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• Introduction
• Longitudinal beam dynamics

• Single-harmonic RF
• Bunching and de-bunching

• Bunch rotation

• Controlled longitudinal blow-up

• Double-harmonic RF
• Rebucketing

• Bunch merging

• Multiple bunch splitting

• Batch compression

• Double RF system

• Non-sinusoidal RF voltages

• Sequences, design and implementation

• Summary

Outline
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Introduction

Let’s go!



4

Introduction

What can you do with RF in an accelerator?

LHC

SLS

Acceleration

Only acceleration? → RF can do much more!

Control of long. 
beam parameters
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Impact and application of RF

RF parameter Beam parameter

• Frequency, fRF

• Harmonic number, h

• Amplitude, VRF

• Phase, f

→ Bunch spacing: 1/fRF and multiples
→ Bunch length and pattern

→ Orbit length: 2pR is multiple of RF 
wavelength

→ Radial offset
→ Beam energy: approximately 

proportional to orbit length

→ Bunch length

→ Position of beam in time or phase

Beyond acceleration

→ Control over longitudinal beam 
parameters

→ Impacts some transverse properties
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• Energy gain per turn in a hadron synchrotron

→ Grows with size of accelerator, r ∙ R

Motivation

Low and medium energy
< ~50 GeV

High energy synchrotrons and 
colliders > ~50 GeV

• Moderate RF voltage 
requirements: < ~ 1 MV

• Non-relativistic beam

→ Revolution frequency 
sweeps

→ Tuneable (ferrite) or 
wideband RF systems

• Large RF voltages for fast 
acceleration: several MV

• Ultra-relativistic beam

→ Tiny revolution 
frequency increase

→ Fixed-frequency RF 
systems

• Short bunches in collision

→ RF frequencies
below 50 MHz

→ RF frequencies
above 50 MHz
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Motivation

Low and medium energy High energy synchrotrons and 
colliders

→ RF frequencies well
below 50 MHz

→ RF frequencies
above 50 MHz

CERN PS

BNL AGS

FNAL Booster

2.8…10 MHz

1.6…4.5 MHz

38…53 MHz

CERN SPS

BNL RHIC

LHC

200 MHz

198 MHz

400 MHz

→ Need RF to increase RF frequency in chain of synchrotrons

→ Beam parameters for an experiment, e.g., short bunches

→ Longitudinal stacking and accumulation of beam

https://creazilla.com/nodes/68222-superman-clipart
https://creazilla.com/nodes/68222-superman-clipart
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Longitudinal
beam dynamics
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RF voltage, potential and bucket

Energy dependent phase advance, f:

Phase dependent energy gain, DE:

Simple accelerator model:

Works for arbitrary shape of acceleration amplitude g(f)
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• Construct Hamiltonian from equations of motion

• Hamiltonian constant on trajectory

→ ‘Energy conservation’

Longitudinal beam dynamics – single RF

same 
structure
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with                               this becomes 

Continuous approximation – single RF

Single-harmonic RF system

→ Conventional longitudinal beam dynamics → E. Shaposhnikova
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• In the centre of the bucket, Df << 1 → particles move on 
elliptical trajectories in Df-DE phase space

• Hamiltonian is constant on these trajectories

• In the bucket centre, particles oscillate with the synchrotron 
frequency, wS = 2pfS

Linear part of non-linear bucket

DE

Df

H = const.
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• Compare two particles on the same trajectory

1. No phase deviation 2.  No energy deviation

Longitudinal emittance

1.

2.
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• Compare two particles on the same trajectory

1. No phase deviation 2.  No energy deviation

Longitudinal emittance, el

~ Surface occupied by particles in 
longitudinal phase space

→ Preserved in physical [pDt DE] = eVs

Longitudinal emittance

1.

2.
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Single

harmonic RF

RF voltage variations
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Most simple RF manipulation

• Change bunch length by simply changing RF voltage

• Bunches get shorter, but not much

• Which voltage function is optimal to get from Vi to Vf?
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Optimum voltage changes

• Which voltage function is optimal to get from Vi to Vf?

→ Definition adiabaticity parameter

→ Derive voltage functions with constant a

Relative change of synchrotron frequency

during one period
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Optimum voltage changes

• Which voltage function is optimal to get from Vi to Vf, 
within the time, t ?

→ Synchrotron frequency depends on RF voltage

→ Voltage function with constant adiabaticity, a
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RF capture of a coasting beam

1. Start from coasting beam, for example injected Linac

2. Switch RF on at low voltage, Vi

3. Raise voltage to the desired level, Vf

→ Clean capture

a = 0.25
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RF capture, debunching and rebunching

• Bunch a beam without RF structure, e.g. after injection

• De-bunching → Rebunching: Change harmonic number

Strengths and weaknesses

+ Simple manipulation, e.g. to change harmonic number 

- Need the right RF frequency (exactly n ∙ frev) for capture
- No RF control while beam is debunched

RF capture, bunching (AD) Debunching (CERN AD)
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1. Start from coasting beam, for example injected Linac

2. Switch RF on at low voltage, Vi

3. Raise voltage to the desired level, Vf

→ Some filamentation

RF capture of a coasting beam

a = 0.25
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RF capture of a coasting beam

a = 2.5

1. Start from coasting beam, for example injected Linac

2. Switch RF on at low voltage, Vi

3. Raise voltage to the desired level, Vf

→ Some filamentation
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RF capture of a coasting beam

a = 8

1. Start from coasting beam, for example injected Linac

2. Switch RF on at low voltage, Vi

3. Raise voltage to the desired level, Vf

→ Beam more rotating then being captured

→ Slow and fast RF manipulations, depending on a

→ Period of synchrotron frequency is the reference
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Single-

harmonic RF

fast variations

Bunch rotation
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→ Calculate aspect ratio of bucket trajectories

Equating both sides gives

with emittance as

→ Not efficient at all

→ 16 times more RF voltage needed to cut bunch length in half

Change RF voltage to change bunch length?

→

1.

2.
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→ Individual particles in matched bunch oscillate but no 
macroscopic motion

→ Abruptly changing the RF voltage flips particles to new 
trajectories

→ The bunch distribution seems to rotate

→ Exchange of bunch length and momentum spread

Abrupt change of RF voltage

Matched Mismatched



27

Introduce sudden change: bunch rotation 

→ Quickly exchange longitudinal phase space behind bunch

→ Increase RF voltage much faster than period of fS
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→ Quickly exchange longitudinal phase space behind bunch

→ Increase RF voltage much faster than period of fS

Introduce sudden change: bunch rotation 
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→ Switch RF voltage much faster than period of fS

Introduce sudden change: bunch rotation 
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• Fit 14 ns long bunches into 5 ns long buckets in the SPS

→ Double-step bunch rotation

Example: PS to SPS transfer at CERN

80 MHz (h = 168)

40 MHz (h = 84)

4s = 14 ns

11 ns

4 ns

Adiabatic 
shortening

Bunch 
rotation

Bunch 
splittings

Extraction
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→ Bunch length now proportional to 𝑽 and not 
𝟒

𝑽

→ Can save enormous RF voltage

→ Bunch shortening from 14 ns to 4 ns (ratio ~3.5)

→ Starting from 100 kV at 40 MHz

→ Slow shortening would require 𝟏𝟎𝟎 𝐤𝐕 ∙ 𝟑. 𝟓𝟒 ~ 𝟏𝟓 𝐌𝐕

→ Installed RF voltage is only about 1.2 MV

Example: rotation at PS-SPS transfer

Simulation

Extraction

-30 300

4 ns

t [ns]

RF voltage Measurement
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Need large momentum spread for slow extraction

1. Jump RF phase such that bunch at unstable fixed point

2. Jump back

3. Let bunch rotate, switch RF off at large momentum spread

→ Non-linearity of bunch rotation helps

Bunch stretching at unstable fixed point

Bunch profile evolution Longitudinal phase space

M
e

a
su

re
m

e
n

t

S
im

u
la

ti
o

n



33

Need large momentum spread for slow extraction

1. Jump RF phase such that bunch at unstable fixed point

2. Jump back

3. Let bunch rotate, switch RF off at large momentum spread

→ Almost constant momentum distribution after rotation 

Example: using the non-linearity

Time projection

Energy 
projection

60

40

0

20

-20

-40

-60

2
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]
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t [ns]
0-20 20

Bunch profile evolution
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Comparison of bunch rotation techniques

RF voltage jump Jump to unstable fixed-point 
and back

+ Easy implementation: just raise 
voltage quickly

+ Bunch always kept in bucket 
with large RF voltage

+ Controlled RF phase jumps 
straightforward with digital RF 
sources

- Power demand on RF systems 
during voltage jump

- Bunch kept at low RF voltage 
before 

- Non-linearity → rotation of more 
than p/2 in longitudinal phase 
space

→ Bunch length proportional to 𝑽

Which one to choose?
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• Proton bunch coalescing in
Main Injector at Fermilab

→ Geometrical minimum longitudinal
emittance growth about 27%

Multi-bunch rotation at Fermilab: coalescing

150 GeV
53MHz bunches

 2.5 eVs/53 MHz 
bunches

0.15 eVs /53MHz 
Bunches

8 GeV
53 MHz bunches

150 GeV
53 MHz bunches

7 bunches at h1 = 588 

h2 = 28 

h2 = 28 

h1 = 588 

h1/h2 = 21

C
. 

B
h

a
t
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Example: Main ring bunch coalescing

5 ∙ 1010 protons/bunch

3 ∙ 1011 protons/bunch

C
. 

B
h

a
t

13
4

 m
s

160 ns

→ Clever combination of bunch rotation and subsequent 
harmonic handover (rebucketing)
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Controlled longitudinal
emittance blow-up
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Controlled emittance blow-up

• How to reduce longitudinal density and
How to increase bunch length in well-defined way?

→ Shake the RF bucket

→ Introduce some diffusion

Main RF system only Higher-harmonic RF

1. Phase noise modulation of 
main RF in fixed frequency 
band

• Variant: fixed-frequency 
excitation during 
acceleration
→ Bunch Spreader

2. Separate higher-harmonic 
RF system with periodic 
phase modulation

https://shakeit.getjusto.com/
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Emittance control with phase noise

D. Quartullo

1. Choose upper frequency to 
cover synchrotron 
frequency at bunch centre

2. Choose lower frequency to 
match target emittance

3. Excite

2. Phase noise modulation of main RF in fixed frequency band
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Example: Phase noise blow-up in PS Booster

Current
emittance

Target 
emittance

𝒇𝒔𝟎

𝒇𝒔

• Noise excitation of bunch by band-width limited noise

→ Controlled longitudinal blow-up in the PSB

D
. 

Q
u

a
rt

u
ll

o

Strengths and weaknesses

+ Single harmonic, no need for 2nd RF system
+ Few parameters: band of excitation, amplitude

- Difficult to achieve smooth blow-up
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Controlled emittance blow-up

• How to reduce longitudinal density and
How to increase bunch length in well-defined way?

→ Shake the RF bucket

→ Introduce some diffusion

1. Higher-harmonic RF with
periodic phase modulation
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Higher-harmonic RF system

Strengths and weaknesses

+ Blow-up easily controllable: RF voltage and duration (hBU/hRF>20)
+ Equalizes bunch-by-bunch parameters differences
+ Control of longitudinal distribution

- Requires additional RF system
- Difficult to adjust for smaller ratios hBU/hRF

hBU = 433
hRF = 8

• Prefer high harmonic ratios, ideally > ~20

• Voltage ratios of the order of ~1
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Double-

harmonic RF

h and n ∙ h
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The Hamiltonian describing the system becomes 

Arbitrary RF waveform

Equations of motion

same structure

Replace                                          →  arbitrary amplitude 
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Integral of RF voltage → RF potential

Arbitrary RF waveform



→ RF potential

→ and without
acceleration
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Two sinusoidal
RF voltages
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Sinusoidal double-harmonic RF

• Double-harmonic sum voltage

• Corresponding RF potential

→ Actually one relative phase between both RF systems
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Examples of double-harmonic RF voltage

h = 1 and 2 h = 4 and 5

Voltage ratio = 1 Voltage ratio = 1
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Example application: space charge in PSB

RF amplitude

→ Space charge ∝ instantaneous current

• Inverted gradient at bucket
centre

• Flattened bunch with
reduced peak current → Space charge reduction at low energy

t [ns]
0-400 400

0.6

0.4

0

0.2

-0.2

-0.4

-0.6

0.8

0

0.4

D
E

 [
M

eV
]

I 
[A

]

Time projection

Energy 
projection

Vh=1 = 8 kV, Vh=2 = 6 kV, counter-phase
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Rebucketing
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Both RF systems in phase: rebucketing

• Change of harmonic number from bucket centre to centre

→ Phase space aspect ratio:

RF buckets with h2 = 2h1 and VRF2 = VRF1/2
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Both RF systems in phase: rebucketing

• Change of harmonic number from bucket centre to centre

→ Phase space aspect ratio:
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Both RF systems in phase: rebucketing

• Change of harmonic number from bucket centre to centre

→ Phase space aspect ratio:

RF voltages in phase
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Both RF systems in phase: rebucketing

• Change of harmonic number from bucket centre to centre

→ Not much happens during
well adjusted rebucketing

→ Phase space aspect ratio:

Rebucketing: h = 42 → 84

Pure h = 42

Pure h = 84
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Bunch merging
and splitting
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Merging two bunches into one

• Double intensity per bunch

• No change of transverse beam parameters → more brightness

→ Increase RF voltage on h = h0/2 while decrease on h0

h = h0 h = h0/2

Time

A
m

p
li

tu
d

e

→ Particles are squeezed out 
of sub-buckets

→ Not fully profiting from 
available RF voltage at 
both harmonics

Voltages in counter-phase
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h = h0 h = h0/2

TimeA
m

p
li

tu
d

e

X-crossing

Bunch splitting and merging

h = h0

h = h0/2 TimeA
m

p
li

tu
d

e

Overlapping crossing
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Bunch merging

h = h0

h = h0/2 TimeA
m

p
li

tu
d

e

Overlapping crossing

B. J. Evans, R. Garoby, et al. The Antiproton 
Production Beam for the Antiproton Collector 
(“A.C.”), PAC’87, p. 1925

h = 20              → 10

h
=

 1
4

 →
7
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Bunch merging

• Longitudinal distribution ideally unchanged

→ Central part of the bunch remains in the centre

→ Simulation of an adiabatic manipulation

Strengths and weaknesses

+ Simple manipulation to increase intensity per bunch

- Initial bunches must have identical longitudinal emittance
- Relative RF phase critical to avoid blow-up
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• Generalization of bunch merging for multiple bunches?

→ Direct hand-over from h → h/n

→ Impossible in one single step!

Bunch merging
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Bunch merging

• Generalization of bunch merging for multiple bunches?

→ Direct hand-over from h → h/n

→ Impossible in one single step!

→ Sub-buckets do not fill simultaneously

→ Sequential manipulation of two mergings instead: h → h/2 → h/4  

Voltages in counter-phase
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Bunch splitting

• Inverse bunch merging → Bunch Splitting

25
 m

s

→ Increase number of bunches and RF frequency

→ Reduce bunch spacing

→ Distribute intensity more equally around circumference

R. Garoby, S. Hancock, New Techniques 
for Tailoring Longitudinal Density in a 
Proton Synchrotron, EPAC’94, p. 282

15
 m

s
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Bunch splitting

• Inverse bunch merging → Bunch Splitting

→ Increase number of bunches and RF frequency

→ Reduce bunch spacing

Strengths and weaknesses

+ Simple manipulation, to increase intensity per bunch

- Relative RF phase critical to avoid blow-up, especially for 
small bucket filling factors

https://www.eatingwell.com/article/7912240/how-to-cut-a-tomato/
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Extension of bunch splitting → Triple split

→ Apply RF voltage at 3 harmonics h, 2h and 3h at the same time

→ Form sub-buckets of equal size during process

→ Defines voltage programs 
during the process

1. RF voltages at h and 3h in 
phase

2. Voltage at 2h in counter-
phase to bucket particles 
outside
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Bunch splitting and merging

→ Apply RF voltage at 3 harmonics h, 2h and 3h at the same time

→ Form sub-buckets of equal size during process

→ Triple-harmonic RF manipulation

✓ Works on paper
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Bunch splitting and merging

h
=

 7
 →

14
→

21

→ Apply RF voltage at 3 harmonics h, 2h and 3h at the same time

→ Form sub-buckets of equal size during process

→ Triple-harmonic RF manipulation

✓ … and with beam as well!
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Summary

• RF can do so much more than just acceleration

→ Adiabaticity and synchrotron frequency decide 
whether a manipulation is slow or fast

• The RF potential is the integral of voltage

→ Fill occupied phase space into the bucket

→ Change bunch length and harmonic number

→ Merge and split bunches

Thank you very much            
for your attention!
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• Introduction

• Single-harmonic RF

• Double-harmonic RF
• Rebucketing, bunch merging and splitting

• Batch compression

• Double RF system
• Slip stacking

• Non-sinusoidal RF voltages
• Barrier bucket manipulations

• Sequences, design and implementation
• Batch compression, merging and splitting

• A real world example

• Summary

Outline
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Double-

harmonic RF

h1 and h2

Batch compression



72

Change harmonic in small steps

→ Control spacing between bunches → proportional to Trev/h

→ Slowly change harmonic: h → h + n with n = 1, 2, 3, …

→ Amplitude modulation for RF voltage envelope

h = h0

h = h0 + 1 Time

h = 8 → 9

h = 19 → 20

A
m

p
li

tu
d

e
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Change harmonic in small steps

→ Control spacing between bunches → proportional to Trev/h

→ Slowly change harmonic: h → h + n with n = 1, 2, 3, …

→ Maximum length of bunch train limited to 2p/Dh to avoid 
azimuth regions with no RF

h = h0

h = h0 + 2 Time

h = 18 → 20

A
m

p
li

tu
d

e
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RF potential and buckets during handover

h = h0

h = h0+1 TimeA
m

p
li

tu
d

e

h = h0 h = h0+1

TimeA
m

p
li

tu
d

e
Overlapping crossingX-crossing

h = 8  9 

• Example: hand-over from h = 8 to h = 9 (and back)

h = 8  9 
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Example batch compression for AD

PS

AD • Antiproton decelerator (AD) much 
smaller than Proton Synchrotron (PS)

→ Trev,AD = Trev,PS/(10/3) ≈ Trev,PS/3.33

→ Batch compression to make it fit
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R. Cappi, B. J. Evans, R. Garoby, Status of the anti-proton production beam in the 
CERN PS, Part. Accel. 26 (1990), p. 217

h = 10 → 12 → 14 → 16 → 18 → 20

Example batch compression for AD

Strengths and weaknesses

+ Hand-over from bucket centre to bucket centre
→ Robust RF manipulation

+ No particles at unstable fixed point

- Requires two groups of active RF cavities, ideally with a 3rd 
preparing for subsequent harmonic

- Complex RF voltage programmes
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Example batch compression for AD

C. Lombard et al., Improved antiproton production beam at CERN, PAC2023

h = 8 → 9 → 10 → 11 → 12 → 14 → 16 → 18 → 20
20

0
 m

s
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Symmetry of batch compression
Even number of bunches Odd number of bunches

→ Just RF phases decide whether a bucket forms in the center  
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Symmetry of RF manipulations

Splitting: hRF = 8 → 16
Batch compression:          

hRF = 8 → 9 → 11 → 13 → 17 → 20

V
R

F,
 h

16
V

R
F,

 h
8

• Works in every bucket • All buckets different 
(even and odd harm.)

→ Periodicity: h = 1→ Periodicity: h = 8

→ All RF sources must be synchronous with respect to frev

at any harmonic
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3 4 2 1 3 4 2 1

1st injection 2nd injection

→Must inject into the correct bucket numbers

Bucket numbering for RF manipulations

Triple splitting Batch compression

Injection
harmonic

Periodicity of          
RF manipulation

Every bucket Only one beating along 
circumference

Injection bucket 
selection

4 buckets difference between
both injections

Both injections into 
independently defined 

buckets
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Bucket numbering

• Bunches must be placed into the correct buckets

→ Must respect bucket number → azimuth relative to phase of h = 1

1 turn
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Double

RF system

Two beams

Slip stacking



83

Momentum, radial position and frequency

• Ideal beam circulates with the expected revolution 
frequency (Df = 0) on the central orbit (DR = 0) → Dp = 0

• Real beam behaviour is calculated using
C. Bovet, R. Gouiran, I. Gumowski, K. H. Reich, 
A selection of formulae and data useful for the design 
of A.G. synchrotrons, CERN-MPS-SI-Int-DL-70-4
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• Ideal beam circulates with the expected revolution 
frequency (Df = 0) on the central orbit (DR = 0) → Dp = 0

• Real beam behaviour is calculated using

At constant bending field
f, p and R are equivalent

0

o

o

→ RF frequency controls beam momentum and radial position

→ …when the beampipe is wide enough

Momentum, radial position and frequency

C. Bovet, R. Gouiran, I. Gumowski, K. H. Reich, 
A selection of formulae and data useful for the design 
of A.G. synchrotrons, CERN-MPS-SI-Int-DL-70-4
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Two co-rotating beams simultaneously?

• Difference in revolution frequencies causes phase slip

1. Increase intensity by slip-stacking of bunches

2. Reduce bunch spacing → Interleaved slip-stacking
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Two co-rotating beams simultaneously

• First slip-stacking (‘azimuthal combination’) in CERN PS

Ekin = 800 MeV

p = 26 GeV

D. Boussard,Y. Mizumachi, Production 
of beams with high line-density by 
azimuthal combination of bunches in a 
synchrotron, PAC’79, p. 3623
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Slip stacking procedure

1. Separate RF for two beams to split RF

• Inject with momentum offset
• RF frequency modulation for bunches 

separated in time
- Sufficient RF system bandwidth for 

modulation at frev

2. Drift/slippage with DfRF = fRF1 – fRF2

• Both RF frequencies active simultaneously 
• Only minor perturbations of buckets with 

sufficient DfRF

3. Approach of fRF1 and fRF2

• Carefully optimized compromise between 
adiabaticity and bucket perturbations

→ fRF1

→ fRF2
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Slip stacking procedure

3. Approach of fRF1 and fRF2

• Carefully optimized compromise between 
adiabaticity and bucket perturbations

4. Recapture to common RF frequency:  
fRF1 = fRF1 + fRF2/2

• Carefully optimized compromise between 
adiabaticity and bucket perturbations

fRF1 close to fRF2

fRF

Restaurant RF

Menu à 15€

Entrée + plat/plat + dessert

Menu à 20€

Entrée + plat + dessert

Fromage: supplement 5 €

Choose only
what is required
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Slip stacking

• Brought to perfection of stacking long batches in
Main Injector at Fermilab

Batch #1 Batch #2

C
. 

B
h

a
t
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• Brought to perfection of stacking long batches in
Main Injector at Fermilab

Slip stacking

R
. 

A
in

sw
o

rt
h
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Example: interleaved slip-stacking

• Reduce bunch spacing by interleaved slip-stacking

→ Reduce bunch spacing from 100 ns to 50 ns

→ Ion beams for LHC in the SPS at CERN

D
. 

Q
u

a
rt

u
ll

o
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• Reduce bunch spacing by interleaved slip-stacking: SPS

Example: interleaved slip-stacking

100 ns → 50 ns
bunch spacing reduction

E > Emean

E < Emean

T
. 

A
rg

y
ro

p
o

u
lo

s

Bunch 1

D
E

E > Emean

TimeBunch 2

D
E

Time

E > Emean
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Example: interleaved slip-stacking

Strengths and weaknesses

+ Powerful stacking scheme
+ Partial scheme combined with injection and extraction

- Large emittance growth at recapture
- Complex implementation: modulation, two RF frequencies

Bunch 1 Bunch 2

Phase loop
back on

9

T
im

e
, a

b
o

u
t 

0
.5

 s

D
. 

Q
u

a
rt

u
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o
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Non-sinusoidal

RF voltage

Isolated and barrier bucket
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Non-sinusoidal RF voltage

• Active RF for one only one 
period

• One RF bucket per pulse

→ Isolated bucket

• Switch polarity of RF

→ Barrier bucket

→ No RF between pulses: 
coasting beam in a bucket

→ Enormous flexibility to move 
barriers in phase J.

 E
. 

G
ri

ff
in

 e
t.

, 
P

A
C

’8
3

A
. 

G
. 

R
u

g
g
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ro

, C
E

R
N

-6
8

-2
2
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Isolated bucket

→ RF capture into an isolated bucket

→ Continuous capture from coasting beam

→ Little practical application until today
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Barrier bucket

RF potential

RF voltage

Shifted RF potential
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Barrier bucket

→ RF capture into a barrier bucket

→ Combine advantages of continuous and bunched beam

→ Most simple application: Generate particle free gap
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Barrier-bucket application in CERN PS

• Compress or stretch bunch by moving phase of RF barriers

S
im

u
la

ti
o

n

→ Perfect bunch length manipulation, but slow

→ Bunch oscillations very well predicted by simulations
M

e
a

su
re

m
e

n
t

M. Vadai
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Barrier-bucket application in CERN PS

• Compress or stretch bunch by moving phase of RF barriers

S
im

u
la

ti
o

n

M
e
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m
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n
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→ Perfect bunch length manipulation

M. Vadai
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Barrier-bucket application in CERN PS

• Compress or stretch bunch by moving phase of RF barriers

S
im

u
la

ti
o

n

M
e

a
su

re
m

e
n

t

→ Perfect bunch length manipulation

M
. V

a
d

a
i

Strengths and weaknesses

+ Very flexible, control of bunch length and peak current

- Difficult to generate large RF voltage with wide-band RF system
- Compensation of beam loading at high intensity
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Loss reduction with barrier-bucket transfer

• RF manipulation allows generating a gap for extraction kicker

→ Barrier-bucket to slightly compress 
bunch train M. Vadai
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Loss reduction with barrier-bucket transfer

• RF manipulation to extract (almost) un-bunched beam

→ Reduced beam loss during kicker rise

→ In operation for SPS fixed-target beam M
. V

a
d

a
i
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Momentum mining at Fermilab

RF voltage and
separatrices of buckets

RF potential: VRFdt and
Occupied phase space

C
. 

B
h

a
t

1. Barrier bucket with
cooled antiprotons

2. Capture large density
in sub-buckets

3. Separation of
low energy
spread 

Mining

• Mining of antiprotons at large longitudinal phase space density

→ Developed at Fermilab for proton-antiproton collider Tevatron
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Momentum mining Fermilab

• Mining of antiprotons at large longitudinal phase space density

→ Developed at Fermilab for proton-antiproton collider Tevatron

VRF(t)

Ibeam(t)

Momentum mining in action in the Fermilab Recycler

C
. 

B
h

a
t

→ One of the most evolved RF manipulation ever performed!
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RF manipulation

sequences

Example: BCMS beam at CERN
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• Single RF manipulation often not sufficient to make a beam

→ Real-life RF manipulations sequence of basic building blocks

RF manipulation sequences
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Compression, merging and spitting Split in four at flat top energy

26
 G

e
V

/c

E
k

in
=

 2
.5

 G
e

V

2n
d

in
je

ct
io

n

h = 9

Eject 48 
bunches

Inject 4+4 bunches

gtr
Controlled blow-ups

h
=

 8
4

h = 21

Example: LHC-type beam in the CERN PS

• RF manipulations control all longitudinal parameters

→ Batch compression, merging, splitting → BCMS
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Inject 4+4 bunches

gtr
Controlled blow-ups

→ Transition crossing

→ RF voltage reduction during acceleration

→ RF manipulation from 8 bunches in h = 9 to 12 in h = 21  

→ Splitting at the flat-top

→ Bunch shortening (rotation) before extraction

h = 9

Eject 48 
bunches

h
=

 8
4

h = 21

Example: LHC-type beam in the CERN PS
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Real world

example

Design and implementation
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Example: Ions with 75 ns bunch spacing

Question: Can the Proton Synchrotron produce ion 
  bunches with a spacing of 75 ns for LHC?

→ Needs an RF manipulation!

• 75 ns corresponds to h = 28 (13.25 MHz)

✓ Within range of existing 13.3/20 MHz cavities

• Ions for PS injected from Low Energy Ion Ring (LEIR)

→ 2pRLEIR = 2pRPS/8 → 8  hLEIR = 2pRPS 

→ Standard transfer of two bunches: hLEIR = 2 → hPS = 16

Step 1: Check frequency ranges of existing RF systems

139Xe39+

208Pb54+
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• Ions for PS injected from Low Energy Ion Ring (LEIR)

→ 2pRLEIR = 2pRPS/8 → 8  hLEIR = 2pRPS 

→ Standard transfer of two bunches: hLEIR = 2 → hPS = 16

Step 1: Check of frequencies for 3 bunches

PS

LEIR

PS

LEIR

?

• LEIR: hLEIR = 2 → 3

• PS:  hPS = 16 → 24

✓ Within frequency range of LEIR and PS main RF systems

fRF = 3.2 MHz → 4.8 MHz
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Step 1: Harmonic number sequence

• Injection:    h = 24, frev = 202 kHz, fRF = 4.8 MHz

• Flat-top:  h = 28 , frev = 473 kHz , fRF = 13.25 MHz

R
F

 m
a

n
ip

u
la

tio
n

?
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Step 1: Harmonic number sequence

• Injection:    h = 24, frev = 202 kHz, fRF = 4.8 MHz

• Flat-top:  h = 28 , frev = 473 kHz , fRF = 13.25 MHz

→ Upper frequency too high: 24 ∙ 473 kHz = 11.4 MHz > 10 MHz

→ Maximum harmonic up to flat-top: h = 21

→ Introduce batch expansion h = 24 → 21 at intermediate energy

Batch compression h = 24 → 28?

PS main RF system

fRF = 2.8 MHz to 10 MHz
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• Injection:    h = 24, frev = 202 kHz, fRF = 4.8 MHz

• Flat-top:  h = 28 , frev = 473 kHz , fRF = 13.25 MHz

✓ Sequence respects all frequency limitations of RF systems

1. Acceleration to intermediate 
plateau energy at h = 24

2. Batch expansion h = 24 → 21
3. Acceleration to flat-top at h = 21
4. Batch compression h = 21 → 28

PS main RF system

fRF = 2.8 MHz to 10 MHz

Step 1: Harmonic number sequence
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2. Batch expansion h = 24 → 21

✓ Large voltage of main RF system: S VRF = 200 kV 

→ Huge bucket areas

→ Simple linear voltage functions are sufficient

Step 2: Check bucket evolution

h = 24 h = 21

Time

h
=

 2
1

h
=

 2
4

R
F

 a
m

p
li

tu
d

e
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4. Batch compression h = 21 → 28

• Asymmetric voltage capabilities:  h = 21 up to 200 kV
      h = 28 only 20 kV

→ Compromise: handover 80 kV → 20 kV

Step 2: Check bucket evolution

h = 21 → 28, linear in 100 ms

?

h = 21
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4. Batch compression h = 21 → 28

• Asymmetric voltage capabilities:  h = 21 up to 200 kV
      h = 28 only 20 kV

→ Compromise: handover 80 kV → 20 kV

Step 2: Check bucket evolution

Phase of outer buckets

Non-
linear
voltage 
programs
versus time

Linear
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4. Batch compression h = 21 → 28

• Different voltage capabilities:  h = 21 up to 200 kV
      h = 28 only 20 kV

→ Compromise: handover 80 kV → 20 kV

Step 2: Check bucket evolution

h = 21 → 28, non-linear in 100 ms

!
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Beam 
phase

Df

-

Phase pick-up

RF cavity

Synchronous 
phase, fs

Cavity 
phase

Power 
amplifier

+

DDS
Digital RF 
synthesizer

RF

Slow signal

h frev (digital)

fRF

Loop 
filter

h · frev,
derived from B, p

ferr ~Df

Step 3: Implementation with beam phase loop
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Beam 
phase

Df

-
Loop 
corr.

Phase pick-up

RF cavity

Synchronous 
phase, fs

Cavity 
phase

Power 
amplifier

+

DDS

→ Phase-locked loop with beam phase as reference for RF system

Digital RF 
synthesizer

fout = fin ± Df

fRF

Loop 
filter

Precision VCO

RF

Slow signal

h frev (digital)

ferr ~Df
Move the wave!

h · frev, derived from B, p

Step 3: Implementation with beam phase loop
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Step 3: Effect of beam phase loop at injection

• Example: Injection of a bunch from PS Booster into PS

→ Essential in hadron accelerators to keep RF locked to beam

→ Mitigates common-mode dipole oscillations

90° error, phase loop off 90° error, phase loop on

B
u

n
ch

 p
ro

fi
le

 a
m

p
li

tu
d
e 

[a
.u

.]

B
u

n
ch

 p
ro

fi
le

 a
m

p
li

tu
d
e 

[a
.u

.]
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Step 3: Implementation with beam phase loop

• Need beam phase loop closed during RF manipulations

→ Prevent excitation of dipole oscillations during process

→ Harmonic number sequence of beam phase loop

hPL = 24 → 21 → 28

Df,

h = 
24/21

Df,

h = 28

Beam

Cavity return
signals

h = 24
/21

h = 28 To control
of fRF

2.8….10 MHz

13.3 MHz



124

Recipe for RF manipulation design

Item Remark

1. Define sequence of harmonic 
numbers

→ Constrained by RF frequencies of 
existing systems

→ Propose minimal extension

2. (a) Assume simple (or time-
normalized) voltage programs 
and check evolution of bucket 
position and area

3. (b) Optimize voltage functions 
versus time

→ Avoid abrupt changes of bunch 
phases

→ Respect adiabaticity

3. Design phase loop harmonic 
sequence

→ As few harmonic number 
changes as possible 

Enjoy your new RF manipulation!
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Fun stuff
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Polarity of RF systems

• What is the polarity of your RF system?

• Is your amplifier straight-through or inverting?

• Why bother? → Irrelevant for most accelerators

Power 
amplifier

Drive RF signal 
from low-level RF

Pre
amp.
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‘First’ beam in Proton Synchrotron (2018)
• Impossible to establish symmetric batch compression of four bunches

The problem

One more bunch would do

As well as inverting RF



128

‘First’ beam in Proton Synchrotron (2018)

→ A small preamplifier upgrade had unintentionally and 
unexpectedly changed the polarity of the gain!

→ Gain polarity of amplifiers becomes relevant with RF voltage 
at multiple harmonics

→ 8 buckets

→ 7 or 9 buckets
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• Bunch core denser that tails

→ Can core and tails be exchanged to flatten a bunch?

→ Voltage and phase programs calculates to suck bunch into 
emerging bucket next to it

→ Asymmetric merging with an empty bucket

Turn a bunch inside out
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Turn a bunch inside out: hollow bunch

C. Carli, Creation of hollow 
bunches using a double-
harmonic RF system, 
CERN/PS2001-073(AE)

• Beam test in the CERN PS Booster

→ Waiting for practical
application
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Summary

• RF can do so much more than just acceleration

• The RF potential is the integral of voltage

→ Fill occupied phase space into the bucket

• Adiabaticity and synchrotron frequency decide 
whether a manipulation is slow or fast

→ You will define the next generation of RF 
manipulations to come

→ Looking forward to seeing your new, unimageable RF 
manipulations
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Thank you very much            

for your attention!
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