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LONGITUDINAL BEAM DYNAMICGS Il.
SINGLE RF SYSTEM



Synchronous particle

In a synchrotron, the average particle orbit is constant during acceleration
— magnetic field B and RF frequency wg, increase synchronously.

Design momentum p_follows the magnetic field variation p.=gBp,

: : : . 2TTR : .
Corresponding particle has revolution period T, = Boc (R —average machine radius)
oC

and angular revolution frequency w, = 2n f, =2n/T,

A particle synchronised with RF frequency wg, = h w,
is called synchronous particle, its energy gain per turnis | 6E = q V, sings,

where ¢, is synchronous phase, h - harmonic number,
and g - particle charge.

The acceleration rate of synchronous particle is
OE dEg Wy
T,  dt  2n
In this phase convention: no acceleration, if .= 0 or .

Longitudinal motion
qV,sings — synchrotron motion




Non-synchronous particle.

First equation of longitudinal motion

Non-synchronous particle with parameters w, ¢, p, E has small
deviations Aw, A}, Ap, AE from corresponding parameters w, &, p,, E;
of the synchronous particle.

The energy gain for this particle is g V,, sing, where ¢ = ¢, + Ad

dE

. w
and acceleration rate - = o — q V, sing

Subtracting similar equation for synchronous particle we obtain

d (AE\ 1 " ( VAL
)z mom e | AT

®

— This is our 1%t equation of longitudinal motion



Second equation of particle motion

The phase of any particle relative to the RF voltage is
() = | wgpdt — hO(L),
where its azimuthal position 8 = [ wdt.

—dprp=_190
Then Aa)—thH— g :
Now, using the definition of slip factor n, oo v
9 _ _ w22 — Ap
ar b(UO iy —hwon . ,

and the 2nd equation of longitudinal motion is

dp hwgn (AE
dt B ﬁZE Wy




Phase equation.

Small amplitude oscillations

. . . . . AE
Combining two equations of motion in conjugate variables (U’ gb)
0

d (AE\ 1 Vi _ 2 dp  wipn [ AE
it \hwo ) = 2 QoS¢ = sings) dt  B2E \hw,

and assuming slow time-variation of E, w, n, we obtain phase equation:

d%¢ hw?in . .
— = - ﬁ?ZE qVy(sing — sing,)

For small amplitude particles with Ap=¢dp—-P.< 1

d?A

(since sing =sin(¢g + Ap) = singgs + A cosgs) > dt2¢ + wZAp =0
Where frequency of linear W hw?n cosds v
synchrotron oscillations is s0 21 B2E 0




Small amplitude oscillations.

Phase stabilit

a)2 _ _ hw?n COSg v
SO 2 TL-BZE 0

For phase stability:
w3 >0 > ncosps < 0

No acceleration: sin ¢, = 0
> ¢, =0 fory <y; (n <0)
¢s =m fory >y (n > 0)

+ w2,A¢ = 0 | > Equation of a harmonic oscillator

Solutions:  A¢ = Ag,,, cos Y
Ap =- A, siny

where Ag = % ~ AE

W= wgot —synchronous angle,

2
, wrrN (AE
App = Appwso = B2E (hw?)

A | Ag,

ARV
Y Ag,, - amplitude of
phase oscillations
«

10



Phase equation.
Large amplitude oscillations

The phase equation can be re-written as

¢ @ : : _
ﬁ+cs(sm¢ —singg) =0

Multiplying by qb = % and integrating

over t, we obtain an integral of motion

L+ up) =¢

2

with energy of synchrotron oscillations &€
and RF potential

~
U(p) = —(cos ¢ + ¢ sin ¢s) /cosgps

Phase trajectories are described by

1.0

Vig)

0.0

05+

voltage |

-05-

-10},

Q=1
Y > Ve

s a4 s e
¢ Irad]

10

05+

00

¢ = twsoy/2[€ — U(P)]

aratrix
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V(¢)

1.0F

05}

deceleration
sings <0 | y>y;

0.0

acceleration
sing, >0

-05¢

-1.0

\|1||\|
oIr

Y >Vt

Y <7Vt

2 3

4 5 6

“ Phase stability

ncosgp, < 0

W(¢)

Potential U(¢) = —(cos ¢ + ¢ sin ¢p;) /cosgs.
AE = 0 at extremes of potential: U’'($p) = V() =0

sing =sind, has 2 solutions:

9

®- ;=0 +2nk (k=0, 1,... h-1)- stable fixed point
@®- §,=1t— P, +2nk —unstable fixed point

the 2" turning point is ¢, defined by

Uld,,) = U(d,) = Ulr - )

Acceleration. Separatrix

1.5f

1.0-

2.0

0.5-

0.0

| cb; =IT[ ;n/lé
(example)

-0.5

e wu
3
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Acceleration. Transition crossing

Below transition:

=

Above transition:

Yy <ve n<0 Y >vYen >0

2.5 | | | | | 2-5*‘ | |

2.0° _ 2.0
s 15 ¢, =1/18 % 1.5 ¢, =1 -1/18
%10 g 1.0/

0.5 0.5

0.0 ~ 0.0

-3 -2 1 oi 1 2 0 1 2 3 a 5 6
¢ [rad] ¢.[rad]
: AFE :

2

1_

AE [a.u]

¢ [rad]

¢ [rad]

Direction of
particle motion.
Since

. wipn [ AE
¢_ﬁ% hw,
- ¢ increases
(¢ > 0) for
AE<O if n<O

or
AE>0 if n>0

—> RF phase jump (1t - 2¢,) needed during transition crossing

13




Acceleration. RF bucket

The phase-space limited by the separatrix is the RF bucket:

2
. wppn (AE | — —
— ,BZE (ha)()) - iwso\/Z[U(” ¢s) — U(P)]
2 bm
Bucket area [eVs] (also longitudinal acceptance): A4 = P AE(¢p)dg
0 /¢,

Bucket length [rad] is &, - (- §,)

Bucket height (energy acceptance):

AEmax  Vso B 2

R V2[U(m = ¢s) — U(es)]

. Wso
with synchrotron tune vy, =

00

14



Longitudinal phase space.

Bucket area

¢ Stationary case. No acceleration

uncaptured ¢ [rad]
particles

The separatrix separates the
bound oscillations from unbound

N 2 a 6 8 10 12

No energy gain - sing, = 0 and

~ U(®}) = cosd (fory > y¢). Then

2T
f J2[UGr — ¢5) — U(P)] dop
0

2T
= 2[ sinE ap =8
0 2
Due to acceleration the bucket area

__ 168 | qVE
- WRF 27Th|17

A

T(s)

is reduced by a factor I'(¢, ), which

approximately is

_ 1—sin ¢
F(¢5) " 1+sin b

Note that A =0 for ¢, = /2.

15



Longitudinal phase space.

Bunch emittance

¢ Particles usually fill only some
Wl T 1 part of the bucket, a bunch

SO+ ]
2/\/\/
17 bunch : e can have up to h = wg/w,
; A I bunches in the ring

Longitudinal emittance [eV s]
is the area inside the limiting

particle trajectory

2

_ 2 ror
e = [P"AB,($)dg

Bunch length [rad] Ad, = ¢, - b with  U(d, ) = Uldy).

and in [s]  t©=A4d,/(hw) For ions units are [eV s/charge]

16



Longitudinal bunch emittance

Phase trajectory (reminder)

w%zF|77|

AE
(8 ) |

For non-accelerating bucket: ¢, - g = 2¢,
and bunch emittance is

€p =

¢
*E wso f ’ \/2(cosqb — cospp)dp

Ratio €, /eshort

(no acceleration)

1.5 2 2.5 3

w122F|77|\ 0
|

Short-bunch approximation —2 ¢”

— Short-bunch approximation
€p, = AE ¢pp,/h=m AE t/2
should be used with caution
forp, >1

17
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Energy loss

: : Phase trajectories of lost
* Even without acceleration the average energy .
E)artlcles on LHC flat top

of particles may change due to synchrotron On/ (V20
radiation, induced voltage, electron cloud...

* Energy lost by a particle per turn AE=U, is
compensated by the RF system 2

U,=q Vsind,
— Bucket becomes accelerating with B = const. o V =16 MV, 400 MHz
— Damping of synchrotron oscillations e e e “DDMQ“:)’O
Synchrotron radiation at LHC flat top: On/ (V20)

U, =7 keV for protons and for 2°8Pb32*jons 7 MMAAMMM/\/\NW\N

U; A
—t >~ — =~ 162 larger! o
u, A
. . Tion A% _ IR AVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAY,
Damping time ~ S5 0.5 is also smaller!
p VANV ANV

-20 -15 -10 -5 0

¢/(27)

— 6.3 h for longitudinal emittance

18



Synchrotron frequency

Due to non- I|near|ty of RF voltage

d2¢ wso _
— COS¢S (singp —sin¢gg) =0

all particles oscillate with different
frequencies w, =2t f, which depend on
amplitude of oscillations.

Since

% = ¢ = wsoy/2[U(¢L) — U(9)]

the period of synchrotron oscillations is
dp 2 fqu d¢
¢ Wso Jg, 2[U(¢r) — U(P)]

Ty =

For non-accelerating bucket in
single RF system
ws T ~1 5
wso 2 K(sm o 16

K(x) is the complete elliptical integral

of the 1t kind

1.0r

0.0- I I 1 I I 1 1 L L I L n L L 1 1 I L 1 I 1 |-
0.0 0.5 1.0 1.5 2.0 2.5 3.0
Oscillation amplitude ¢, [rad]
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Hamiltonian of longitudinal motion

Using conjugate variables ¢ and AE/(hw,), the equations of
longitudinal motion can be also presented as

OH AE oH -
ﬁz_(h_wo) and _0(,?—(‘])3;)):4)’

with the Hamiltonian

_ 1h%*wfn ( AE 2 gVcosgs
H=3"50 () — 1522 W) - U(9)]

It can be easily generalised for more RF systems (with different
harmonic numbers h) and induced voltage (collective effects).

20



Adiabaticity:

why is it important?

During beam acceleration, the Hamiltonian H of the system depends on time.
If changes are slow enough (adiabatic), H is considered to be quasi-static.

. . . adA . .
The parameter A changes adiabatically if TE <« A, where Tis a period.

dT
Applying for the synchrotron motion d_tS K1

L fOE@)

T 2m hw, 2T

Adiabatic invariant of motion (action)

— Longitudinal bunch emittance is an invariant of motion during acceleration
and RF manipulations, if parameter change is adiabatic

21



DOUBLE RF SYSTEM



Multi-harmonic RF system

Many rings have multiple RF systems (with different f ;) for

 Beam acceleration. In low energy rings this is dictated by the fast
change of particle velocity Bc: fof = hfy = hzﬂ_i?

* Acceleration of different particles (leptons, protong, ions)
— 6 different RF systems in the CERN SPS in the past: at 100 MHz,

200 MHz (SW and TW), 352 MHz, 400 MHz and 800 MHz.
 Beam transfer from one ring to another.

* RF manipulations (bunch splitting, merging, rotation, beam coalescing,
batch compression, controlled emittance blow-up, ...). 2 5 RF systems
used in the CERN PS (see lectures of H. Damerau).

Note: wide-band RF system (as Finemet in CERN PSB) allows
simultaneous operation at different harmonics h

23



Higher harmonic RF system

Main applications of a higher harmonic (HH) RF system used in addition to
the main RF system

Reduction of the peak line density - bunch flattening (to decrease
space charge and other intensity effects)

Increase of available bucket area

Increase of synchrotron frequency spread - to cure beam instabilities
(see next lecture)

Modification of a zero-amplitude synchrotron frequency f,
Control of bunch length
Exotic: compensation of (V, +V,) during momentum slip-stacking, ...

The HH RF system can be also passive, using the voltage induced by the
beam, with an amplitude and a phase which are the functions of the
beam parameters - applied mainly in the lepton rings.

24



Higher harmonic RF system:

operation modes

Example forn=2, r=1/2, sing,,=0 The total voltage in double RF system
Single RF BLM BSM V=V, [sing +rsin(ng + D, )],
V,and V_ =rV, - voltage amplitudes of
S /\ the main and HH RF system with

\/ harmonic h, = nh.

Typically V<V, and even V, <V,/n.

The operation mode is defined by @, :
=) (1) bunch-lengthening mode (BLM)

or "out-of-phase”

(2) bunch-shortening (BSM)

or "in-phase”

@D
e ‘\@W” —> The choice of the mode is dictated
= by the application
¢ ¢ ¢
above transition ®_ =0 O, =n

below transition @_=mn D.=0 —> for even n; opposite forodd n=3,5 ...
n n

25



Double RF system:

synchronous phase and synchrotron frequency

Adps

Synchronous phase ¢, Synchrotron frequency f (0)
From definition of a synchronous particle From V'’ =0, the synchrotron frequency at
Sin ¢so = sin ¢ + 7 sin (ngs + G, zero amplitude of synchrotron oscillations
S — S S n
> ¢.= @, for®,=-ng, +m(or0) Fu(a = 0) = st\/COS ¢s + TZOZO; (On¢s + ®,)

Synchronous phase shift Ag,

0.3F

o2 [\ P =10 (V> V) Relative change in synchrotron frequency Af,(0)/f,,
01l n=4 -
0'0; |’=% ) , BS-mode 7

[ BL-mode BS-mo B 0.5 L .
_0-1} 7 | BL-mode A -
[ N 0.0
_02F Z [ :
L ! ! ! ! ! \: : ¢SO R T[ :

Afs
fso

- -0.5 =
0 1 2 3 4 5 6 | n=4
®4 [ r="%
1-07 1 1
1 2 3 4 5 6

Large frequency change, but also high / N
sensitivity to phase shift in BL-mode

26



Double RF system: bunch shape

The peak line density is reduced in Flat bunches (BL-mode)
BL-mode and increased in BS-mode The “flat” bunches are obtained
when V’(¢@,) =0and V’(¢,) = 0:

3.5

sinp,, =0 — SRF
O h=2 e cos ps = —rncos (ngs + ©,,),
250 r=1/2 . . .
sin ¢, = —rn? sin (ngs + ®,,).
2.0}
15| f The HH voltage parameters r and @,
Lof | are defined for given n and ¢
i | 2 1 sin? @0
095 0.5 0.0 05 ~1.0 n? n?2—1

Time [ns]

— For sin @, =0 (no acceleration): r=1/n, @, =1+ (1-n)p, and @.= @ ,=0or T,

where we also used relation: sin ¢g9 = sin ¢ + rsin (ngs + P,,)

27



Double RF system: bucket area

Bucket area is increased in BL-mode and
decreased in BS-mode. Higher is n, smaller is
the effect.

The ratio of the stationary-bucket area in BL-
mode (with n =2) to one in a single RF system
is @ monotonic function for r < 1/n:

A(r)/A(r = 0) = [VI+2r + In(VT+2r +v2r)| /2

For r > 1/n, the bucket area continues to shrink

in BS-mode. In BL-mode 2 buckets start to form.

Minimum peak line density can be obtained for
r >1/n (depending on particle distribution)

BLM BSM

NNRERVA
\/ N

AEfo, /

7N
=

singp,,=0,n=2, butr=0.75

28




Double RF system:

synchrotron frequency distribution

Beam stability is improved with a larger synchrotron frequency spread
providing Landau damping. = In this application, the HH RF system is often

called a “Landau cavity”
BS-mode BL-mode

1.6 1.0

TGo=0,m
r=1/n

—— SRF

1.4
0.8¢

1.2

1.0 0.6}

s
:
= 0.8f
-3

fil fia

0.6 0.4}

0.4l — SRF
P, =0,m 0.2} — BLM-n=2
L . - —— BLM - n=3
02 r=1/n —— BLM-n=4
00 I I L L I 1 1 L 040 I L L L L 1 i I
0 20 40 60 80 100 120 140 160 180 0 200 40 60 80 100 120 140 160 180
Phase amplitude [deg] Phase amplitude [deg]

—> For the same HH voltage (ratio r), a larger spread Af, or change in f,(0) can be
obtained for a higher n and in BL-mode.
Nevertheless BS-mode is used for beam stability in the CERN SPS and PS . Why?
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Double RF system:

phase shift ©_

3.5 T T T 2.5 T T
— BSM — BLM
3.0F — BSM1ldeg |/ — BLM 1deg
— BSM 5 deg 2.0+ — BLM5deg
2510 —— BSM 10 deg || — BLM 10 deg
— BSM 20 deg — BLM 20 deg
S0l 1.5}
L5r 1ol
1.0
0.5+
0.5
0.0 - . - 0.0 - .
1.0 0.5 0.0 -0.5 -1.0 -1.0 -0.5 0.0 0.5 1.0
Time [ns] Time [ns]
35 25

30

w
T

0

10+

BSM

BSM 1 deg |[J
BSM 5 deg
BSM 10 deg |J
BSM 20 deg

0

20 40

60 80 100 120
Phase amplitude [deg]

140 160 180

Synchrotron frequency [Hz]

N
o

=
(O]

fun
o

vl

o

BLM
BLM 1 deg
BLM 5 deg
BLM 10 deg
BLM 20 deg

20 40 60 80 100 120 140 160 180
Phase amplitude [deg]

Examples for various errors in @, with sin ¢ , =0,
n=2,andr=1/2 (800 MHz RF system in LHC).

Very accurate phase control is
required in BLM during acceleration
and in presence of intensity effects.

Transient beam loading (e.g. due to
the bunch gaps) displaces bunches

and modifies @, seen by them.

— Problems for beam stability and

beam manipulations.

— More RF power is required.

For example, for the 2nd harmonic
RF system in LHC, more than 4 times
power would be needed in BL-mode
than in BS-mode.
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Higher harmonic RF system:

bunch-lengthening or shortening mode?

* Bunch lengthening mode:
+ reduced peak line density (flat bunch)
+ increased bucket area
+ for a given V,, (orr), larger increase in synchrotron frequency spread
- high sensitivity to RF phase shift @, (tilted bunches)
- flat region in f, - distribution (limitation on max bunch length) for all n
- more RF power is required in presence of beam loading
* Bunch shortening mode:
+ good for beam stability (multi-bunch)
+ very robust (large allowed phase shift)
+ increased linear synchrotron frequency (TMC instability )
- increased peak line density (can be mitigated by emittance blow-up)
- reduced bucket size (as compared to single RF)
- flat region in f, distribution (limitation on max bunch length) for n > 2
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EQUATIONS OF MOTION WITH
INTENSITY EFFECTS

32



Longitudinal equations of motion

with intensity effects

Equations of longitudinal motion in conjugate variables (hATE,qﬁ):
0

this equation
doesn’t change

=

Phase equation = 5,

dp  wipn [ AE
dt  B2%E \hw,
d [ AE
dt \ hag Znh 2 (sing — sinyo)
a?¢ _ hwng \; oo o
a0z = 2r g2 0 (5In@ — singso)

d ( AE
dt hCl)O
CI

)| 470

[V/L\)_ Vosinggo]

hwonq
dt2 oo BZE Q( VOSln¢SO

where= Viosing + V4 () includes now induced voltage V, 4 (),

but we keep here V,sinp,, > why?
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Synchronous particle

A synchronous particle is synchronised with RF frequency w,- = h w,

and its energy gain per turnis  AE = qV, singy,
where ¢, is synchronous phase in absence of intensity effects.

The total voltage V, seen by a particle is the sum of the RF voltage V,; and the
voltage induced by beam V, ,: N\

V() > V=V (94 V()
N—
The acceleration rate of synchronous particle, defined by the magnetic ramp,

AE_dE _0)0 . AE_(L)O . .
= dts = qV, singgy and nowT—0 = o q[V, sings + Via(ds)],

where ¢, is new synchronous phase, with intensity effects.

Therefore V,singg, =V, sings + Vi ,(¢ds)

34



Intensity effects

The total voltage V, includes the

voltages induced by a stationary 4y and the

perturbed (by induced voltage!) 4 line density (beam current)

Ao (@) @Vind ()
p

Ao(@) + (e, t)

| (@)
Vind (d)) + Vind (¢) t)

For multi-bunch beam, the effect of 1001

induced voltage due to cavity
impedance is called beam loading
(see lecture by H. Damerau)

Initial particle distribution is modified

- new equilibrium (stationary solution).
This effect is called potential well distortion
(usually considered as a single-bunch).

Instability: perturbations A are growing with

time: A(¢,t) = A(¢p) e

Turn O

200 1

O,

dE (MeV)

—100 1

—200 1

15 2.0 25 3.0 35
dt (ns)
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Longitudinal impedance

Real and imaginary parts of impedance: Z(w) = ReZ(w) + i ImZ(w)

* Resistive impedance ReZ— beam loading, instabilities, beam induced
heating,...

* Reactive impedance ImZ - potential well distortion, loss of Landau
damping,...

Rsh w
Resonant impedance: | Z(@) = o with bandwidth | Aw, = —
1+iQ (w— - Er) 20
r

* Narrow-band impedance (RF cavities and other cavity-like objects)
—> multi-bunch effects (beam loading, coupled-bunch instability)

e Broad-band impedance (space charge, cross-section changes): TAw, > 1
— single-bunch effects (potential well distortion, loss of Landau damping,
single-bunch instability)

See lecture on Impedances and wakefields by A. Mostacci
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Contributors to impedance model

(CERN SPS)

TW RF cavities:

Beam position Beam position
200 MHz and 800 MHz

monitor H monitor V

Vacuum flanges

Vacuum chambers Kickers o
(step transitions)

SPS MAIN VACUUM CHAMBERS
+ Under vacuum

156(t=2 132(t=1.5) 156(t=2)
Bending magnet MBA  Bending magnet MBB Quadrupole F

37



Example of realistic impedance model

(CERN SPS)

ke

RF

HOM

—Total

v FlADIGES

........ Kickers
~Unshielded PP

1.

Yo VF
J\/“A/\/\M AN

This model includes:

200 MHz cavities + HOMs
800 MHz cavities (2)
Kicker magnets (8 MKEs,
4 MKPs, 5 MKDs, 2 MKQs)
Vacuum flanges (~500)
BPMs: BPH&BPV (~200)
Unshielded pumping ports
Beam scrappers

Resistive wall

6 electrostatic septa ZS
MSE/MST + PMs

38



Spectrum of unstable bunches

Single bunches injected into the ring (CERN SPS 26 GeV/c)
with RF off & slow debunching and fast instability

Tumm =10

Tum = 10 0.012

o
[¥]

0.01¢

o
—_
w

< 0.008}

0.006+

o

o

an
o
o
o
B

Line density [arb. units]
. o .
Spectrum [arb. units]

0.002+

i e e | o 3 1 1 o PP W R RN TR ¥ 1 e PR 0 S U R Ty . & e o b B g T P S :ﬁj
20 40 60 80 100 0.5 1 1.5 2 2.5
Time [ns] Frequency [GHz]

(=]
O 3

Bunch profile Spectrum of unstable bunch
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Spectrum of unstable bunches

Measurements of SPS longitudinal impedance with long bunches 12
y — I o ‘. Y M 0.50 5
4 ‘ » ‘ M | — Exp, average, 1 x10
! ! ' e 0.45 S n
‘ ’ ' f" 10 F Sim, average, 1 x10
121 ’ 0.40 —
‘ ' 'y 2
) c
- ' 'f 0.35 S st
— \ 0.30 o
£ sl ‘ i )
o 0.25 = ST
& ' S
i [ ¥ 0.20 8 4k
[ a
4 Travelling Wave b 045 (V]
RF Cavities Vacuum flanges 2k
0.10
2k ]
0.05 0 > < o g
052 024 06 08 10 12 14 16 18 20 22 24 0 400 800 1200 1600 2000

Frequency [GHz]

Frequency [MHz]

Line density modulation growing at resonant frequencies of impedances
with high R/Q = method of impedance identification and measurement
(used for two impedance reduction campaigns in the CERN SPS)
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SINGLE-BUNCH INTENSITY EFFECTS

41



Induced voltage

Using periodicity over azimuth 8 and relation ¢(t) = [ wgrrdt — hO(t),

we have V,, (¢ )=V, ,(¢p+ 2rh).

ik
Then beam induced voltage V;,,; = Z Ve h, anditcan also be presented

k=—0o0

ik - .
Vi‘ndz_ Z Zklke h =—CIhC()ONp z Zk}‘.kelkg

k=—0o0 k=—o0

where Zj, is the longitudinal impedance at frequency kw,
I, and A are the k-th Fourier harm(h)nlcs of the beahm current and line

density with normalisation / dpA(¢) = / d¢/ dgb]-"(g/) ¢) — 1.

—rh —rh -
For beam current we used  [(¢) = ghwoNyA(h)
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Phase equation

with intensity effects

Using definition of linear synchrotron o hwin qVycosdg,
frequency, the phase equation is 0 21 B2E

d*¢ w3
dt?  Vycos ¢g

(Vt _ VO sin ¢SO) =0

Defining ¢ = ¢5 + A¢, induced voltage can be presented as

fork Ap/h<<1
/

ikAqb
Vind(¢) =—27Th1b Z ZkARB h z—277,']’1,11) z Zk Ak [1+—+ ]

k=—co0 k=—o0
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Stationary bunch: potential well distortion

For A= -, <<1 d2Ag 5 Vina(®)
the phase equation > gz T Wso [Ap + —= ]=0

Assuming symmetric bunch profile, so that 4;, = A_,

Vina($) = —2mhi, Z + ]
k=—o0

phase shift frequensy shift
A 2mhly ZARZ 2 o 2 [1 4 — kallz
¢ fCOS¢SO . k € k wS _wSO[ f COS¢SO . k m k]

Bunch lengthening for constant emittance: 1= (t/ty)* + (t/t,) [w2(Ty) - W]/ W42
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Potential well distortion:

synchronous phase shift

(1) This is the synchronous phase shift —
of the potential well, also valid for 21thl,

. . . . z Ak ReZk
particles with small oscillation
amplitude, but difficult to measure

(2) The shift of the bunch centre with respect to RF voltage can be found
from the energy loss (per turn and particle) U — loss factor

Vo sindso = Vo sindso + Ay cosdso + U/q =+ Ag, = —

co

U = —qh?l, z 2, |2 ReZ,,

k=—o0

— Measurements of A¢,, for various t give
estimation of ReZ(w) of the ring



Potential well distortion:

synchrotron frequency shift

We have obtained frequency w2 = w1+ 27y Z A k2 Imzk]
Vir CcOSg . k

For shift Aw, = w, - W, << W, and ImZ/k = const over stable bunch spectrum:

— 71,=13ns [
— T,=165ns

]

[Hz.

Jo2

7TIb ImZ 5 7= 0.95 ns
A(US ~ (1)50 V z /’{k k

rf cospg k =
Since A(¢) = X Ake% > Z Ak k? = —h? L2
e do? lp=0
For a parabolic btzmch ) ] 3 1, ImZ
M) = 2o (1 - ¢_129) — w5 = wsol1+ % Vyp h cosggo (fo)° k ]
with ¢p = hwot/2 Strong dependence on bunch Ieng}ch

Defocusing effect above transition (cos ¢, < 0) for ImZ/k >0
(inductive impedance) - more RF voltage needed 46



VLASOV EQUATION



Vlasov equation

: : o, dF
The Vlasov equation can be derived from the Liouville’ theorem — = 0

OF dEOF dy OF

In variables (&€,v) the Vlasov equation is 7 + FTRET: + it 7 0

— for a stationary case F = F(€)

For beam stability study, we should analyse the time behaviour of small
perturbations F(€,1,t), A(¢,t) and T,4(6,6) of F(E), A($) and Vina($),

assuming the dependence on time as [F(&,y, 1) = F(E,y, Q)e ™

If perturbations grow with time (ImQ > 0) - beam is unstable

8]:'+d8d]-'+dzp8]:“_
ot  dt d&  dt oy

The linearised Vlasov equation 0
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Equations of unperturbed motion

c 4}2 U energy of
In variables (€, ) B 2a)§0 +Ui(4). synchrotron motion
w,(E) [ d¢’ phase of
v =sen(nae) 22 | | |
20,0 J \/5‘ —-U,(¢") synchrotron motion
with potential  U#) = o [ d/IVd) = Vosing
Vi cos o Jag,

the equations of unperturbed particle motion are simply
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Equations of perturbed motion

In presence of perturbation (induced voltage) the phase equation is

d¢ w2, . W
Y S Vo —V 0| = — 5 ‘/in ,t 5
dt + Vi cos @ Vio(9) 0Si1 Pso) Vo cos @40 a(®1)
In variables (£,1), after multiplication by ¢
d_g _ d¢ Vind(d), t) — —w (5) af]ind(gl’)’ t)
dt dt Vycos gy ’ Oy

Here the same definition of potential (as for unperturbed motion) was used:

- 1 ¢ -
U na() / 4 Vina ().

B Vo cos ¢y A,
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Linearised Vlasov equation

The Vlasov equation can be now rewritten

B.F d& dF di) OF

ot ' dtdE " dt v =0
Taking into account that / \
o, (&) o1 ) = w,(€)
oy

The linearised Vlasov equation [5 + %@] F = w,(€) 90 dE
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LEBEDEV EQUATION



Lebedev equation (1/4)

Solutions of Vlasov equation should be periodic in ¢ and can be expanded in
azimuthal Fourier harmonics (m) Upna(E,w,Q) = Z Uindm (€, Q)i

. m——oo
5, 0| = U, q dF-
_ — g 1mn oY \ im
[ +w8u‘)‘}_ wS()aﬂﬁ 1€ F(& w,Q Z_]—" (E,Q)ei™
Then 1 (m=1, 2,3, ..—dipole, quadrupole, sextupole, ...)

N dF S~ MUy, (E.Q) . N 1
jf(g,w,g):_a)s(g)d—g Z ”g%)elmw Uina(¢) = W/ACb A

m—=—

Since voltage harmonics V;(Q) = —gN ,hwyZ, (Q)2(X)

the Fourier harmonics of perturbed potential can be written as

_ 1qNpwoh f: Zk(82) @,} where Zy(Q) = Z(kwy + Q)
Vocosgso “— k
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Lebedev equation (2/4)

Functions I,,.(€) are Fourier harmonics of

the expansion of the azimuth plane wave |

over harmonics of synchrotron motion my

For short bunches in single RF ¢(€,v) = v2€ cosy and
(/.. is the 1t kind Bessel function of the order m)

Single rf

0.61

Lo (E))im

0.21

-
-
—
-
-
-
-

ﬂ”
-

-
-

0.0

05

2.0

Lae(E)/i™

Ly (€) = %/_

)

" dl//e i%Qb(g’l//)_iml//

T

dy e EV) cos my

Single rf

0.6
041 /AN T
0.2
0.0
021 — m=1k/h=2
ol T m=2k/h=2
0.0 0.5 1.0 L5

£

Exact (solid lines) and approximate (dashed) functions

2.0
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Lebedev equation (3/4)

The line-density harmonic A, is related to distribution function F(€) as

. 1 [=zh . L Yy [7 En F(E,w, Q) _, .
M (Q) :27z_h/ hdqﬁ/l(gl))e i? —znh/_ﬂdt//A d& . (6 e~ ib(Ew)

where the transformation of variables dodg = w2, dip d€ Jw,(E) was used.

The harmonics of line density perturbation A:(Q) are related to the
perturbation of distribution function F(&£,,Q) in similar way

- Emax (E,1,0
(Ak(ﬂ} Zﬁrh/ aﬁf,/ dé‘@ iR o(EY)

Last step: insert the obtained solution of Vlasov equation for F(&,,Q)
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Lebedev equation (4/4)

General system of equations for line density harmonics (A. N. Lebedev, 1968)

where

G @25, ),

£ =

wf[,qu h wy _

Vo €os 00

21 w2, Ioh
Vb cos ¢

¢ -is intensity parameter
(I, the average beam current)

and beam transfer functions G, (Q) are defined as

Fna d}' mk(E) Ly (€)ws ()
m— wS(E Z/ Qz/mz—wz({f)

5[
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Loss of Landau damping

in longitudinal plane

Relative bunch offset Ay /A¢

Wy /wso

1.0 Landau damping in longitudinal plane is provided by

synchrotron frequency spread.
— If it is lost, bunch oscillations are not damped
anymore: observed in Tevatron, LHC, SPS, ...

0.5

0.0

(= N, =2x 10 ppb
—05 - N, =1x 10" ppb — This happens when coherent mode is out from the
- N, =2x10' ppb
DY B synchrotron frequency spread.
0 10000 20000 30000 40000 50000
Turn number . . . Z L (Q)
The solution for Q exists if det |6, + EGLr(2) e 0

1.00

The analytic threshold En ~ — [ > Gul(Q) .

Low frequency approximation f <1/(wx7) for reactive
impedance with ImZ/k = const and parabolic bunches

B TN ] e
th

Vocososy k 48

« — 1S cut-off frequency of impedance

0.25 050 0.75 1.00 1.25 1.50
Particles per bunch N, x 10

k

m
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Single-bunch instabilities

1§

Vlasov equation is solved using F(&,¢,t) = e Z C(E,9Q) [cos my + — B sin ma)
The solutions in 2-D phase space are coherent odes characterized by two
mode numbers: radial and azimuthal.

Main types of instability (all present in the CERN SPS!):
e azimuthal mode coupling (in reality more rare): 1st mechanism proposed!

* radial mode coupling (Oide?)
* microwave (simultaneous excitation of many radial or azimuthal modes)

1.88 1= 0 B

= Coupled-modes —~ 4 b=

> S

1.86 - = LLED:modes é) N &

= = 3min fw,(&)] E; 20 0.5 ¢

3 —_

S 1.84 < N 8

3 R / .

1.82 7 4 20 F =

8 -0.5 &

\ & \ *?

1.80 T T T A T T M —40 8

1.34 136 138 140 142 1.44 1.46 T T T —1.0 8
Particles per bunch N,  x10'! —0.5 0.0 0.5

— Potential well distortion is important in all cases
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MULTI-BUNCH INSTABILITIES



Multi-bunch instabilities

The multi-bunch instability is driven by a resonator impedance
with a narrow bandwidth Aw,, so that one bunch sees the wake
from the previous bunch(es) - coupled-bunch instability

— Only one (unstable) term with harmonic k = | M + n close to
K. = w,/w,, can be kept in Lebedev equation (M is a number of
equidistant bunches with the phase shift 2mn/M between

bunches, n =0,1... M-1 and - oo </ < e0), assuming Aw, << Mw,,.

Ak () = —’iﬁGkk(Q)Zk;iﬂ)j\k(ﬂ)a — ZE = 1§ G ()

k

G, can be re-written using the principal value P for Q = mw,(&,,)

/ i (E)ws(E)dE T _, L (Em) Ly (En)
ka =2 2 [ / .F 92/m2 — wz(g) + Z§.F (5m)
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Multi-bunch instability:

stability diagrams

Stability diagram for

k
— = i Gi(Q) F(&) = Foll = &/Emaa)”
k
ReGy( )10 max=1.6 Single RF
7.5 m=1
Stability diagram for ImQ — +0 — S omax=20 -
25 /\
eGr( Z Q2/m2 _ w2(5) 25 J
>k unstable /I stable
oo / - 12 - 7.5 I
ImGkk(Q) =T al (8 ,) mk(g ) -10 E
m=1 we(Em) 125 :

From stability diagram the threshold is

k
7 > £ Gy

"502.557.51012.51;}3\0\22.525 ’
—> Beam is stable if vertical line'1/R,,
is inside stability region

Zit =1/Rsp + i Q(w/wr — wr/w)/Rsn
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Multi-bunch instability threshold

Requirements for HOM damping for given /,

- , Threshold R, for coupled-bunch instability
Ron _ Vocosds . 3 Wy (Em Example for FCC-hh at 50 TeV with
n,  2m2w3 Iy h = FUEm 7k (Em) N,=10% p/b, V =38 MV, y, =99.3
15.0
In single RF system without acceleration 12.5 1
4 (Wfrf7->3 _ <) e
Ry, < 321, W,u(fTT) % 75
— =1
= 50 . i: 5
where for distribution F(&) = Fo(1 — £/Emaz)” - — u=3
o0 -1 — =0
W, (z) = ‘ min Z(l — L2 (may) 000 0.5 1.0 15 2.0
,U(,u + 1) y€[0,1] —] frmewnm

— The FWHM bunch length is important
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Multi-bunch instability threshold:

impact of broad-band impedance

. Example for.LHC at 450 GeV/c f Loss of Landau damping
—=— HOM only f 1 ImZ
_04] —=— NOM andBE Sme =174 p=2/ BB & > ImG(Q)
.-I.“ : '.II 6 ( ) k<|kc|
PR f
i E BE = £58(0y)
=Rk |
E Loss of Landau E Coupled-bunch instability
& 1 4dampin !
0.1 P g\: 1 ReZ,
~ — -G Q
0.4 () ke wekr ()
0 2 1 i &
Particks per bunch M, = 10! tNhB = €NB<Q2)
Using again equation | get (g, + ngk(Q)Zk(Q) | _ 0
k
— Coupled-bunch instability threshold in presence L 1 N 1
of both narrow- and broad- band impedances §m(d) VP (Qs) - £8P ()
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Multi-bunch instability: growth rates

The instability growth rate ImQ for separate multipole m (no coupling) can be
easily found neglecting synchrotron frequency spread Aw,, for ImQ >> Aw,,

k . max (8)
— = —1€ Gp(Q2
7 £ Gir(§2) Grr(92 m_zoo/ de/m (&
o : 1 E N\ —
where for binomial function |F(€) = > (1 — ) with normalisation A,
\ ”a)sOAN gmax
.4

\ \
8max ¥ Eman _
(Qfm — wig) = —ig2E / 1EF/(E)2(E) | NAw = [ ag Bl o, B
Sk Jo 0

WS(X) o+ 1
/

/: 2mhw?, 1o L&)
% COS Qbso
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Multi-bunch instability growth rates

After substitution of f , F'(£) and I, we obtain

2 gmaac 'UI
Q—mwso:iméhwsolmReZk ppt 1) / ds (1— £ ) 725 /oE)
0

Vb COS ¢30 kr 277(*)3052 gma:r h

max

—

Taking into account that Emar = $oaz/2 and Gmae = hwo7/2  we finally have

ImQ 4 IhReZ, Dy (fo7)
Wso o2 hVo | COS</550| JoT

with formfactor / "

D) = "D Lo = 2y g
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Robinson instability

For fundamental impedance we need to keep two terms in Lebedev equation: with k,
=n+I1;Mandk,=n+1,M, where |,=-1; or |, =-l;- 1. This is true also if k. ~ LM/2

YA = —i€(g11 M + G12A2)

Then we obtain the system of two equations .
VA2 = —1€(ga1 A1 + g2 o)

Emax Q) — muw;
where g2 = g1, = / d€ F' (&), ()11, (E) and 7= ——
0 Mws
Taking into account that g,;,~g,, and g,,~8,;, =8, (-1)"
. . Zkl Zk‘2
We have for the growing mode v~ —i€gn 2 + I
1 2

There is no instability for n = 0 if k; = - k,, except Robinson type, where we
should take into account that Z;(Q2) = Z,(kwo + Q) and ReQ = muw,
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Multi-bunch instability: spectrum

For a narrowband resonant impedance at unknown w, = w, p, , the instability
spectrum has components at w=(n+1M)w, + mw,, -o°<|<eo,

(n=0, 1.. M-1is the coupled-bunch mode number, M is number of equidistant
bunches in the ring and m=1, 2,... is the multipole number).

On the spectrum analyzer negative w appear at [([+1) M = n)]w, - mw,
- Measured mode n is not sufficient to determine w, sincen+I M=% p,
Linesat n+|M and (I+1) M —n.

—> Measure n for different M
- Measure f,_, of the envelope I

|
|
14
]
n-2M -M n-m |0 \ /n M w/w,

synchrotron sidebands
for y >y,
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Multi-bunch instability: spectrum

Spectrum envelope with maximum at f__:

iff Tt<1l > f <1/t
iff Tt >1 > f~f

SPS: known HOMs at 623 & 912 MHz

®
»
L B

| IS
-
—— ——
=}

o
=
[
Iy

—h
—

1S

—> f, can be identified from spectrum
- R, from growth rate measurements

200 MHz beam lines
5 ns spaced bunches 63




Multi-bunch instability: cures

* Active
— Feedback systems
— Higher harmonic RF system
— Controlled emittance blow-up

* Passive
— HOM damping (couplers),
— HOM-free cavity design,
— Impedance reduction (modification of machine elements),
— Change of optics (of gamma transition)
— Synchrotron radiation damping in lepton rings
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Longitudinal beam instability cures:

Higher harmonic RF system

Measured averaged bunch length in (200 + 800) MHz RF system for V,/V,; = 0.23
Nominal LHC beam on the 26 GeV/c flat bottom of the CERN SPS

4 47 4
800 MHz off BL mode BS mode
3.5 __3.75¢ _ 375
Z 2 H
= 3.5 = 351 r- 35
=6 3.25 203251 =325
[-F] %:I.Q [=¥]
4 3 - 3 = 3
= = =
[ =] g
5 2 i 5 27 = 27
25 I |||m||mm|IIIIIHI||||::I:”:||||||I||H||"||||||"|"| )5 2.5 | T
2250F e RS e
o 2 4 6 8 10 o0 2 4 6 s 10 0o 2 4 6 8 10
Time [s] Time [s] Time [s]

In double RF system the CB instability threshold is 5 times higher.
Only BS-mode works (phase control, flat portion in f, - distribution)
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Beam instability cures:

Impedance reduction in the CERN SPS

e 200 MHz RF: 4 long = 6 short structures

P
200 MHz TWC * 623 MHz HOM damping

800 MHz TWC * Vacuum flanges shielding (~100)
! flapnges
H?M “— L OM f - Smaller bunc.h Iengthc.enlngf
reduced potential well distortion

- Stable HL-LHC beam

— 0.03 : , : : ‘ :
(73]
£ —2018
5 Measurements —— 2021 e Measurements
5 0.025¢ !
E. 026: 1.8
& 0.02r 2018: N=1.29x10"", ==28.39 ns R
S . N= " __ 1
E 2021: N=1.23x10"", 1=28.3 ns E 2018
09_ 0.015¢ 514 T
(] 5 . P
2 o001 | 512 el
5 E i
< 0.005 - 10 3 . m 1 2021
[ .
g . S, 05 Threshold of instability
500 1000 1500 2000 2500 3000 3500 ee 0310 s 200 23 30 35 40

Particles per bunch N,

Frequency (MHz)
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Thank you for your attention!
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