.

 power dissipation is not homogeneously distributed along inner cavity surfaces

 scales with the square of induced surface current, i.e., with surface 𝐵-field amplitude (squared)

 dedicated simulations can provide for “surface current“ or “heat“ map
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Practical issues:

Cooling

 codes, that simulate cooling by using the full geometry of cavity and cooling channels are

commercially available

 however, their use is very hard, time consuming, and expensive (up to 105 €/$/CHF/₤ per 

licence / y)

 for practical application, it may be sufficient to use simple theoretical models:

 assumption of constant temperature at location of cooling channels

 using basic equations of heat conduction

 adapting equations to specific geometry

 in the following, examples for cooling the cavity mantle and the drift tube end caps are given
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Practical issues:

Cooling of cavity mantle

impacting rf-power

heat flux F = −ηm⋅dT(𝜃)/ds

𝑑𝑃𝑎𝑟𝑐 =
𝑑𝜃

2𝜋
𝑃𝑙𝑜𝑠𝑠

 at each θ: local flux towards channel augments by 𝑑𝐹 = 𝑑𝑃𝑎𝑟𝑐
1

𝑑∙𝐿
=

𝑃𝑙𝑜𝑠𝑠𝑑𝜃

2𝜋 𝑑∙𝐿

 total flux from integrating 𝑑𝐹 and using 𝐹(0) = 0
 plugging result for 𝐹(𝜃) into equation for heat flux

 integration of 𝑑𝑇(𝜃): 𝑇 𝜃 = −
𝑃𝑙𝑜𝑠𝑠 𝑅 𝜃2

4𝜋 𝜂𝑚 𝑑∙𝐿
+ 𝑇 𝜃 = 0 , 𝑇𝑚𝑎𝑥 ∶= 𝑇(𝜃 = 0)

 finally: 𝑇𝑚𝑎𝑥 = 𝑇𝑤 +
𝑃𝑙𝑜𝑠𝑠 𝑅 𝛼2

4𝜋 𝜂𝑚 𝑑∙𝐿
→ required 𝛼 to limit temperature to 𝑇𝑚𝑎𝑥 credits to S. Ramberger for

proposing this approach
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Practical issues:

Cooling of drift tube end plate

beam

seems long and ugly, but it is faster and cheaper than a FEM simulation

same considerations & equations serve to calculate temperature on indirectly cooled drift

tube end plate:

 scaling of rf-power at cap with 𝑟 from:

𝛻 × 𝐵~ ሶ𝐸, װ(𝛻 × 𝐵)𝑑 റ𝐴 ~ ሶ𝐸𝑟2, 𝐵 ~ ሶ𝐵 ~ 𝐼

𝑑𝑃 ~ 𝐼2 ~ 𝑟2, i.e., 𝑑𝑃 = 𝑎 · 𝑟2

 eqs. for power/heat flux to be adapted to geometry

 factor 𝑎 from comparing surface of endplate (𝑃𝑝𝑙𝑎𝑡𝑒) to total in inner surface of cavity (𝑃𝑙𝑜𝑠𝑠, 𝑡𝑜𝑡)

 integrations …

 𝑇(𝑟) = −
𝑎

𝑏𝜂𝑝

1

12
𝑟4 −

1

2
𝑟2𝑅𝑖

2 +
2

3
𝑟𝑅𝑖

3 + 𝑇0

 𝑇0 = 𝑇𝑤 +
𝑎

𝑏𝜂𝑝

1

12
𝑅𝑎
4 −

1

2
𝑅𝑎
2𝑅𝑖

2 +
2

3
𝑅𝑎𝑅𝑖

3
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Copper plating:

Motivation

 specific resistance of stainless 𝜌 ≈ 0.72 Ω
𝑚𝑚2

𝑚

 specific resistance of copper 𝜌 ≈ 0.017 Ω
𝑚𝑚2

𝑚

 reduction of power loss by factor of 40 through plating inner surface of cavity

 layer thickness should be well beyond the skin depth, i.e., 1/𝑒-penedration depth of rf-wave:

 10 MHz → 𝛿 = 21 µm,   1 GHz → 𝛿 = 2.1 µm

 in practice layer thickness ≥ 15 𝛿, mainly due to achievable homogeneity

 alternatively, whole cavity may be produced from bulk copper → issues with:
 cost

 meachnical stability

𝛿 =
𝜌

𝜋𝜇0𝑓
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Copper plating:

Requirements to/for plating

 plating for accelerators is a complex task, number of experts around the world is very sparse

 there are many commercial plating facilities everywhere. But many focus on making surfaces

look pretty (cars, dishes, accessories, etc …), rather on conductivity

 inside of a cavity operated under incoming rf-power it needs:

 very clean copper, i.e., 𝜌 ≤ 0.0171 Ω
𝑚𝑚2

𝑚

 copper surface roughness 𝑅𝑎 ≤ 1.0 µm (mean of bump heights < |ℎ𝑖| > from mean (even) surface)

 strong adhesion (no peeling off)

 no bubbles

 steel to be plated should feature:
 𝑅𝑎 ≤ 0.3 µm

 preferably of type stainless: 1.4404, 1.4301, 1.4306, 1.4307  (304L)

 no voids
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Copper plating:

Procedure

 surface pre-processing (days):
 cleaning (chemicals!), removing bumps (partially by hand!)

 masking of surfaces not to be plated (outer part of cavity, sealing surfaces)

 closing holes, to which Ni/Cu must not enter (bores, cooling channels)

 degreasing (chemicals!)

 surface activiation

 plating (hours):
 plating with very thin Ni surface (link between stainless steel and Cu)

 plating with Cu surface

 surface post-processing (days):
 water rinsing

 removing bumps and blisters

 final polishing

 applying pre-vacuum or N-atmosphere in case of long storage afterwards
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Copper plating:

Procedure

 tayloring of anodes is lengthy procedure requiring key expert knowledge:
 a large number of individual anodes to be distributed inside the cavity

 to arranged around stems, drift tubes, flanges → tailoring

 some parts need to be “shadowed“ to avoid over-plating and blisters

 anode distribution and geometry determines homogeneity of layer thickness

 requires trials (& errors) with dummy

geometries

 even dedicated FEM simulation tools are

used to predict the current flow

 applied currents during plating range up to

104 Amps

masked anodes nickel-plating

copper-plating rinsing

L.M. Antunes 

Ferreira
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Rf-conditioning

 although new cavity has been cleaned and re-polished, its surface is full of tiny dirt / dust

particles and material spikes / scratches

 cause local surface field peaks → local field emission → melting of these perturbations

 melting causes further spreading of perturbation and strong pressure increase → rf-

breakdown → de-tuning → reflection of incoming rf-power
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Rf-conditioning

 initial perturbations are “conditioned“ away, starting from very low
 rf-power level 𝑃
 rf-pulse length 𝜏
 rf-repetition rate 𝜂

 initial time-averaged rf-power 𝑃 · 𝜏 · 𝜂 is some 105 lower w.r.t. design value

 first conditioning of a new cavity up to design operation parameters: weeks to months

 re-conditioning time for cavity already operated at design values:
 after breaking the vacuum: days to weeks

 after some operation below design: hours to days



FAIR GmbH | GSI GmbH Low beta, normal conducting cavities 39

Rf-conditioning:

General procedure

 rf-conditioning is like cooking; each expert has individual recipe

 common features:
 diagnostics: pressure, heat sensors, cooling water temperature, cameras, X-ray det., res. gas 

spectrometer, …

 rf-signals: coupled-in / coupled-out / reflected rf-power

 while watching vacuum, reflected power, and …:

 increasing smoothly(!) one of the parameters 𝑃, 𝜏, or 𝜂
 if pressure beyond approx. 10-5 mbar    or breakdown of coupled-out power  →

 reduction of input rf-power, waiting for recovery of vacuum to some 10-7 mbar

 recovery of mean input rf-power

 increasing the chosen parameter

 increasing the other parameters

 cavity should be conditioned with some n·10% margin beyond design parameters

 cavity should perform long-term run (some days) at these parameters

 w/o operation, cavity will become untrained and needs re-conditioning



FAIR GmbH | GSI GmbH Low beta, normal conducting cavities 40

Rf-conditioning:

General procedure

 several trials have been made to fully automate rf-conditioning

 doing so, it has been realized empirically, that surfaces are conditioned by rf-pulses that do 

not cause rf-beakdowns, i.e., during the recovery periods

 a good example can be found in: L. Millar, Proc. of the 2020 Linac-Conf.

reflected power

pressure

output power
input power
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