

CAS "RF for accelerators"

18 June – 1 July 2023 Berlin, Germany

Longitudinal beam dynamics II. Instabilities & intensity effects

E. Shaposhnikova (CERN) 27 & 29 June 2023

Copyright statement and speaker's release for video publishing

The author consents to the photographic, audio and video recording of this lecture at the CERN Accelerator School. The term "lecture" includes any material incorporated therein including but not limited to text, images and references.

The author hereby grants CERN a royalty-free license to use his image and name as well as the recordings mentioned above, in order to post them on the CAS website.

The material is used for the sole purpose of illustration for teaching or scientific research. The author hereby confirms that to his best knowledge the content of the lecture does not infringe the copyright, intellectual property or privacy rights of any third party. The author has cited and credited any third-party contribution in accordance with applicable professional standards and legislation in matters of attribution.

This lecture is continuation of Longitudinal beam dynamics I by *F. Tecker* See also Beam tracking I and II by *H. Timko* and Introduction to the corresponding Hands-on by *S. Albright & A. Lasheen*

Outline

- Longitudinal beam dynamics II
 - Single RF System
 - Double RF system
- Equations of motion with intensity effects
- Single-bunch intensity effects
 - Potential well distortion
 - Loss of Landau damping
 - Instabilities
- Linearised Vlasov equation
- Derivation of Lebedev equation
- Multi-bunch instabilities (driven by HOM)
 - Thresholds
 - Growth rates
 - Spectrum
 - Cures
- Bibliography

LONGITUDINAL BEAM DYNAMICS II. SINGLE RF SYSTEM

Synchronous particle

In a synchrotron, the average particle orbit is constant during acceleration \rightarrow magnetic field *B* and RF frequency ω_{RF} increase synchronously.

Design momentum p_s follows the magnetic field variation $p_s = qB\rho$, Corresponding particle has revolution period $T_0 = \frac{2\pi R}{\beta_0 c}$ (*R* – average machine radius)

and angular revolution frequency $\omega_0 = 2\pi f_0 = 2\pi/T_0$

A particle synchronised with RF frequency $\omega_{RF} = h \omega_0$ is called synchronous particle, its energy gain per turn is where ϕ_s is synchronous phase, h - harmonic number, and q - particle charge.

$$\boldsymbol{\delta} E = q V_0 \sin \phi_s,$$

The acceleration rate of synchronous particle is

$$\frac{\delta E}{T_0} = \frac{dE_s}{dt} = \frac{\omega_0}{2\pi} qV_0 \sin\phi_s$$

In this phase convention: no acceleration, if $\phi_s = 0$ or π .

Longitudinal motion \rightarrow synchrotron motion

Non-synchronous particle. First equation of longitudinal motion

Non-synchronous particle with parameters ω , ϕ , p, E has small deviations $\Delta \omega$, $\Delta \phi$, Δp , ΔE from corresponding parameters $\omega_{0,} \phi_{s,} p_{s'} E_s$ of the synchronous particle.

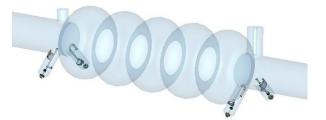
The energy gain for this particle is $q V_0 \sin \phi$, where $\phi = \phi_s + \Delta \phi$

and acceleration rate

$$\frac{dE}{dt} = \frac{\omega_0}{2\pi} q V_0 \sin\phi$$

Subtracting similar equation for synchronous particle we obtain

$$\frac{d}{dt} \left(\frac{\Delta E}{\omega_0} \right) = \frac{1}{2\pi} \ q V_0 \ (sin\phi - sin\phi_s)$$



 \rightarrow This is our 1st equation of longitudinal motion

Second equation of particle motion

The phase of any particle relative to the RF voltage is

$$\phi(t) = \int \omega_{RF} dt - h\theta(t),$$
where its azimuthal position $\theta = \int \omega dt$.
Then $\Delta \omega = \frac{d}{dt} \Delta \theta = -\frac{1}{h} \frac{d\phi}{dt}$.
Now, using the definition of slip factor η ,
 $\frac{d\phi}{dt} = -h\omega_0 \frac{\Delta \omega}{\omega_0} = h\omega_0 \eta \frac{\Delta p}{p}$,
and the 2nd equation of longitudinal motion is
 $\frac{d\phi}{dt} = \frac{h\omega_0^2 \eta}{\beta^2 E} \left(\frac{\Delta E}{\omega_0}\right)$

Phase equation. Small amplitude oscillations

Combining two equations of motion in conjugate variables $\left(\frac{\Delta E}{h\omega_0},\phi\right)$

$$\frac{d}{dt}\left(\frac{\Delta E}{h\omega_0}\right) = \frac{1}{2\pi h} qV_0(\sin\phi - \sin\phi_s)$$

$$\frac{d\phi}{dt} = \frac{\omega_{RF}^2 \eta}{\beta^2 E} \left(\frac{\Delta E}{h\omega_0}\right)$$

and assuming slow time-variation of *E*, ω_{o} , η , we obtain **phase equation**:

$$\frac{d^2\phi}{dt^2} = \frac{h\omega_0^2\eta}{2\pi\,\beta^2 E}\,qV_0(\sin\phi - \sin\phi_s)$$

For small amplitude particles with $\Delta \phi = \phi - \phi_s < 1$ (since $sin\phi = sin(\phi_s + \Delta \phi) \simeq sin\phi_s + \Delta \phi \cos\phi_s) \rightarrow$

$$\frac{d^2\Delta\phi}{dt^2} + \omega_{s0}^2\Delta\phi = 0$$

Where **frequency** of linear synchrotron oscillations is

$$\omega_{s0}^2 = -\frac{h\omega_0^2\eta\cos\phi_s}{2\pi\,\beta^2 E}\,qV_0$$

&

Small amplitude oscillations. Phase stability

$$\frac{d^2\Delta\phi}{dt^2} + \omega_{s0}^2\Delta\phi = 0$$

For phase stability: $\omega_{s0}^2 > 0 \rightarrow \eta \cos \phi_s < 0$

No acceleration: $sin \phi_s = 0$ $\Rightarrow \phi_s = 0 \text{ for } \gamma < \gamma_t \ (\eta < 0)$ $\phi_s = \pi \text{ for } \gamma > \gamma_t \ (\eta > 0)$

 \rightarrow Equation of a harmonic oscillator **Solutions:** $\Delta \phi = \Delta \phi_m \cos \psi$ $\Delta \dot{\phi} = -\Delta \dot{\phi}_m \sin \psi$ where $\Delta \dot{\phi} = \frac{d\phi}{dt} \sim \Delta E$ $\Psi = \omega_{s0}t - \text{synchronous angle},$ $\Delta \dot{\phi}_m = \Delta \phi_m \omega_{s0} = \frac{\omega_{RF}^2 \eta}{\beta^2 E} \left(\frac{\Delta E_m}{h \omega_0} \right)$ $\Delta \phi$ $\Delta \dot{\phi}_m$ $\Delta \phi$ ψ $\Delta \phi_m$ - amplitude of phase oscillations

Phase equation. Large amplitude oscillations

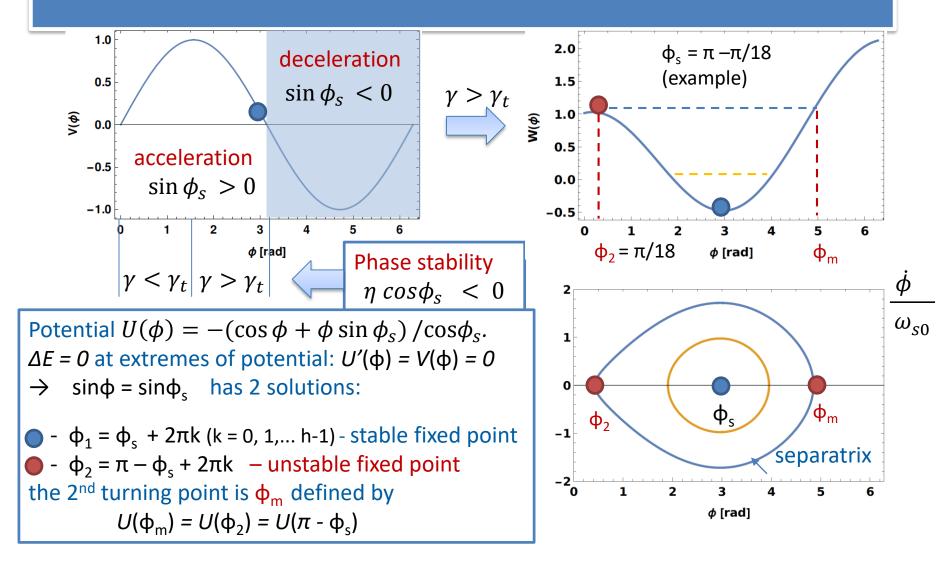
The phase equation can be re-written as

$$\frac{d^2 \phi}{dt^2} + \underbrace{(\omega_{s0}^2)}{\cos \phi_s} (\sin \phi - \sin \phi_s) = 0$$
Multiplying by $\dot{\phi} = \frac{d\phi}{dt}$ and integrating
over t , we obtain an integral of motion

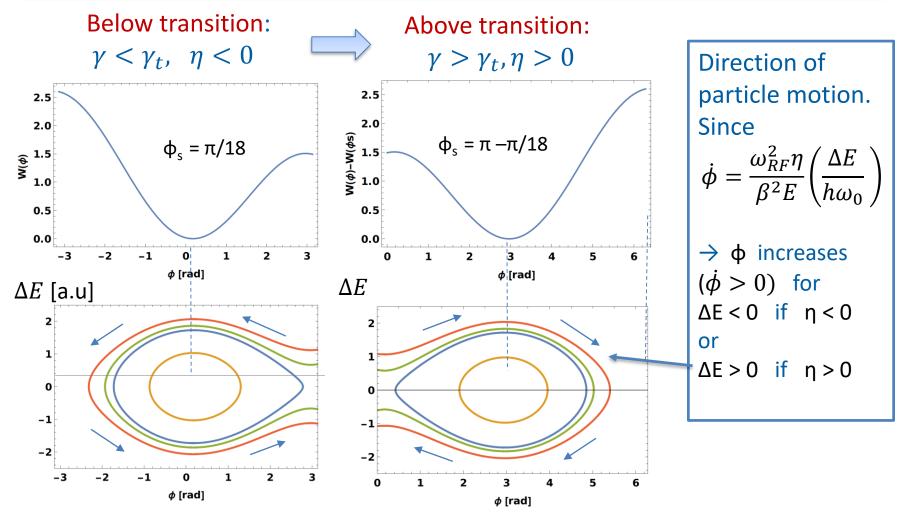
$$\frac{\dot{\phi}^2}{2\omega_{s0}^2} + U(\phi) = \varepsilon$$
with energy of synchrotron oscillations ε
and RF potential
 $U(\phi) = -(\cos \phi + \phi \sin \phi_s) / \cos \phi_s$
Phase trajectories are described by
 $\dot{\phi} = \pm \omega_{s0} \sqrt{2[\varepsilon - U(\phi)]}$
 $\phi = \frac{1}{2} + \frac{1}{2$

φ [rad]

Acceleration. Separatrix



Acceleration. Transition crossing



 \rightarrow RF phase jump (π - 2 ϕ_s) needed during transition crossing

Acceleration. RF bucket

The phase-space limited by the separatrix is the RF bucket:

$$\dot{\phi} = \frac{\omega_{RF}^2 \eta}{\beta^2 E} \left(\frac{\Delta E}{h\omega_0} \right) = \pm \omega_{s0} \sqrt{2[U(\pi - \phi_s) - U(\phi)]}$$

Bucket area [eVs] (also longitudinal acceptance):

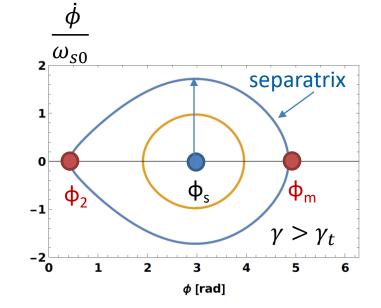
$$A = \frac{2}{h\omega_0} \int_{\phi_2}^{\phi_m} \Delta E(\phi) d\phi$$

Bucket length [rad] is $\phi_m - (\pi - \phi_s)$

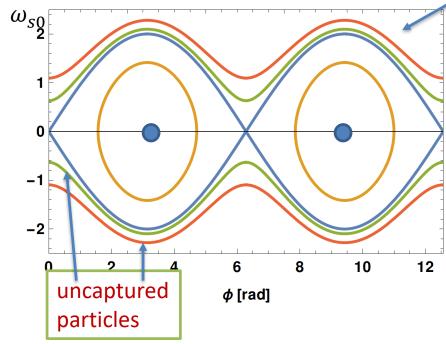
Bucket height (energy acceptance):

$$\frac{\Delta E_{max}}{E} = \frac{v_{s0} \beta^2}{h\eta} \sqrt{2[U(\pi - \phi_s) - U(\phi_s)]}$$

with synchrotron tune $v_{s0} = \frac{\omega_{s0}}{\omega_0}$



Longitudinal phase space. Bucket area



The separatrix separates the bound oscillations from unbound

No energy gain $\rightarrow \sin\phi_s = 0$ and $U(\phi) = \cos\phi \text{ (for } \gamma > \gamma_t \text{). Then}$ $\int_0^{2\pi} \sqrt{2[U(\pi - \phi_s) - U(\phi)]} \, d\phi$ $= 2 \int_0^{2\pi} \sin\frac{\phi}{2} \, d\phi = 8$

Due to acceleration the bucket area

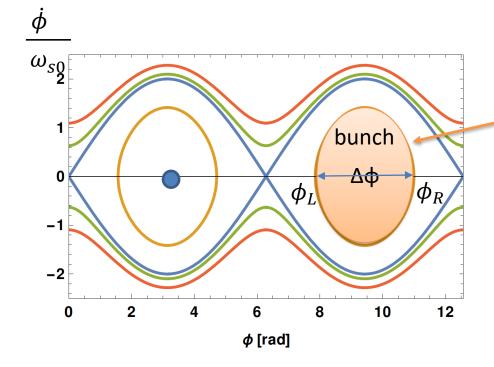
$$A = \frac{16\beta}{\omega_{RF}} \sqrt{\frac{qVE}{2\pi h|\eta|}} \Gamma(\phi_s)$$

is reduced by a factor $\Gamma(\phi_s)$, which approximately is

$$\Gamma(\phi_s) \simeq \frac{1-\sin\phi_s}{1+\sin\phi_s}$$

Note that A = 0 for $\phi_s = \pi/2$.

Longitudinal phase space. Bunch emittance



Bunch length [rad] $\Delta \varphi_b = \varphi_L - \varphi_R$ and in[s] $\tau = \Delta \varphi_b / (h\omega_0)$

Particles usually fill only some part of the bucket, a bunch

One can have up to $h = \omega_{RF} / \omega_0$ bunches in the ring

Longitudinal emittance [eV s] is the area inside the limiting particle trajectory

$$\epsilon = \frac{2}{h\omega_0} \int_{\phi_L}^{\phi_R} \Delta E_b(\phi) d\phi$$

with $U(\phi_L) = U(\phi_R)$.

For ions units are [eV s/charge]

Longitudinal bunch emittance

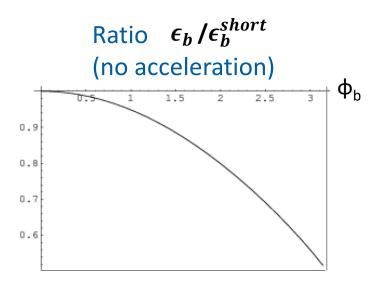
Phase trajectory (reminder)

$$\frac{\omega_{RF}^2 |\eta|}{\beta^2 E} \left(\frac{\Delta E}{h\omega_0} \right) = \omega_{s0} \sqrt{2[U(\phi_L) - U(\phi)]}$$

For non-accelerating bucket: $\phi_L - \phi_R = 2\phi_b$ and bunch emittance is

$$\epsilon_{b} = \frac{4 E \omega_{s0}}{\omega_{RF}^{2} |\eta|} \int_{0}^{\phi_{b}} \sqrt{2(\cos\phi - \cos\phi_{b})} d\phi$$

Short-bunch approximation $\frac{\pi\phi_{b}^{2}}{4}$



→ Short-bunch approximation $\epsilon_b = \pi \Delta E \ \phi_b / h = \pi \ \Delta E \ \tau / 2$ should be used with caution for $\phi_b > 1$

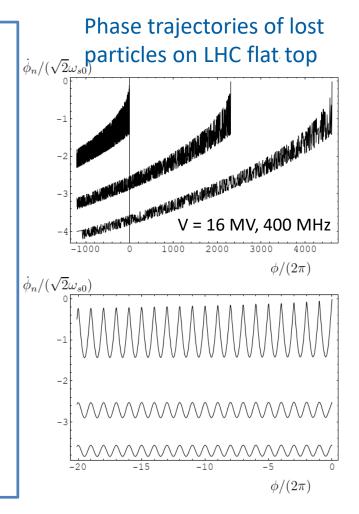
Energy loss

- Even without acceleration the average energy of particles may change due to synchrotron radiation, induced voltage, electron cloud...
- Energy lost by a particle per turn $\Delta E = U_0$ is compensated by the RF system

 $U_0 = q V sin \phi_s$

→ Bucket becomes accelerating with *B* = const. → Damping of synchrotron oscillations Synchrotron radiation at LHC flat top: $U_0 = 7$ keV for protons and for ²⁰⁸Pb⁸²⁺ ions $\frac{U_{ion}}{U_p} \simeq \frac{Z^6}{A^4} \simeq 162$ larger! Damping time $\frac{\tau_{ion}}{\tau_n} \simeq \frac{A^4}{Z^5} \simeq 0.5$ is also smaller!

 \rightarrow 6.3 h for longitudinal emittance



Synchrotron frequency

Due to non-linearity of RF voltage

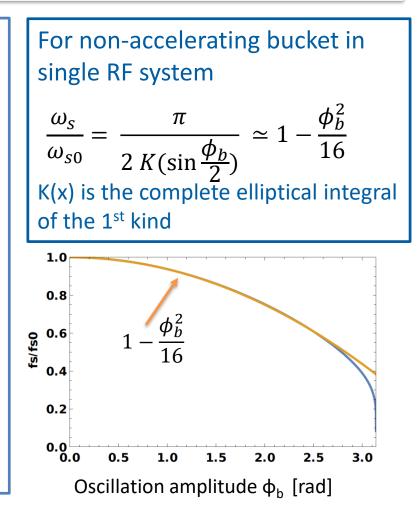
$$\frac{d^2\phi}{dt^2} + \frac{\omega_{s0}^2}{\cos\phi_s}(\sin\phi - \sin\phi_s) = 0$$

all particles oscillate with different frequencies $\omega_s = 2\pi f_s$ which depend on amplitude of oscillations.

Since

$$\frac{d\phi}{dt} = \dot{\phi} = \omega_{s0}\sqrt{2[U(\phi_L) - U(\phi)]}$$

the period of synchrotron oscillations is $T_{s} = \oint \frac{d\phi}{\dot{\phi}} = \frac{2}{\omega_{s0}} \int_{\phi_{L}}^{\phi_{R}} \frac{d\phi}{\sqrt{2[U(\phi_{L}) - U(\phi)]}}$



Hamiltonian of longitudinal motion

Using conjugate variables ϕ and $\Delta E/(h\omega_0)$, the equations of longitudinal motion can be also presented as

$$\frac{\partial H}{\partial \phi} = -\left(\frac{\Delta \dot{E}}{h\omega_0}\right) \quad \text{and} \quad \frac{\partial H}{\partial\left(\frac{\Delta E}{h\omega_0}\right)} = \dot{\phi},$$

with the Hamiltonian

$$H = \frac{1}{2} \frac{h^2 \omega_0^2 \eta}{\beta^2 E} \left(\frac{\Delta E}{h \omega_0}\right)^2 - \frac{q V \cos \phi_s}{2\pi} \left[U(\phi) - U(\phi_s)\right],$$

It can be easily generalised for more RF systems (with different harmonic numbers *h*) and induced voltage (collective effects).

Adiabaticity: why is it important?

During beam acceleration, the Hamiltonian *H* of the system depends on time. If changes are slow enough (adiabatic), *H* is considered to be quasi-static.

The parameter λ changes adiabatically if $T \frac{d\lambda}{dt} \ll \lambda$, where T is a period. Applying for the synchrotron motion $\frac{dT_s}{dt} \ll 1$

Adiabatic invariant of motion (action)

$$J = \frac{1}{2\pi} \oint \frac{\Delta E(\phi)}{h\omega_0} \, d\phi = \frac{\epsilon}{2\pi}$$

→ Longitudinal bunch emittance is an invariant of motion during acceleration and RF manipulations, if parameter change is adiabatic

DOUBLE RF SYSTEM

Multi-harmonic RF system

Many rings have multiple RF systems (with different f_{rf}) for

- Beam acceleration. In low energy rings this is dictated by the fast change of particle velocity βc : $f_{rf} = hf_0 = h \frac{\beta c}{2\pi R}$
- Acceleration of different particles (leptons, protons, ions)
 → 6 different RF systems in the CERN SPS in the past: at 100 MHz,
 200 MHz (SW and TW), 352 MHz, 400 MHz and 800 MHz.
- Beam transfer from one ring to another.
- RF manipulations (bunch splitting, merging, rotation, beam coalescing, batch compression, controlled emittance blow-up, ...). → 5 RF systems used in the CERN PS (see lectures of *H. Damerau*).

Note: wide-band RF system (as Finemet in CERN PSB) allows simultaneous operation at different harmonics *h*

Higher harmonic RF system

Main applications of a higher harmonic (HH) RF system used in addition to the main RF system

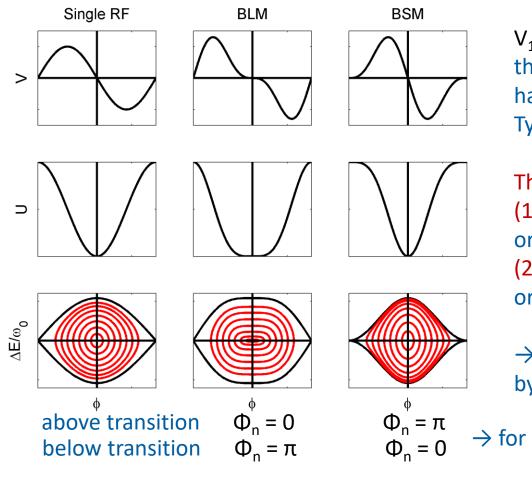
- Reduction of the peak line density bunch flattening (to decrease space charge and other intensity effects)
- Increase of available bucket area
- Increase of synchrotron frequency spread → to cure beam instabilities (see next lecture)
- Modification of a zero-amplitude synchrotron frequency f_{s0}
- Control of bunch length
- Exotic: compensation of (V₁ + V₂) during momentum slip-stacking, ...

The HH RF system can be also passive, using the voltage induced by the beam, with an amplitude and a phase which are the functions of the beam parameters \rightarrow applied mainly in the **lepton rings**.

Higher harmonic RF system: operation modes

Example for n = 2, r = 1/2, sin $\phi_{s0} = 0$

>



The total voltage in double RF system $V = V_1 [\sin\phi + r \sin(n\phi + \Phi_n)],$ V_1 and $V_n = r V_1$ - voltage amplitudes of the main and HH RF system with harmonic $h_n = nh$. Typically $V_n < V_1$ and even $V_n < V_1/n$.

The operation mode is defined by Φ_n : (1) bunch-lengthening mode (BLM) or "out-of-phase" (2) bunch-shortening (BSM) or "in-phase"

 \rightarrow The choice of the mode is dictated by the application

 \rightarrow for even n; opposite for odd n = 3, 5 ...

Double RF system: synchronous phase and synchrotron frequency

Synchronous phase ϕ_s

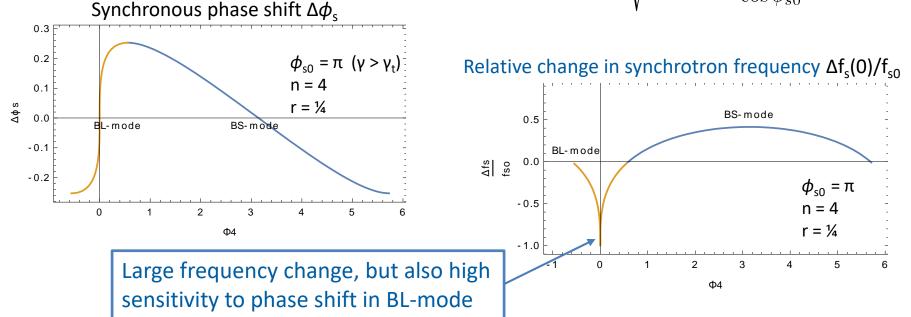
From definition of a synchronous particle $\sin \phi_{s0} = \sin \phi_s + r \sin (n \phi_s + \Phi_n)$

$$\rightarrow \phi_{s} = \phi_{s0}$$
 for $\Phi_{n} = -n\phi_{s} + \pi$ (or 0

Synchrotron frequency $f_s(0)$

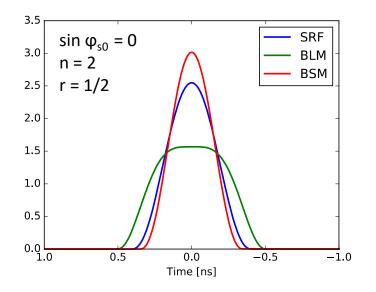
From V' = 0, the synchrotron frequency at zero amplitude of synchrotron oscillations

$$f_s(\phi_a = 0) = f_{s0} \sqrt{\frac{\cos \phi_s + rn \cos \left(n\phi_s + \Phi_n\right)}{\cos \phi_{s0}}}$$



Double RF system: bunch shape

The peak line density is reduced in BL-mode and increased in BS-mode



Flat bunches (BL-mode) The "flat" bunches are obtained when $V'(\phi_s) = 0$ and $V''(\phi_s) = 0$:

$$\cos \phi_s = -rn \cos (n\phi_s + \Phi_n),$$

 $\sin \phi_s = -rn^2 \sin (n\phi_s + \Phi_n).$

The HH voltage parameters **r** and Φ_n are defined for given **n** and ϕ_{s0}

$$r^2 = \frac{1}{n^2} - \frac{\sin^2 \phi_{s0}}{n^2 - 1}$$

→ For sin $\varphi_{s0} = 0$ (no acceleration): r = 1/n, $\Phi_n = \pi + (1-n)\varphi_s$ and $\varphi_s = \varphi_{s0} = 0$ or π , where we also used relation: $\sin \phi_{s0} = \sin \phi_s + r \sin (n\phi_s + \Phi_n)$

Double RF system: bucket area

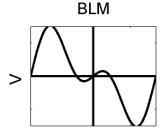
Bucket area is increased in BL-mode and decreased in BS-mode. Higher is n, smaller is the effect.

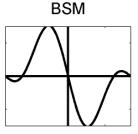
The ratio of the stationary-bucket area in BLmode (with n = 2) to one in a single RF system is a monotonic function for r < 1/n:

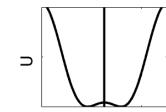
$$A(r)/A(r=0) = \left[\sqrt{1+2r} + \ln(\sqrt{1+2r} + \sqrt{2r})\right]/2$$

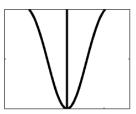
For r > 1/n, the bucket area continues to shrink in BS-mode. In BL-mode 2 buckets start to form.

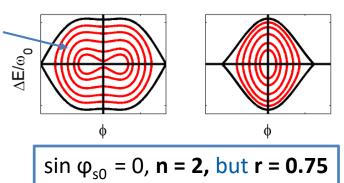
Minimum peak line density can be obtained for r >1/n (depending on particle distribution)





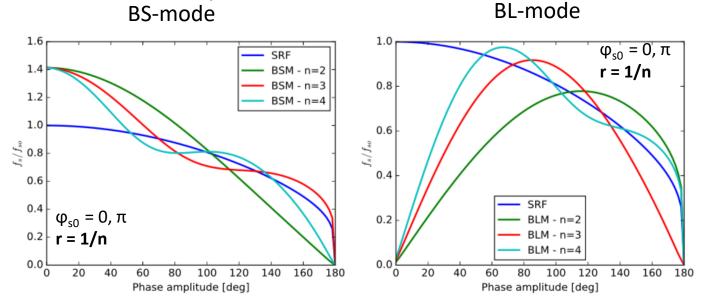






Double RF system: synchrotron frequency distribution

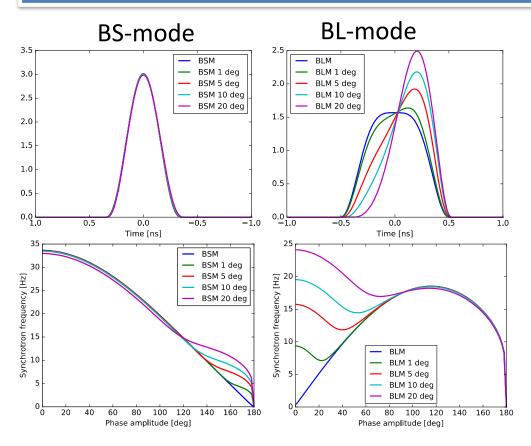
Beam stability is improved with a larger synchrotron frequency spread providing Landau damping. \rightarrow In this application, the HH RF system is often called a "Landau cavity"



 \rightarrow For the same HH voltage (ratio r), a larger spread Δf_s or change in $f_s(0)$ can be obtained for a higher n and in BL-mode.

Nevertheless BS-mode is used for beam stability in the CERN SPS and PS . Why?

Double RF system: phase shift Φ_n



Examples for various errors in Φ_2 with sin $\phi_{s0} = 0$, n = 2, and r = 1/2 (800 MHz RF system in LHC).

Very accurate phase control is required in BLM during acceleration and in presence of intensity effects.

Transient beam loading (e.g. due to the bunch gaps) displaces bunches and modifies Φ_n seen by them. \rightarrow Problems for beam stability and beam manipulations.

→ More RF power is required.
 For example, for the 2nd harmonic
 RF system in LHC, more than 4 times
 power would be needed in BL-mode
 than in BS-mode.

Higher harmonic RF system: bunch-lengthening or shortening mode?

Bunch lengthening mode:

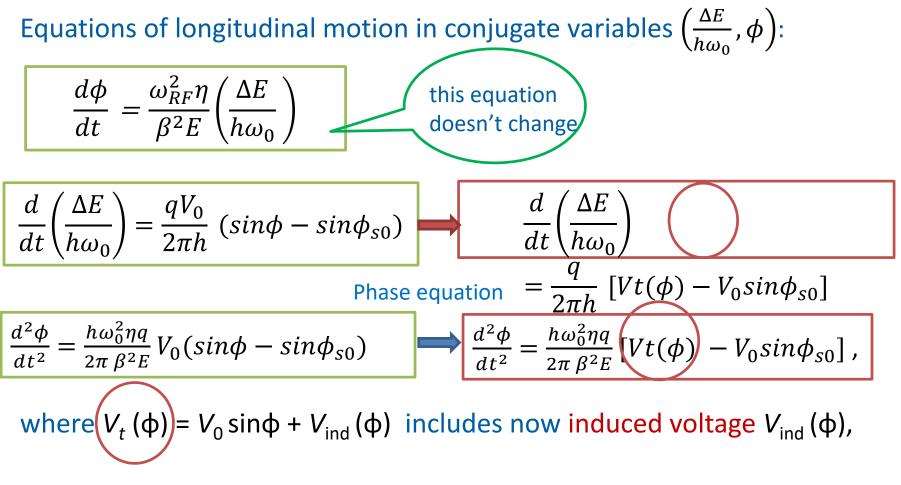
- + reduced peak line density (flat bunch)
- + increased bucket area
- + for a given V_n (or r), larger increase in synchrotron frequency spread
- high sensitivity to RF phase shift Φ_n (tilted bunches)
- flat region in f_s distribution (limitation on max bunch length) for all n
- more RF power is required in presence of beam loading

• Bunch shortening mode:

- + good for beam stability (multi-bunch)
- + very robust (large allowed phase shift)
- + increased linear synchrotron frequency (TMC instability)
- increased peak line density (can be mitigated by emittance blow-up)
- reduced bucket size (as compared to single RF)
- flat region in f_s distribution (limitation on max bunch length) for n > 2

EQUATIONS OF MOTION WITH INTENSITY EFFECTS

Longitudinal equations of motion with intensity effects



but we keep here $V_0 \sin \phi_{s0} \rightarrow \text{why}$?

Synchronous particle

A synchronous particle is synchronised with RF frequency $\omega_{RF} = h \omega_0$

and its energy gain per turn is $\Delta E = qV_0 \sin\phi_{s0}$,

where ϕ_{s0} is synchronous phase in absence of intensity effects.

The total voltage V_t seen by a particle is the sum of the RF voltage V_{rf} and the voltage induced by beam V_{ind} : $V_{rf}(\varphi) \rightarrow V_t = V_{rf}(\varphi) + V_{ind}(\varphi)$

The acceleration rate of synchronous particle, defined by the magnetic ramp,

$$\frac{\Delta E}{T_0} = \frac{dE_s}{dt} = \frac{\omega_0}{2\pi} qV_0 \sin\phi_{s0} \text{ and now } \frac{\Delta E}{T_0} = \frac{\omega_0}{2\pi} q[V_0 \sin\phi_s + Vi_{nd}(\phi_s)],$$

where ϕ_s is new synchronous phase, with intensity effects.

Therefore

$$V_0 \sin\phi_{s0} = V_0 \sin\phi_s + Vi_{nd}(\phi_s)$$

Intensity effects

The total voltage V_t includes the voltages induced by a stationary λ_0 and the perturbed (by induced voltage!) $\tilde{\lambda}$ line density (beam current)

$$\lambda_{0}(\phi) \xrightarrow{Z(\omega)} V_{ind}(\phi)$$

$$\lambda_{0}(\phi) + \tilde{\lambda}(\phi, t)$$

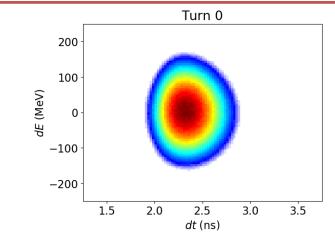
$$\downarrow Z(\omega) \downarrow$$

$$V_{ind}(\phi) + \tilde{V}_{ind}(\phi, t)$$

For multi-bunch beam, the effect of induced voltage due to cavity impedance is called beam loading (see lecture by H. Damerau)

Initial particle distribution is modified
→ new equilibrium (stationary solution).
This effect is called potential well distortion (usually considered as a single-bunch).

Instability: perturbations $\tilde{\lambda}$ are growing with time: $\tilde{\lambda}(\phi, t) = \tilde{\lambda}(\phi) e^{-i\Omega t}$



Longitudinal impedance

Real and **imaginary** parts of impedance: $Z(\omega) = \text{Re}Z(\omega) + i \text{ Im}Z(\omega)$

- Resistive impedance ReZ→ beam loading, instabilities, beam induced heating,...
- Reactive impedance ImZ → potential well distortion, loss of Landau damping,...

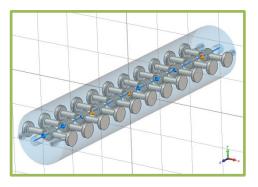
Resonant impedance:
$$Z(\omega) = \frac{R_{sh}}{1 + iQ\left(\frac{\omega}{\omega_r} - \frac{\omega_r}{\omega}\right)}$$
 with **bandwidth**
$$\Delta \omega_r = \frac{\omega_r}{2Q}$$

- Narrow-band impedance (RF cavities and other cavity-like objects)
 → multi-bunch effects (beam loading, coupled-bunch instability)
- Broad-band impedance (space charge, cross-section changes): $\tau \Delta \omega_r > 1$ \rightarrow single-bunch effects (potential well distortion, loss of Landau damping, single-bunch instability)

See lecture on Impedances and wakefields by A. Mostacci

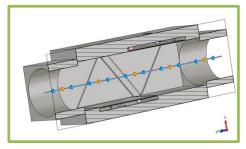
Contributors to impedance model (CERN SPS)

TW RF cavities: 200 MHz and 800 MHz

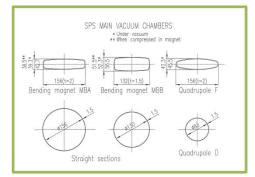


Beam position monitor H

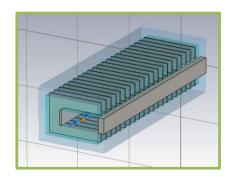
Beam position monitor V



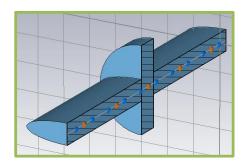
Vacuum chambers



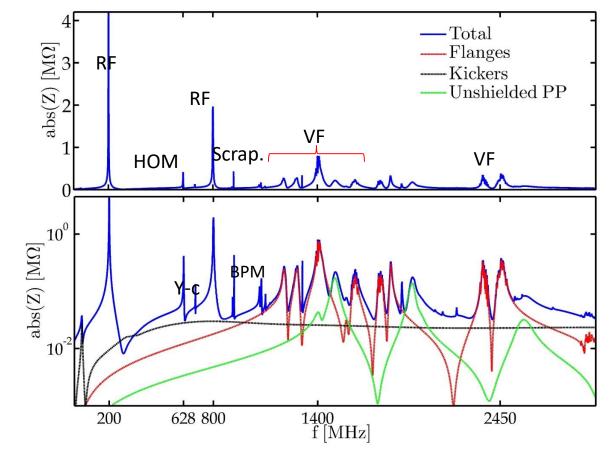
Kickers



Vacuum flanges (step transitions)



Example of realistic impedance model (CERN SPS)



This model includes:

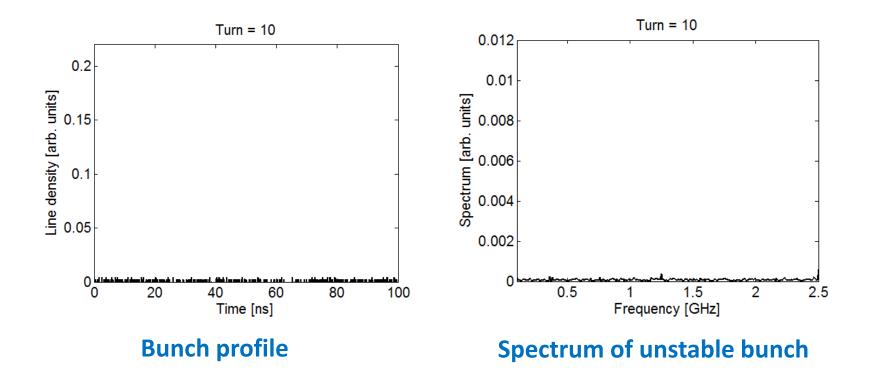
- 200 MHz cavities + HOMs
- 800 MHz cavities (2)
- Kicker magnets (8 MKEs, 4 MKPs, 5 MKDs, 2 MKQs)
- Vacuum flanges (~500)
- BPMs: BPH&BPV (~200)
- Unshielded pumping ports
- Beam scrappers
- Resistive wall

...

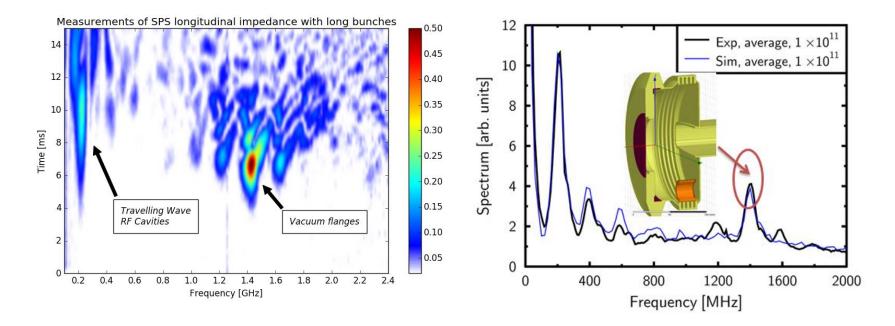
- 6 electrostatic septa ZS
- MSE/MST + PMs

Spectrum of unstable bunches

Single bunches injected into the ring (CERN SPS 26 GeV/c) with RF off \rightarrow slow debunching and fast instability



Spectrum of unstable bunches



Line density modulation growing at resonant frequencies of impedances with high $R/Q \rightarrow$ method of impedance identification and measurement (used for two impedance reduction campaigns in the CERN SPS)

SINGLE-BUNCH INTENSITY EFFECTS

Induced voltage

Using periodicity over azimuth θ and relation $\phi(t) = \int \omega_{RF} dt - h\theta(t)$,

we have $V_{ind}(\phi) = V_{ind}(\phi + 2\pi h)$.

Then beam induced voltage $V_{ind} = \sum_{k=-\infty}^{\infty} V_k e^{\frac{ik\phi}{h}}$, and it can also be presented

$$V_{ind} = -\sum_{k=-\infty}^{\infty} Z_k I_k e^{\frac{ik\phi}{h}} = -qh\omega_0 N_p \sum_{k=-\infty}^{\infty} Z_k \lambda_k e^{ik\theta}$$

where Z_k is the longitudinal impedance at frequency $k\omega_{0,k}$ I_k and λ_k are the k-th Fourier harmonics of the beam current and line density with normalisation $\int_{-\pi h}^{\pi h} d\phi \lambda(\phi) = \int_{-\pi h}^{\pi h} d\phi \int_{-\infty}^{\infty} d\dot{\phi} \mathcal{F}(\phi, \dot{\phi}) = 1.$

For beam current we used $I(\phi) = qh\omega_0 N_p\lambda(\phi)$

Phase equation with intensity effects

Using definition of linear synchrotron frequency, the phase equation is

$$\omega_{s0}^2 = -\frac{h\omega_0^2\eta \, qV_0 cos\phi_{s0}}{2\pi \, \beta^2 E}$$

$$\frac{d^2\phi}{dt^2} + \frac{\omega_{s0}^2}{V_0 \cos \phi_{s0}} (V_t - V_0 \sin \phi_{s0}) = 0$$

Defining $\phi = \phi_{s0} + \Delta \phi$, induced voltage can be presented as

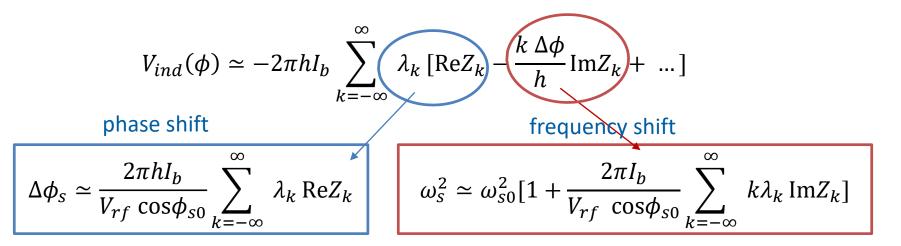
$$\int_{k=-\infty}^{\infty} V_{ind}(\phi) = -2\pi h I_b \sum_{k=-\infty}^{\infty} Z_k \lambda_k e^{\frac{ik\Delta\phi}{h}} \simeq -2\pi h I_b \sum_{k=-\infty}^{\infty} Z_k \lambda_k \left[1 + \frac{ik\Delta\phi}{h} + \dots\right]$$

Stationary bunch: potential well distortion

For $\Delta \phi = \phi - \phi_{s0} \ll 1$ the phase equation \rightarrow

$$\frac{d^2\Delta\phi}{dt^2} + \omega_{s0}^2 \left[\Delta\phi + \frac{V_{ind}(\phi)}{V_{rf}\cos\phi_{s0}}\right] = 0$$

Assuming symmetric bunch profile, so that $\lambda_k = \lambda_{-k}$,



Bunch lengthening for constant emittance: $1 = (\tau/\tau_0)^4 + (\tau/\tau_0) [\omega_s^2(\tau_0) - \omega_{s0}^2]/\omega_{s0}^2$

Potential well distortion: synchronous phase shift

(1) This is the synchronous phase shift of the potential well, also valid for particles with small oscillation amplitude, but difficult to measure

$$\Delta \phi_s = \frac{2\pi h I_b}{V_{rf} \cos \phi_{s0}} \sum_{k=-\infty}^{\infty} \lambda_k \operatorname{Re} Z_k$$

(2) The shift of the bunch centre with respect to RF voltage can be found from the energy loss (per turn and particle) U – loss factor

$$V_0 \sin\phi_{s0} \simeq V_0 \sin\phi_{s0} + \Delta\phi_b \cos\phi_{s0} + U/q$$

$$\Delta \phi_b \simeq - \frac{U}{q \, V_{rf} \cos \phi_{s0}}$$

$$\boldsymbol{U} = -qh^2 I_b \sum_{k=-\infty}^{\infty} |\lambda_k|^2 \operatorname{Re} Z_k$$

 \rightarrow Measurements of $\Delta \phi_b$ for various τ give estimation of ReZ(ω) of the ring

Potential well distortion: synchrotron frequency shift

We have obtained frequency

$$\omega_s^2 \simeq \omega_{s0}^2 \left[1 + \frac{2\pi I_b}{V_{rf} \cos \phi_{s0}} \sum_{k=-\infty}^{\infty} \lambda_k \ k^2 \frac{\mathrm{Im} Z_k}{k}\right]$$

For shift $\Delta \omega_s = \omega_s - \omega_{s0} \ll \omega_{s0}$ and ImZ/k = *const* over stable bunch spectrum:

$$\Delta \omega_{s} \simeq \omega_{s0} \frac{\pi I_{b}}{V_{rf} \cos \phi_{s0}} \frac{\text{Im}Z}{k} \sum_{\substack{k=-\infty}}^{\infty} \lambda_{k} k^{2}$$
Since $\lambda(\phi) = \sum_{k} \lambda_{k} e^{\frac{ik\phi}{h}} \Rightarrow \sum_{\substack{k=-\infty}}^{\infty} \lambda_{k} k^{2} = -h^{2} \frac{d^{2}\lambda}{d\phi^{2}} \Big|_{\phi=0} \int_{0}^{0} \int$

Defocusing effect above transition (cos $\phi_s < 0$) for ImZ/k > 0 (inductive impedance) \rightarrow more RF voltage needed

VLASOV EQUATION

Vlasov equation

The Vlasov equation can be derived from the Liouville' theorem $\frac{d\mathcal{F}}{dt} = 0$

In variables (\mathcal{E}, ψ) the Vlasov equation is

$$\frac{\partial \mathcal{F}}{dt} + \frac{d\mathcal{E}}{dt} \frac{\partial \mathcal{F}}{\partial \mathcal{E}} + \frac{d\psi}{dt} \frac{\partial \mathcal{F}}{\partial \psi} = 0$$

 \rightarrow for a stationary case $\mathcal{F} = \mathcal{F}(\mathcal{E})$

For beam stability study, we should analyse the time behaviour of small perturbations $\tilde{\mathcal{F}}(\mathcal{E}, \psi, t)$, $\tilde{\lambda}(\phi, t)$ and $\tilde{\mathbb{V}}_{ind}(\phi, t)$ of $\mathcal{F}(\mathcal{E})$, $\lambda(\phi)$ and $V_{ind}(\phi)$,

assuming the dependence on time as $\tilde{\mathcal{F}}(\mathcal{E},\psi,t) = \tilde{\mathcal{F}}(\mathcal{E},\psi,\Omega)e^{-i\Omega t}$

If perturbations grow with time $(Im\Omega > 0) \rightarrow$ beam is unstable

The linearised Vlasov equation

$$\frac{\partial \tilde{\mathcal{F}}}{\partial t} + \frac{d\mathcal{E}}{dt}\frac{d\mathcal{F}}{d\mathcal{E}} + \frac{d\psi}{dt}\frac{\partial \tilde{\mathcal{F}}}{\partial\psi} = 0$$

Equations of unperturbed motion

In variables (\mathcal{E}, ψ)

$${\cal E}={{\dot \phi}^2\over 2\omega_{s0}^2}+U_t(\phi),$$

$$\psi = \operatorname{sgn}(\eta \Delta E) \frac{\omega_s(\mathcal{E})}{\sqrt{2}\omega_{s0}} \int_{\phi_{\max}}^{\phi} \frac{d\phi'}{\sqrt{\mathcal{E} - U_t(\phi')}}$$

energy of synchrotron motion

phase of

synchrotron motion

with potential

$$U_t(\phi) = \frac{1}{V_0 \cos \phi_{s0}} \int_{\Delta \phi_s}^{\phi} d\phi' [V_t(\phi') - V_0 \sin \phi_{s0}]$$

the equations of unperturbed particle motion are simply

$$\dot{\psi} = \omega_s(\mathcal{E}), \quad \dot{\mathcal{E}} = 0.$$

Equations of perturbed motion

In presence of perturbation (induced voltage) the phase equation is

$$\frac{d\dot{\phi}}{dt} + \frac{\omega_{s0}^2}{V_0 \cos \phi_{s0}} \left[V_{\text{tot}}(\phi) - V_0 \sin \phi_{s0} \right] = -\frac{\omega_{s0}^2}{V_0 \cos \phi_{s0}} \tilde{V}_{\text{ind}}(\phi, t).$$

In variables (\mathcal{E}, ψ), after multiplication by $\dot{\phi}$

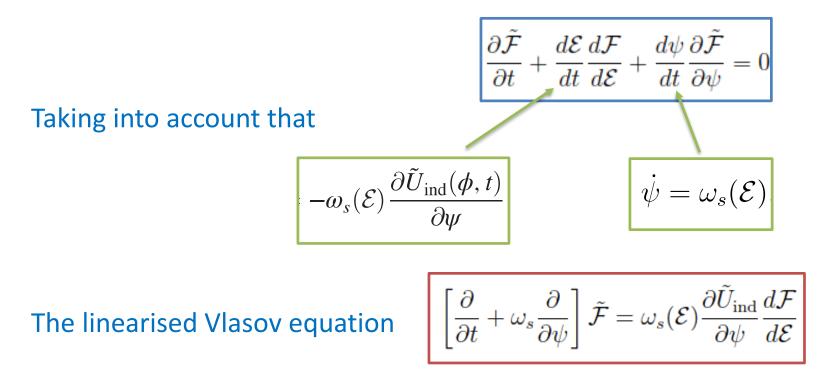
$$\frac{d\mathcal{E}}{dt} = -\frac{d\phi}{dt} \frac{\tilde{V}_{\text{ind}}(\phi, t)}{V_0 \cos \phi_{s0}} = -\omega_s(\mathcal{E}) \frac{\partial \tilde{U}_{\text{ind}}(\phi, t)}{\partial \psi}$$

Here the same definition of potential (as for unperturbed motion) was used:

$$\tilde{U}_{\rm ind}(\phi) = \frac{1}{V_0 \cos \phi_{s0}} \int_{\Delta \phi_s}^{\phi} d\phi' \tilde{V}_{\rm ind}(\phi').$$

Linearised Vlasov equation

The Vlasov equation can be now rewritten



LEBEDEV EQUATION

Lebedev equation (1/4)

Solutions of Vlasov equation should be periodic in ψ and can be expanded in azimuthal Fourier harmonics (m) $\begin{bmatrix} \tilde{\partial}_{ind} + \omega_s \frac{\partial}{\partial \psi} \end{bmatrix} \tilde{\mathcal{F}} = \omega_s(\mathcal{E}) \frac{\partial \tilde{U}_{ind}}{\partial \psi} \frac{d\mathcal{F}}{d\mathcal{E}}$ $\tilde{\mathcal{F}}(\mathcal{E}, \psi, \Omega) = \sum_{m=-\infty}^{\infty} \tilde{\mathcal{F}}_m(\mathcal{E}, \Omega) e^{im\psi}$ (m = 1, 2, 3, ... - dipole, quadrupole, sextupole, ...) $\tilde{\mathcal{F}}(\mathcal{E}, \psi, \Omega) = -\omega_s(\mathcal{E}) \frac{d\mathcal{F}}{d\mathcal{E}} \sum_{m=-\infty}^{\infty} \frac{m \tilde{U}_{ind,m}(\mathcal{E}, \Omega)}{\Omega - m\omega_s(\mathcal{E})} e^{im\psi}$ $\tilde{U}_{ind}(\phi) = \frac{1}{V_0 \cos \phi_{s0}} \int_{\Delta \phi_s}^{\phi} d\phi' \tilde{V}_{ind}(\phi')$

Since voltage harmonics $\tilde{V}_k(\Omega) = -qN_ph\omega_0 Z_k(\Omega)\tilde{\lambda}_k(\Omega)$

the Fourier harmonics of perturbed potential can be written as

$$\tilde{U}_{\mathrm{ind},m}(\mathcal{E},\Omega) = \frac{i\,qN_p\omega_0h}{V_0\cos\phi_{s0}}\sum_{k=-\infty}^{\infty}\frac{Z_k(\Omega)}{k}\left(\lambda(\Omega)k_{mk}(\mathcal{E})\right) \quad \text{where} \quad Z_k(\Omega) = Z_k(k\omega_0 + \Omega)$$

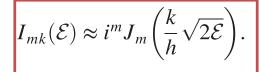
Lebedev equation (2/4)

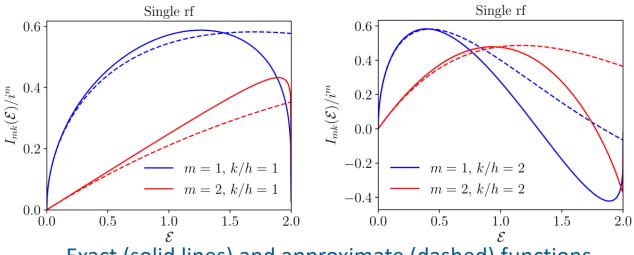
Functions $I_{mk}(\mathcal{E})$ are Fourier harmonics of the expansion of the azimuth plane wave over harmonics of synchrotron motion $m\psi$

hics of
ave
h
$$m\psi$$

 $\phi(\mathcal{E}, -\psi) = \phi(\mathcal{E}, \psi)$
 $I_{mk}(\mathcal{E}) = \frac{1}{2\pi} \int_{-\pi}^{\pi} d\psi e^{i\frac{k}{h}\phi(\mathcal{E},\psi) - im\psi}$
 $\int_{-\pi}^{\pi} d\psi e^{i\frac{k}{h}\phi(\mathcal{E},\psi)} \cos m\psi$

For short bunches in single RF $\phi(\mathcal{E}, \psi) \approx \sqrt{2\mathcal{E}} \cos \psi$ and $(J_m \text{ is the } 1^{\text{st}} \text{ kind Bessel function of the order } m)$





Lebedev equation (3/4)

The line-density harmonic λ_k is related to distribution function $\mathcal{F}(\mathcal{E})$ as

$$\tilde{\lambda}_{k}(\Omega) = \frac{1}{2\pi h} \int_{-\pi h}^{\pi h} d\phi \tilde{\lambda}(\phi) e^{-i\frac{k}{h}\phi} = \frac{\omega_{s0}^{2}}{2\pi h} \int_{-\pi}^{\pi} d\psi \int_{0}^{\mathcal{E}_{\max}} d\mathcal{E} \frac{\tilde{\mathcal{F}}(\mathcal{E},\psi,\Omega)}{\omega_{s}(\mathcal{E})} e^{-i\frac{k}{h}\phi(\mathcal{E},\psi)}$$

where the transformation of variables $d\phi d\dot{\phi} = \omega_{s0}^2 \, d\psi \, d\mathcal{E} / \omega_s(\mathcal{E})$ was used.

The harmonics of line density perturbation $\tilde{\lambda}_k(\Omega)$ are related to the perturbation of distribution function $\tilde{\mathcal{F}}(\mathcal{E},\psi,\Omega)$ in similar way

$$\tilde{\lambda}_k(\Omega) = \frac{\omega_{s0}^2}{2\pi h} \int_{-\pi}^{\pi} d\psi \int_0^{\mathcal{E}_{\max}} d\mathcal{E} \underbrace{\tilde{\mathcal{F}}(\mathcal{E},\psi,\Omega)}_{\omega_s(\mathcal{E})} e^{-i\frac{k}{h}\phi(\mathcal{E},\psi)}$$

Last step: insert the obtained solution of Vlasov equation for $\tilde{\mathcal{F}}(\mathcal{E},\psi,\Omega)$

Lebedev equation (4/4)

General system of equations for line density harmonics (A. N. Lebedev, 1968)

$$\tilde{\lambda}_p(\Omega) = -i\xi \sum_{k=-\infty}^{\infty} G_{pk}(\Omega) \frac{Z_k(\Omega)}{k} \tilde{\lambda}_k(\Omega),$$

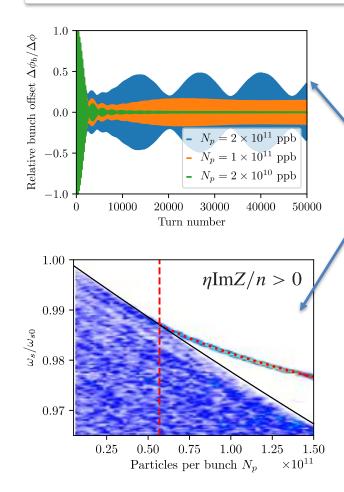
where

$$\xi = \frac{\omega_{s0}^2 q N_p h \omega_0}{V_0 \cos \phi_{s0}} = \frac{2\pi \omega_{s0}^2 I_0 h}{V_0 \cos \phi_{s0}} \qquad \qquad \xi \quad \text{- is intensity parameter} \\ (I_0 \text{ the average beam current})$$

and beam transfer functions $G_{pk}(\Omega)$ are defined as

$$G_{pk}(\Omega) = \sum_{m=-\infty}^{\infty} \int_{0}^{\mathcal{E}_{\max}} d\mathcal{E} \frac{d\mathcal{F}(\mathcal{E})}{d\mathcal{E}} \frac{I_{mk}(\mathcal{E})I_{mp}^{*}(\mathcal{E})}{\Omega/m - \omega_{s}(\mathcal{E})} = 2\sum_{m=1}^{\infty} \int_{0}^{\mathcal{E}_{\max}} d\mathcal{E} \frac{d\mathcal{F}(\mathcal{E})}{d\mathcal{E}} \frac{I_{mk}(\mathcal{E})I_{mp}^{*}(\mathcal{E})\omega_{s}(\mathcal{E})}{\Omega^{2}/m^{2} - \omega_{s}^{2}(\mathcal{E})}$$

Loss of Landau damping in longitudinal plane



Landau damping in longitudinal plane is provided by synchrotron frequency spread.

 \rightarrow If it is lost, bunch oscillations are not damped anymore: observed in Tevatron, LHC, SPS, ...

 \rightarrow This happens when coherent mode is out from the synchrotron frequency spread.

The solution for Ω exists if $\det \left| \delta_{pk} + \xi G_{pk}(\Omega) \frac{Z_k(\Omega)}{k} \right| = 0$

The analytic threshold

$$\xi_{\rm th} \simeq - \left[\sum_{k=-\infty}^{\infty} G_{kk}(\Omega) \frac{Z_k(\Omega)}{k}\right]^{-1}$$

Low frequency approximation $f < 1/(\pi \tau)$ for reactive impedance with ImZ/k = const and parabolic bunches

$$\begin{bmatrix} \frac{I_0 h^2}{V_0 \cos \phi_{s0}} \frac{\text{Im}Z}{k} \end{bmatrix}_{th} \simeq \frac{\phi_{max}^4}{48} \frac{h}{k_{max}}$$

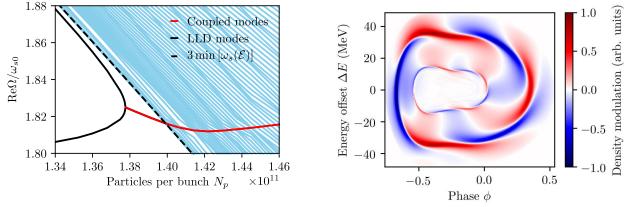
k_{max} – is cut-off frequency of impedance

Single-bunch instabilities

Vlasov equation is solved using $\tilde{\mathcal{F}}(\mathcal{E}, \psi, t) = e^{-i\Omega t} \sum_{m=1}^{\infty} C_m(\mathcal{E}, \Omega) \left[\cos m\psi + \frac{i\Omega}{m\omega_s(\mathcal{E})} \sin m\psi \right]$ The solutions in 2-D phase space are coherent modes characterized by two mode numbers: radial and azimuthal.

Main types of instability (all present in the CERN SPS!):

- azimuthal mode coupling (in reality more rare): 1st mechanism proposed!
- radial mode coupling (Oide?)
- microwave (simultaneous excitation of many radial or azimuthal modes)



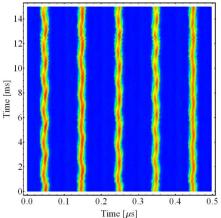
 \rightarrow Potential well distortion is important in all cases

MULTI-BUNCH INSTABILITIES

Multi-bunch instabilities

The multi-bunch instability is driven by a resonator impedance with a narrow bandwidth $\Delta \omega_r$, so that one bunch sees the wake from the previous bunch(es) \rightarrow coupled-bunch instability

→ Only one (unstable) term with harmonic k = IM + n close to $k_r = \omega_r/\omega_0$, can be kept in Lebedev equation (*M* is a number of equidistant bunches with the phase shift $2\pi n/M$ between bunches, n = 0, 1... M-1 and $-\infty < I < \infty$), assuming $\Delta \omega_r << M \omega_0$.



$$\tilde{\lambda}_k(\Omega) = -i\xi G_{kk}(\Omega) \frac{Z_k(\Omega)}{k} \tilde{\lambda}_k(\Omega), \qquad \Longrightarrow \qquad \frac{k}{Z_k} = -i\xi G_{kk}(\Omega)$$

 $G_{
hok}$ can be re-written using the principal value $~{\cal P}~$ for $~~\Omega=m\omega_s({\cal E}_m)$

$$G_{pk}(\Omega) = 2\sum_{m=1}^{\infty} \left[\mathcal{P} \int_0^\infty \mathcal{F}'(\mathcal{E}) \frac{I_{mp}(\mathcal{E}) I_{mk}^*(\mathcal{E}) \omega_s(\mathcal{E}) d\mathcal{E}}{\Omega^2 / m^2 - \omega_s^2(\mathcal{E})} + i \frac{\pi}{2} \mathcal{F}'(\mathcal{E}_m) \frac{I_{mp}(\mathcal{E}_m) I_{mk}^*(\mathcal{E}_m)}{|\omega_s'(\mathcal{E}_m)|} \right]$$

Multi-bunch instability: stability diagrams

$$\frac{k}{Z_k} = -i\xi G_{kk}(\Omega)$$
Stability diagram for Im $\Omega \rightarrow +0$

$$\operatorname{Re}G_{kk}(\Omega) = 2 \sum_{m=1}^{\infty} \mathcal{P} \int_0^{\infty} \mathcal{F}'(\mathcal{E}) \frac{|I_{mk}(\mathcal{E})|^2 \omega_s(\mathcal{E}) d\mathcal{E}}{\Omega^2/m^2 - \omega_s^2(\mathcal{E})}$$

$$\operatorname{Im}G_{kk}(\Omega) = \pi \sum_{m=1}^{\infty} \frac{\mathcal{F}'(\mathcal{E}_m) I_{mk}^2(\mathcal{E}_m)}{\omega'_s(\mathcal{E}_m)}$$

From stability diagram the threshold is

$$\frac{k}{Z_k} > \xi \,\,\mathrm{Im}G_{kk}^{max}$$

 \rightarrow Beam is stable if vertical line $1/R_{sh}$

 $Z_k^{-1} = 1/R_{sh} + i Q(\omega/\omega_r - \omega_r/\omega)/R_{sh}$

is inside stability region

Multi-bunch instability threshold

Requirements for HOM damping for given Io

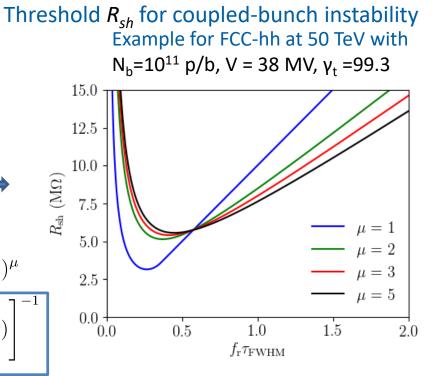
$$\frac{R_{sh}}{n_r} < \frac{V_0 \cos \phi_{s0}}{2\pi^2 \omega_{s0}^2 I_0 h} \min\left[\sum_{m=1}^{\infty} \frac{\omega_s'(\mathcal{E}_m)}{\mathcal{F}'(\mathcal{E}_m) I_{mk}^2(\mathcal{E}_m)}\right]$$

In single RF system without acceleration

$$R_{sh} < \frac{V \, (\pi f_{rf} \tau)^3}{32 \, I_0} \, W_\mu(f_r \tau)$$

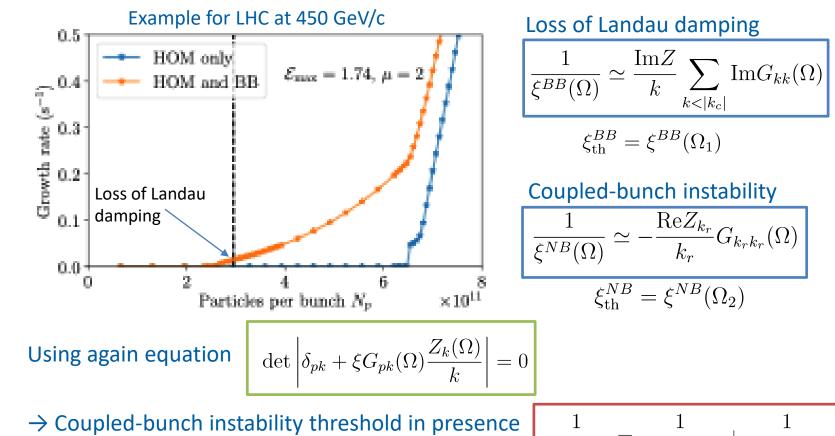
where for distribution
$$\mathcal{F}(\mathcal{E}) = \mathcal{F}_0(1 - \mathcal{E}/\mathcal{E}_{max})^{\mu}$$

$$W_{\mu}(x) = \frac{x}{\mu(\mu+1)} \min_{y \in [0,1]} \left[\sum_{m=1}^{\infty} (1-y^2)^{\mu-1} J_m^2(\pi x y) \right]^{-1}$$



 \rightarrow The FWHM bunch length is important

Multi-bunch instability threshold: impact of broad-band impedance



of both narrow- and broad- band impedances

$$\frac{1}{\xi_{\rm th}(\Omega_3)} = \frac{1}{\xi^{NB}(\Omega_3)} + \frac{1}{\xi^{BB}(\Omega_3)}$$

Multi-bunch instability: growth rates

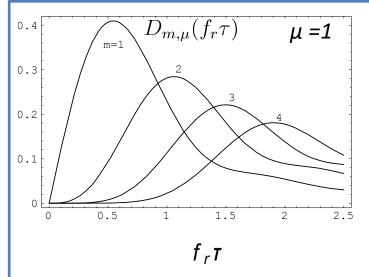
The instability growth rate Im Ω for separate multipole m (no coupling) can be easily found neglecting synchrotron frequency spread $\Delta \omega_{s0}$ for Im $\Omega >> \Delta \omega_{s0}$

Multi-bunch instability growth rates

After substitution of ξ , $\mathcal{F}'(\mathcal{E})$ and I_{mk} we obtain

$$\Omega - m\omega_{s0} = im \frac{2\pi h \,\omega_{s0}^2 I_0}{V_0 \cos \phi_{s0}} \frac{\text{Re}Z_k}{k_r} \, \frac{\mu(\mu+1)}{2\pi \omega_{s0} \mathcal{E}_{max}^2} \int_0^{\mathcal{E}_{max}} d\mathcal{E} \, \left(1 - \frac{\mathcal{E}}{\mathcal{E}_{max}}\right)^{\mu} J_m^2(\frac{k_r}{h}\sqrt{2\mathcal{E}})$$

Taking into account that $\mathcal{E}_{max} = \phi_{max}^2/2$ and $\phi_{max} = h\omega_0 \tau/2$ we finally have



Robinson instability

For fundamental impedance we need to keep two terms in Lebedev equation: with $k_1 = n + l_1M$ and $k_2 = n + l_2M$, where $l_2 = -l_1$ or $l_2 = -l_1 - 1$. This is true also if $k_r \sim LM/2$

Then we obtain the system of two equations

$$\gamma \lambda_1 = -i\xi(g_{11}\lambda_1 + g_{12}\lambda_2)$$

$$\gamma \lambda_2 = -i\xi(g_{21}\lambda_1 + g_{22}\lambda_2)$$

where $g_{12} \equiv g_{k_1k_2}^m = \int_0^{\mathcal{E}_{\max}} d\mathcal{E} \, \mathcal{F}'(\mathcal{E}) I_{mk_1}(\mathcal{E}) I_{mk_2}^*(\mathcal{E}) \quad \text{and} \quad \gamma = \frac{\Omega - m\omega_s}{m\omega_s}$

Taking into account that $g_{11} \simeq g_{22}$ and $g_{12} \simeq g_{21} = g_{11}$ (-1)^m

We have for the growing mode

$$\gamma \simeq -i\xi g_{11} \left(\frac{Z_{k_1}}{k_1} + \frac{Z_{k_2}}{k_2}\right)$$

There is no instability for n = 0 if $k_1 = -k_2$, except Robinson type, where we should take into account that $Z_k(\Omega) = Z_k(k\omega_0 + \Omega)$ and $\text{Re}\Omega = m\omega_s$

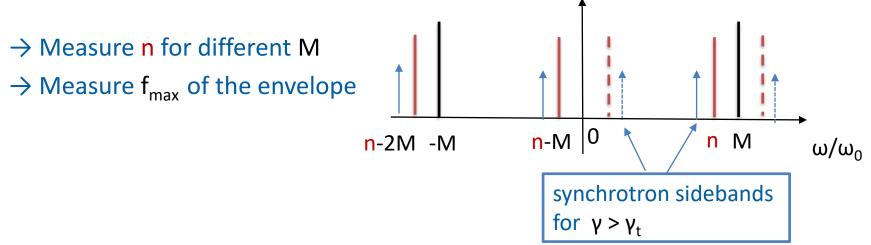
Multi-bunch instability: spectrum

For a narrowband resonant impedance at unknown $\omega_r = \omega_0 p_r$, the instability spectrum has components at $\omega = (n + |M|)\omega_0 + m\omega_s$, $-\infty < |<\infty$,

(n = 0, 1... M-1 is the coupled-bunch mode number, M is number of equidistant bunches in the ring and m=1, 2,... is the multipole number).

On the spectrum analyzer negative ω appear at [(l+1) M – n)] ω_0 - m ω_s

→ Measured mode n is not sufficient to determine ω_r since n + I M ≈ ± p_r Lines at n + I M and (I+1) M – n.

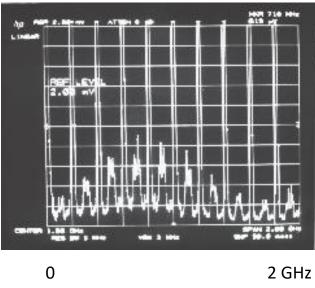


Multi-bunch instability: spectrum

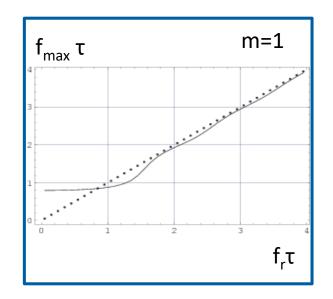
Spectrum envelope with maximum at f_{max}:

 $\begin{array}{ll} \text{if } f_{max} \tau < 1 \ \rightarrow \ f_r < 1/\tau \\ \text{if } f_{max} \tau > 1 \ \rightarrow \ f_r \sim f_{max} \end{array}$

SPS: known HOMs at 623 & 912 MHz



0 200 MHz beam lines 5 ns spaced bunches



 \rightarrow f_r can be identified from spectrum \rightarrow R_{sh} from growth rate measurements

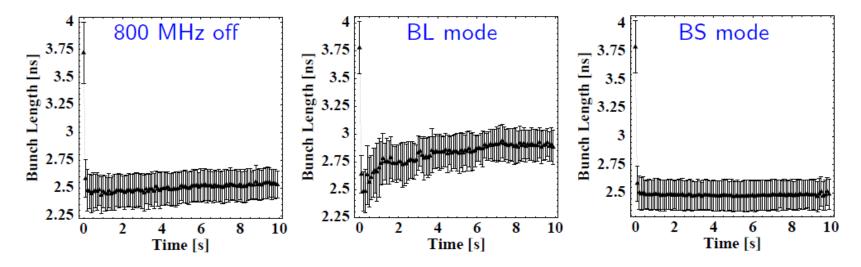
Multi-bunch instability: cures

• Active

- Feedback systems
- Higher harmonic RF system
- Controlled emittance blow-up
- Passive
 - HOM damping (couplers),
 - HOM-free cavity design,
 - Impedance reduction (modification of machine elements),
 - Change of optics (of gamma transition)
 - Synchrotron radiation damping in lepton rings

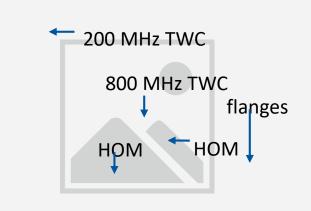
Longitudinal beam instability cures: Higher harmonic RF system

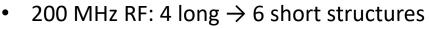
Measured averaged bunch length in (200 + 800) MHz RF system for $V_4/V_1 = 0.23$ Nominal LHC beam on the 26 GeV/c flat bottom of the CERN SPS



In double RF system the CB instability threshold is 5 times higher. Only BS-mode works (phase control, flat portion in f_s - distribution)

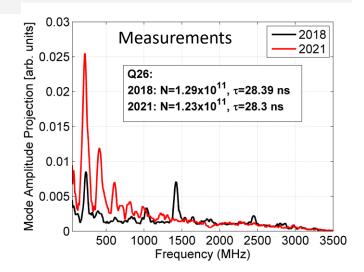
Beam instability cures: Impedance reduction in the CERN SPS

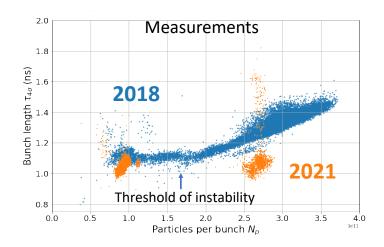




- 623 MHz HOM damping
- Vacuum flanges shielding (~100)

→ Smaller bunch lengthening,
 reduced potential well distortion
 → Stable HL-LHC beam





Thank you for your attention!

Acknowledgements

T. Argyropoulos, H. Damerau, I. Karpov, A. Lasheen, J. Esteban Muller

Further reading

- G. Dome, Theory of RF acceleration, CAS 1985, CERN 87-03
- S. Y. Lee, Accelerator physics, World Scientific, 1999
- J. L. Laclare, Bunched beam coherent instabilities, CAS 1985, CERN-87-03, 1987
- A. Chao, Physics of collective beam instabilities in high energy accelerators, John Wiley & Sons, 1993
- K. Y. Ng, Physics of intensity dependent beam instabilities, World Scientific, 2006

Bibliography

- A. N. Lebedev, Coherent synchrotron oscillations in the presence of a space charge, Atomic Energy, vol. 25, no. 2, 1968.
- *T. Bohl, T. Linnecar, E. S.,* Measuring the Resonance Structure of Accelerator Impedance with Single Bunches, *Phys. Rev. Lett.* 78, 3109 (1997).
- *I. Karpov, T. Argyropoulos, E. S.,* Thresholds for loss of Landau damping in longitudinal plane, PRAB, 2021
- V. Balbekov, S. Ivanov, Longitudinal instability threshold of bunched beam in proton synchrotrons, Atomic Energy, vol. 60, no. 1, 1986
- *I. Karpov, E. S.*, Longitudinal coupled- bunch instability evaluation for FCChh, IPAC'19, 2019; Impact of broadband impedance on longitudinal coupled-bunch instability threshold, IPAC'22, 2022
- *T. Argyropoulos et al.*, Experimental confirmation of the impedance reduction campaign in the CERN SPS, IPAC'23, 2023