Sandwich calorimeters with fully embedded electronics: EM barrel calorimeters

ECFA Detector R&D Roadmap Task Force 6: Calorimetry Community Meeting

<u>Adrián Irles</u> AITANA group at IFIC – CSIC/UV

Particle Flow calorimetry: CALICE

Particle Flow calorimetry High granular calorimetry

The CALICE Collaboration

High Granular Calorimetry for Particle Flow: Pioneered by the

More than 300 physicists/engineers from ~60 institutes and 19 countries coming from the 4 regions (Africa, America, Asia and Europe)

Most projects of current and future high energy colliders propose highly granular calorimeters

PFA calorimetry is not only a quest on high jet energy resolution but on a deep understanding of shower developments

The CALICE Collaboration

High Granular Calorimetry for Particle Flow: Pioneered by the

More than 300 physicists/engineers from ~60 institutes and 19 countries coming from the 4 regions (Africa, America, Asia and Europe)

Most projects of current and future high energy colliders propose highly granular calorimeters

PFA calorimetry is not only a quest on high jet energy resolution but on a deep understanding of shower developments

Technological premises

Highly integrated (very) front end electronics

Size 7.5 mm x 8.7 mm, 64 channels

- Small scinitllating tiles
- (Low noise) SiPMs

Analogue measurement

- On-chip self-triggering
- Data buffering
- Digitisation
 ... all within one ASIC
- Common developments
 on different CALICE projects

Power pulsed electronics to reduce power consumption... Compactness –> no space left for active cooling systems

Self trigger of individual cells below MIP level

Large surface detectors Si Wafer

RPC layers

Many things that look familiar to you today were/are pioneered/driven by CALICE

Miniaturisation of r/o devices

adrian.irles@ific.uv.es ECFA Detector R&D Roadmap TF6

Sc-ECAL and SiW-ECAL CALICE prototypes

- 30 layers, 22cm*22cm
- 22X0
- 300 kg
- 6300 channels

The sensitive layer is composed of **210 plastic scintillator strips**. The strip size is 5 mm x 45 mm x 2 mm³. Each scintillator is coupled with a SiPM at the bottom

Effective granularity of $5x5mm^2$ (but with x10 less channels) \rightarrow relevant for power consumption control

Large scale prototypes and common beam tests

- Common ECAL+AHCAL beam tests with high energy beams are mandatory
 - At Europe, only at CERN. Available during LS3?
- **Test of the technology & study of the PFA performance** and deep understanding of shower developments
- Requires also common developments on software: common DAQ, simulations, Geant4, event model, high level reconstruction tools
 - Not covered in this talk

Constructing large scale PF ECAL calorimeters: **R&D challenges ahead us**

*Disclaimer: for lack of time and personal bias I will emphasize the SiW-ECAL wherever the SiW-ECAL and Sc-ECAL share commonalities

What for?

- ► HL-LHC Upgrade of existing detectors
 - ALICE FoCAL pixel calorimeter
 - HGCAL with high granular Si and SC calorimeter systems
- Other applications in the short term (i.e. 2025-2026)
 - For example: **LUXE** (featuring two silicon-tungsten highly granular and compact ECALs (CALICE and FCAL adaptations). XFEL pulsed electron beam (as ILC)
- Mid-term: Higgs Factories Particle Flow Calorimeters
 - **PF calorimetry**: up to about **O(10⁸) readout cells** for barrel calorimeters (SiW-ECAL case)
 - Linear colliders (low rates favoring self-trigger and low consumption electronics through powerpulsing)
 - **Circular** colliders (**higher rates**, specially running at Z-pole, challenging the power consumption budgets and/or the cooling needs)

Longer term

Muon colliders and/or Hadron-hadron machines (high rates and high radiation environments)

The path to Large Scale prototypes

- Ongoing R&D phase with the goal of the construction of multilayer scale ECAL (and HCAL) PF prototypes
 - With high granularity (up to 5x5mm²)
 - Extreme compactness to ensure the smallest moliere radius
 - Fully implementing power pulsing!
 - To be tested in **beam facilities** in order to ensure a proper integration/interplay of the two sections (ECAL+HCAL) which is **crucial for PFA**
- Adaptation of the concepts to different projects
 - Lineal-vs-circular → low or high rates → Power pulsing or not, self trigger or not
 - e+e- vs hadron → no strict radiation hardness requirement vs the opposite
 - First phase of simulation studies required.
- Application of new ideas

Readout Modules

The core of the prototypes are the readout modules entities, consisting of:

VFE (ASICS, common developments within CALICE)

PCBs

- Very dense PCBs with up to 1024 channels + extra components for power pulsing and noise filtering in 18x18cm^2
- Active material
 - Large surface silicon sensors (9x9cm² directly glued to the back of the PCB) → SiW-ECAL (CALICE)
 - Large surface silicon sensors (8" wafers wire-bonded through PCB holes) → CMS-HGCAL
 - Scintillator strips individually wrapped connected to SiPM → Sc-ECAL (CALICE)

Very dense PCBs:

 i.e. at SiW-ECAL they are known as featuring 1024 readout channels (with digital, analogue, clock signals) in a 18x18 cm^2 board

CMS HGCAL Hexaboard

Wire bonding from PCB to silicon through holes

SiW-ECAL current prototype solution.

Chip-On-Board solution (R&D phase, tested recently in beam test)

Meets industry requirements → bulky components **compromise compactness** The **most compact solution**... but no space for required components (i.e. for power pulsing)

Open challenges (very-front-end)

ASICs for prototyping are already available

Near Future (~1-5years):

- Plans: how to implement high precision timing? (keeping low power budget)
 - Current TDC allows for \sim ns timing measurements \rightarrow to be further characterized and tested in beam test
 - New ideas associated to R&D on sensors

$\textbf{Mid/Long Term} \ \rightarrow \textbf{Next Generation ASICs}$

- design / performance goals are highly experiment dependent
 - However, **low consumption** is seek for all of them (even if active cooling systems are foreseen).
- Adaptation to circular e+e- machines with higher rates:
 - Interplay with forward calorimetry developments (where the rates are relatively high even at linear colliders)
 - Externally trigger? Low consumption without powerpulsing?
- For hadron machines, radiation issues become relevant again: where can we irradiate large surface detectors?
- ► High processing speed, high data compression, etc.
 - "adding software" into the front end (neural networks)

Open challenges (silicon sensors)

- ► Highly integrated silicon sensors → CMOS, ultragranular option, fully digital (see T. Peitzmann talk)
- How to implement timing?
 - APD, LGADs, (thin sensors with gain)
 - Newer options SPAD (avalanche diode with geiger-mode gain, can be monolithic)
 - Require dedicated electronics -> challenge on the power management
- Integration of larger surface 8" sensors
 - Experience from **HGCAL**
- Strengthen synergies with industry.

LGAD (Low Gain Avalanche Detector)

Inverse type

Open challenges (Silicon-PCB integration)

Near Future (~5 years)

- Current technological prototype solution for sensor-PCB connection is based on epoxy-silver glue.
 - Mechanical strength, industrialization, durability... to be studied.
 - Silver → may be an issue on high radiation environments
- R&D Alternative solutions:
 - through-hole wire bonding (à la HGCAL → could limit the extreme high granularity goals of PF ECALs)
 - Check what the industry is doing (smartphones, LCD screens, etc)
 - → Anysotropic Conductive Films, Micropearls... (investigated also in the context of LUXE)
- Similar issues are to be investigated about the interconnection of the (PCB+Silicon) to absorber/mechanics
 - Independently of the active material (Si or Sc)

Open challenges (Scintillators/SiPMs)

Ongoing and Near Future (~5 years)

- Engineering work for large scale production
 - Injection moulding, automated assembly, system for QC/QA
- Improvement of timing performance with dedicated timing layers ~10ps
 - Scintillator tile + larger SiPM with high light yield → better time resolution
 - Cherenkov detector based on RPC-GasPM (New R&D)
- R&D on new materials:
 - High Granular Crystal Calorimetry

Strip wrapping and assembly on EBU was done by hand (Shanghai Institute of Ceramic)

Single EM module

Open challenges (PCBs)

R&D happens in close communication with concept groups

Near Future (~1-3years)

- **R&D iterations** for PCB design optimization for **testbeam** and other applications
- **Compactness** requirements:
 - Going **thinner** \rightarrow challenge for very complex PCBs
 - Thinner passive components → needed for all, but key for power pulsing operation
- ► R&D on high reliability connectors/components → its importance is sometimes underestimated

Mid/Long Term Future

- Adaptation to different experiments (higher rates, higher radiation damage)
- ▶ Industrialization, mass production.
- Obtain **Quality Assurance** competences \rightarrow in synergy with industry and other DRD
- For hadron machines, radiation issues become relevant again: where can we irradiate large surface detectors?

Full length modules & Open challenges

- Already an existing prototype (2m) for SiW-ECAL
 - Non compact mechanics
 - Not optimized for power pulsing
 - New prototype to be built with the new design of PCB optimized for power pulsing (with local storage of power)

Power pulsing is a particular challenge for long layers

- Build long layers as exercise to solve other issues for this type of detectors (connectors, signal processing)
- What about for high rate circular colliders?
 - These machines require, in the next 2-3 years, dedicated simulation studies before hardware requirements can really be formulated (CEPC may accelerate this process)

Mechanics / Cooling & Open challenges

- Compactness requirements on ECAL for PFA are very strict
 - Very little space for services / DAQ
 - Cooling system developed for ILD → SiW-ECAL readout electronics designed accordingly

Near Future (1-5years)

- Study the impact of "extra" cooling to cope with high rates from other experiments (or with very demanding timing requirements).
 - Simulation and integration studies
 - still, the goal should be to perform R&D on low consumption electronics

- Total average power consumption 20 kW for a calorimeter
- system with 10⁸ cells*
 - Only possible through PP

20

Tentative roadmap

2023-2024 Beam tests of updated power pulsed systems

- Large scale multilayer calorimeters
- > 2023-2025 Simulation studies for hardware specifications for high-rate Higgs Factories and timing

> 2025-2027

- Other applications i.e. LUXE
- **Prototypes and combined beam tests** implementing high-rate Higgs Factories specifications?

Thanks to Y. Benhamou, V. Boudry, J. Liu, Y. Liu, W. Ootani, R. Poeschl, T. Suehara, and more for the material in these slides

Back-up slides

Jet energy resolution: how to improve it?

Resolution (GeV/c)

TPC Momentum

- In a "typical jet" the energy is carried by
- ► Charged particles (e[±], h[±],µ[±]): 65%
 - Most precise measurement by Tracker
- Photons: 25%
 - Measurement by Electromagnetic Calorimeter (ECAL)
- Neutral Hadrons: 10%
 - Measurement by Hadronic Calorimeter HCAL and ECAL

Jet Energy Resolution

Very Front End electronics

SKIROC and SPIROC (SiW-ECAL and SC-ECAL)

- Large dynamic range and low noise
- Dual readout: high and low gain plus TDC
- Auto-trigger at ~0.5 MIP
- Low Power: (25µW/ch) power pulsing: switch off electronics bias currents during bunch trains

Common efforts in CALICE

- Designs by Omega of ASICs for AHCAL, SDHCAL, ECAL with same readout scheme and basic features
- Also other independent developments (KlauS for AHCAL)

27

Ultra Compact Readout & Open challenges

- Ultra compact DAQ developed to match testbeam requirements (100% occupancy) and ILD conditions (including compactness requirements)
 - Will be used for LUXE
- Dedicated developments and R&D would be needed for different projects
 - Higher rates (Z-pole), higher radiation (hadron machines)

<2019

≥**2019**

International Large Detector (a PFA detector)

SiW-ECAL for future LC

- Tungsten as absorber material
 - Narrow showers
 - Assures **compact** design
 - Low radiation levels forseen at LC
 - $X_0=3.5 \text{ mm}, R_M=9 \text{ mm}, I_L=96 \text{ mm}$
- Silicon as active material
 - Support compact designs
 - Allows **pixelisation**
 - Robust technology
 - Excellent signal/noise ratio

The **SiW ECAL R&D** is tailored to meet the specifications for the **ILD** ECAL **baseline** proposal

The SiW ECAL in the ILD Detector

Technological solutions for final detector I

SiW Ecal

Analogue Scintillator HCAL and ECAL

Electronics height: 17mm max SPIROC2E, Tile, 3mm thick Polyimide Foil Robust Interface BGA372 DIF CALIB and POWER UVIED Flexlead Connector mezzanine cards non-5 max absorber material: 5.4mm in mm ~75 0.5 not in scale 100 **Reflector Foils** Central Interface Board-Cooling Pipe indiv. tile CIB (1.7mm thick) HBU, 0.75mm thick wrapping Cassette Bottom Plate SIPM, SMD CIB socket (~2.4mm) (Steel, 0.5mm thick)

Semi-conductor readout Typical segmentation: 0.5x0.5 cm² Optical readout Typical segmentation: 3x3cm²

Semi Digital HCAL

Gaseous readout Typical segmentation: 1x1cm²

Integrated front end electronics

No drawback for precision measurements NIM A 654 (2011) 97

Ultra thin PCBs

PCB with naked die placed in carved cavities and wirebonded to the board

- Very thin board ~1.2mm (ILD requires 1.8mm for board and comp.)
 - 10 layers (+ gnd cupper layer)
 - To be compared with 2.8-3mm of the FEV10-13
 - but they include BGA SKIROCs and extra components as decoupling capacitances...!!

Zoom into ASIC cavities

Before application of epoxy

After application of epoxy

FEV11_COB – Some Technical Details

Ultra thin PCBs

Technological prototype: time travel

2010-2015

LUXE (Laser Und XFEL Experiment)

LUXE (Laser Und XFEL Experiment)

Positron and electron detection systems

Positron and electron detection systems

Positron detection system proposal Based on a pixel tracker + ECAL-p based on FCAL prototypes of LumiCal

using "CALICE sensors"

High Granular Calorimetry

Electron detection system proposal Based on a pixel tracker + SiW-ECAL of CALICE (15 layers with modified/extended geometry)

Two detectors of the scale of CALICE prototypes running in real experiment conditions. Integration challenge: Very thigh compactness requirements

"Spinoffs" of CALICE R&D I: CMS HGCAL

The next decade: ps timing in calorimeters

Pioneered by LHC Experiments, timing detectors are/will be also under scrutiny by CALICE Groups Inverse APD as LGAD?

Under development: GRPC with PETIROC

- < 20ps time jitter
- Developed for CMS Muon upgrade

Theory says, need comparatively small amplification

- Shot noise may be limiting factor
- Expect interesting comparison between inverse APD and LGAD as e.g. used by ATLAS
- Not that Members of CALICE are also members of ATLAS-HGTD

Expect interesting results on timing detectors from CALICE in coming years

