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Matching and Power coupling

• If we type matching power couple into google this is what you find

• This lecture is not about that, its about matching the input and output impedances in order 
to minimize reflections and maximise the power entering the cavity
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Mode matching
• At an interface the fields must be continuous at the interface (ie the same on both sides)
• On any metal walls the metallic boundary conditions must be preserved (E||=HT=0)
• For this to be true the sum of the modes on each side of the interface should create identical E 

and H fields, where an is the amplitude of forward mode n and bn is the amplitude of reflected 
mode n
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Mode matching
• We have the same for magnetic fields

• In the example below we have a TE10 mode waveguide with a step in height. There is only one 
propagating mode 

• The sum of the forward and reflected TE10 mode in the left side of the interface cannot equal 
the TE10 mode on right hand side as the field patterns are different, so the field must scatter 
into a higher order non-propagating mode to match the fields
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Mode matching and Fourier series
• In rectangular waveguide the modes vary in each cartesian dimension 

as a sine or cosine wave, meeting the boundary conditions at the 
walls forcing one component to zero

• Fourier theory says any shape can be created by a superposition of 
sinusoidal waves of different harmonics

• Therefore any field pattern can be created by a superposition of 
modes

• As we can have forwards and reverse waves this would not be single 
valued, but the requirement to match both E and H reduces it to a 
single solution comprising of a finite number of mode amplitudes
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Mode matching

• In the case of couplers the field of the cavity must be matched in the 
coupler by summing over all coupler modes

• If our coupler mode can perfectly match the cavity field at the interface in 
both E and H we get perfect coupling

• But it almost impossible to match the fields exactly so other methods 
must be used

• But a cavities field amplitude changes with time as it fills so matching is a 
time dependent problem, typically we aim for perfect coupling in steady 
state (ie after its filled)
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Electric coupling
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The equivalent circuit for 
electric coupling is a current 
source in parallel with a 
capacitance.
The top rail represents the 
inner conductor and the 
ground plane is the cavity body 
and outer conductor.

We get the charge by integrating Gauss’ law 
over the tip of the inner conductor.

For coaxial lines it is more convenient to use equivalent circuits, and 
represent the coupling as a current/voltage source and a 
capacitor/inductor
For capacitive coupling we leave the inner conductor unterminated and 
use the capacitance between the conductor and the cavity walls to 
couple
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Magnetic coupling

.
dB

V dS
dt

= −

The equivalent circuit for magnetic coupling where the 
inner conductor loops round and is connected to the 
outer conductor is a voltage source in series with an 
inductance
.
If the loop isn’t physically connected then there is also 
a series capacitance making a band pass filter.

From Faradays law
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Cavity matching

• In the case of a cavity we have two reflective elements
– the coupling iris the joins the waveguide to the cavity
– the back of the cavity

• The wave will bounce between those two elements and hence the reflections 
will change with time as the fields build up.

• Ideally in steady state the reflections from each element are equal and opposite 
cancelling each other out and hence matching
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Couplers
To model how a cavity fills in time we can use an 
equivalent circuit

The coupling can be represented as a transformer 
(ie a mutual inductance).

The RF source is represented by a ideal current 
source in parallel to a parallel resistance to 
represent the line and the coupler is represented 
as an n:1 turn transformer.

Typically Z0 is 50 Ohms but the cavity shunt 
impedance, R, is ~MOhms and hence the 
transformer changes the cavity impedance seen by 

the source to match.
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Power Transfer Theory

• Which occurs when RL=Ri

• In this case the load dissipates a peak power PL=Is
2Ri/4

Vs = Is RiRL/(Ri+RL)

PL=Vs
2 / RL (the power delivered to the load)
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Coupler circuit representation

• The transformer makes 
the load impedance seen 
smaller by a factor of n2

• By varying the coupling 
we vary n allowing us to 
set the load impedance.

Z0n2

• The reflection (ie match) depends on the difference in the coupler and 
cavity impedance

• When on resonance the cavity impedance equals the shunt impedance 
(Zc=R)

• We can then simply model the circuit as two parallel resistors.

I=Is/n
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Generator Power

• An RF amplifier has a fixed forward power rather than 
instantaneous ie reflections do not change the forward 
power

• It makes sense that the generator power from the RF 
source is the maximum power that can be delivered to the 
cavity rather than power delivered from the current source.

• This occurs when 

• In this case the rms power delivered, P+, is

• As the coupler (n) changes or the cavity impedance 
changes the power from the current source will vary but 
we ignore this. We only care about the power dissipated in 
the cavity and the generator power which is fixed as above.
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Reflected Voltage
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We can also define the reflection in terms of  and we find the 
match occurs at =1.
The reflection also depends on the frequency difference between 
the source and the cavity resonance



Under and Over coupled

We can tell if  is greater or less than 1 from the polar plot of S11.
If the circle doesn’t encompass the origin then beta is less than 1 (undercoupled)
If the circle does encompass the origin then beta is greater than 1 (overcoupled)
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Cavity filling
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The most important behaviour we must understand is 
when the cavity is in steady state (ie when the cavity 
stored energy is constant and U=U0). We can use the 
definitions of  and Q to derive,

• The cavity fills with time as 1-e-t/t where t is 
the filling constant/time.

• The filling constant is
• t=2QL/
• The higher the loaded Q the higher the stored 

energy but the longer it takes to fill.
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Transient reflections

• As we vary the external Q of a cavity the 
filling behaves differently. 

• Initially all power is reflected from the cavity 
at the interface due to the difference in 
impedance

• As the cavities fill the reflections reduce as 
we get cancellation from waves coming from 
inside the cavity.

The cavity is only matched if the external Q of the cavity is equal to the ohmic Q 
(you may include beam losses in this).

When filling, the stored energy in a resonant cavity varies with time and 
hence so does the reflections.
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Transient reflections

• The reflections can also be calculated 
from circuit theory
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Reflections from a square wave
• Excited by a square pulse steady state reflections depends 

on  as we have seen, but when the RF is turned off the 
emitted power is also dependant on 
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Stub Matching
• Sometimes it is necessary to change the Q of the 

cavity, this can be done using a 3-stub tuner to 
match.

• If the natural Qe of the coupling is not matched 
there is a reflection, however this can be 
canceled out with another reflection 180 
degrees out of phase.

• Three stubs spaced apart by 0.375 wavelengths 
can provide any reflection phase/amplitude by 
varying the stub insertion.

• The downside is there is a standing 
wave bouncing back and forth 
between the two reflective surfaces

• This creates a standing wave and 
hence higher peak fields
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Matching with stubs

• Imagine we have two mismatched 
interfaces to a coaxial line.

• The coaxial line is represented by the S 
matrix and the two reflection coefficients 
are the stub and the cavity

• Lets assume the line is constant impedance 
so S11=S22=0

• Lets also assume the line is lossless so 
S21=S12=exp(-jkL) where k is the 
propagation constant and L is the distance 
between them.

• The cavity reflection is (1-)/1+) so the 
stub reflection needs to be the negative of 
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Microphonics

• Microphonics cause the cavity resonant 
frequency to vary in time by anywhere 
from 10 Hz to 10 kHz.

• As we have seen before the reflections are 
dependent on the difference between the 
drive and natural frequencies.

• As the detuning angle is proportional to the 
Q factor it leads to an poor coupling for SRF 
cavities, which have high Q’s.

𝑆11 =
𝑉−
𝑉+

=
1 − 𝛽 − 𝑖𝛿

1 + 𝛽 + 𝑖𝛿
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Microphonics

• As can be seen if the 
microphonics cause a 
detuning larger than the 
cavity bandwidth the power 
demand to keep the cavity at 
the required voltage is large.

• To avoid this a lower external 
Q is chosen than the ohmic
Q, ie the coupler is not 
matched.

• This leads to higher 
reflections without 
microphonics but much lower 
reflections in practice
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Beam Loading

• In addition to ohmic losses we must also consider the power extracted from the 
cavity by the beam.

• The beam draws a power Pb=Vc Ibeam from the cavity.

• Ibeam=q f, where q is the bunch charge and f is the repetition rate

• This acts as a current source in series with the cavity

Z0n2

I=Is/n

Ib
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Coupling with Beam Loading

• The rf source will not see any difference between the power 
dissipated in the cavity walls and the power extracted by the beam 
hence we can calculate a new Q factor, Qcb.

• this Qcb will replace Q0 when calculating cavity filling. This means 
the match will change as well as needing more power.

• Normally we aim for =1 with beam and have reflections when 
filling.
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Detuning
• In many RF systems the beam is not accelerated on crest, but at a phase 

slightly above or below the maximum voltage.
• In this case the beam induces a current in the cavity which is out of phase

with the main RF and hence changes the cavity phase, which must be 
controlled.

Beam V

V before 
beam 
arrives
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• This causes a phase (and 
frequency) shift as the 
imaginary part remains the 
same. 

• Phase shift = atan [(Ib R/Q)/Vg]

Note the period is not 2pi in phase



Detuning

• Correcting the phase take more (reactive) power than simply replacing power lost 
to the beam

• The phase/frequency shift is effectively adding a capacitance to the cavity circuit.

• This can be fixed by detuning the cavity so that  we reduce the cavities 
capacitance accordingly.

• The cavity phase is advanced between bunches because it is at a higher frequency 
(real part becomes finite and negative).

• The two phase shifts cancel if

•

• However without beam the cavity has the wrong frequency.
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Required Power with beam
• In this case the power is

• Where

• Normally the 2nd term on the RHS is neglected.
• In an ERL the loading due to the injected and spent beam exactly cancel. This means that the 

beamloading can be neglected
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TW Matched Couplers

•A travelling wave structure has 
two (or four) couplers, and input 
and an output.

•The power travels from the 
input to the output
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Matching travelling wave structures

• The two S11 plots 
are for the same 
cavity and both 
have S11<0.1 at 
2.9985 GHz but 
they have different 
Q’s for the 
couplers.

• If S11=0 is the 
cavity matched?
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Is it matched?
• It depends what you mean by matched?
• The reflections are zero in steady state for both cavities but if we wish a travelling wave then there should 

be no reflections at any time not just in steady state.
• If there is a mismatch between each coupler and the cavity then the reflections from each coupler could 

cancel, similar to stub matching, giving S11=0
• But the downside is that there is a standing wave between the couplers with waves going in both directions 

inside the coupler
• This increases the losses without increasing acceleration as well as creating “hot” cells where the field 

exceeds breakdown limits
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Matching TWS

E = field
P = cell length
R = internal reflection coefficient
y = phase advance

• This is not the same as S11=0 (global matching) . Here we 
have no internal reflections

• For a true travelling wave there is also no reflection at the 
start of the pulse.

• In order to verify a structure is matched we must measure 
the fields inside the cavity.

By measuring how the field varies between a cell and its 
nearest two neighbours we can use Floquet theorem to 
calculate the phase and internal reflections. For a TWS 
|R|=0.
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Matched Couplers
• For a matched coupler we must consider the matching of each cell rather than the entire structure, ie

considering the power flow between cells. As before a coupler is matched if Qe=Qinternal

• Here 1
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Where Qf is calculated from the power flow from cell to cell. If Q0 >> Qf

Example: CLARA S-band TWS Phase advance = 2p/3
Group velocity = 3 % c at the input
Qe = 70

This is a very low Q compared to that of a standing wave cavity which gives the fast filling 
time and large bandwidth.
This is not power loss but power flow so the structure can still be efficient if made 
sufficiently long. 34



Example CLIC crab cavity

119.870

• If we look at the phase 
of reflections from a 
beadpull measurement 
we can find the 
amplitude and phase of 
each cell.
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Transmission line circuit

• The approximation is only valid if the cell lengths (Dz) are much smaller than the 
wavelength being modelled, this ensures the corner frequency is much higher 
than the frequency being modelled so that it doesn’t act like a filter at all.

• C is capacitance per unit length so capacitance is CDz

• L is inductance per unit length so inductance is LDz

• All pairs of wires (go and return) have capacitance 
between them, and each wire has an inductance.

• This capacitance and inductance is not at a discrete 
point it is distributed along the wire. We represent 
this by a chain of low pass filters.



Transmission Line Circuit

• If we neglect losses to simplify…

• Kirchoff’s voltage law gives us:

𝑉1 𝑧, 𝑡 − 𝐿∆𝑧
𝛿𝑖 𝑧, 𝑡

𝛿𝑡
− 𝑉2 𝑧 + ∆𝑧, 𝑡 = 0

• Kirchoff’s current law gives us:

𝑖1 𝑧, 𝑡 − 𝐶∆𝑧
𝛿𝑣 𝑧 + ∆𝑧, 𝑡

𝛿𝑡
− 𝑖2 𝑧 + ∆𝑧, 𝑡 = 0

• Divide by ∆𝑧 and take the limit ∆𝑧 → 0:

t

I
L

z

V




−=





t

V
C

z

I




−=





𝑉1 𝑧, 𝑡 𝑉2 𝑧 + ∆𝑧, 𝑡



Transmission line circuit
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Matched Transmission lines

• If we have an RF generator terminated by a matched load 
(at the same impedance as the source and line) at the 
end of a long transmission line we find at any instant in 
time the voltage varies sinusoidally along the line

• the voltage isn’t constant along the wire

• However as we advance in time the phase of the wave varies in time. We call 
this a travelling wave. The voltage is given by.

• Where k is 2𝜋/𝜆 = /sqrt(LC) 

• The peak moves according to

• Which implies the velocity is 

• At low frequencies k is close to zero.
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Impedance

• Take the current equation

• Integrate both sides in space to get

• dz/dt is velocity                      hence

• Giving the characteristic impedance of the line. . It tells us that 
when the co-axial transmission line just carries a forward wave 
then the voltage is everywhere in phase with the current and they 
have the ratio 
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Interfaces

• If there is an interface between two lines (or a line and a source 
or a load). The voltage and current must be continuous (i.e. 
they must be the same at both sides of the interface)

• However this is not possible with just the forward travelling 
wave unless the impedance (Z=V/I) is the same on both sides. 

• We must return to the initial solution with forward and 
backwards waves.

• By combining forwards and backwards waves we can find a 
solution with both V and I constant because the currents 
combine as:
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Forward and Backward Waves

Voltage at any location is determined 
by summing the forward wave voltage 
with the backward wave voltage.

z
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reflected wave 
from earlier pulse

Using the line impedance Zo

then current at any location is 
determined by

𝐼 𝑧, 𝑡 =
1

𝑍𝑜
𝐹 𝑧 −

𝑡

𝐿𝐶
− 𝑅 𝑧 +

𝑡

𝐿𝐶

oZIV
LC

t
zF2 +=








−Solving for the forward wave voltage F gives

oZIV
LC

t
zR2 −=








+Solving for the backward wave voltage R gives

2

ZIV
 voltage waveforward o+

=
2

ZIV
 voltage wavebackward o−

=
Hence

𝑉0 = 𝑉+ exp 𝑖𝑘𝑧 − 𝑖𝜔𝑡 + 𝑉− exp 𝑖𝑘𝑧 + 𝑖𝜔𝑡

= 𝐹 𝑧 −
𝑡

𝐿𝐶
+ 𝑅 𝑧 +

𝑡

𝐿𝐶



Reflection coefficient

• If we have a forwards wave travelling to an interface we will have a reflected 
wave and a transmitted (forwards wave).

• V & I must be the same on both sides but V+ and V- can be different. The 
voltage and current equations are hence:

• If we introduce a reflection coefficient Г:
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𝑍1 + 𝑍2



RF sources

• RF sources are not current or voltage sources, they are forward travelling wave 
sources.

• They have an internal impedance 𝑍𝑠.

• If a wave is reflected then the voltage and current at the source will change (as 
V=V++V-) hence why it isn’t a current or voltage source.

• However the forwards travelling wave never changes at Zs=V+/I+ always.

• This means the forward voltage, current and power of an RF source is fixed.

• Reflected power is absorbed by the internal impedance in the simple case but in 
reality its much more complex and can make the source unstable.



Power waves

• When we have several components of different impedance it is not clear if it is better to use voltages or currents to 
tell what percentage of the signal is transmitted.

• However energy is conserved in all physical processes. Power is the change of energy with time hence it makes 
sense to use power.

• The transmitted power, Pt, from an incoming wave of power Pin where the reflected power is, Pref, is hence:

• However we want to know amplitudes, a, so we instead take the square root of the power:
refint PPP −=

Z

V

Z

V
Pa

++

===

2



Terminated lines
• At high frequency the phase varies along the length of the line, L, dependant on the 

wavelength

• The phase change is kL=2pL/lamda

• For low frequencies k is very small and hence so is the phase change unless L is very 
large.

• At high frequencies as the wavelength is small k is large and we get phase changes even 
at short lengths of line.

• The phase change will change the components effective impedance.

We can change the phase of the reflection but not its amplitude. This means we 
can change the reactance to any value with a length of line but the resistance 
remains constant.

𝑍𝑖𝑛 = 𝑍0
𝑍𝐿 + 𝑖𝑍0 tan 𝑘𝑙

𝑍0 + 𝑖𝑍𝐿 tan 𝑘𝑙

𝑆11 =
𝑍𝑖𝑛 − 𝑍𝐺
𝑍𝑖𝑛 + 𝑍𝐺


