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n Particle Flow calorimetry: CALICE

E Multi layer high granular ECAL prototypes
SiW-ECAL Sc-ECAL
Open Challenges



Particle Flow calorimetry
High granular calorimetry



| The CALICE Collaboration

High Granular Calorimetry for Particle Flow:
Pioneered by the CAI-I GO Collaboration

PFA Calorimeter I
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More than 300 physicists/engineers from
~60 institutes and 19 countries coming
from the 4 regions (Africa, America, Asia
and Europe)

, | : ' ! l Most projects of current and future high energy
Scintillator ‘ RPC ‘ GEM ‘ m’”‘é‘;g’s colliders propose highly granular calorimeters

PFA calorimetry is not only a quest on high jet
energy resolution but on a deep understanding
of shower developments
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| The CALICE Collaboration

High Granular Calorimetry for Particle Flow:
Pioneered by the CAI-I GO Collaboration
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L 1 CA'-'@ , : = Most projects of current and future high energy
Silicon | |Scintillator WAPS \ Scintillator ‘ RPC ‘ GEM ‘ m"“;‘;g’s colliders propose highly granular calorimeters
CAI-I@\ y PFA calorimetry is not only a quest on high jet
_ energy resolution but on a deep understanding
of shower developments
CALI(@d
T. Peitzmann K. Krueger ‘
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| Technological premises 6

Large surface detectors

Highly integrated (very) front end
gny g (very) Si Wafer

electronics Miniaturisation of r/o devices

e.g. SKIROC (for SiW Ecal)

RPC layers

* Small scinitllating tiles

Size 7.5 mm x 8.7 mm, 64 channels . )
* (Low noise) SiPMs

* Analogue measurement

* On-chip self-triggering Power pulsed electronics
* Data buffering to reduce power consumption...
* Digitisation Compactness —> no space left for active cooling systems

... all within one ASIC
Self trigger of individual cells below MIP level

* Common developments
on different CALICE projects

Many things that look familiar to you today were/are pioneered/driven by CALICE
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SiW-ECAL

* 15 layers 18x18 cm? e =
* 0.5x0.5 cm?Si cells b -

* 2.8+5.6 mm W (21 Xo) - g e—
* 100 kg, 0.4x0.4x80 cm?
* 15k channels

* 30 layers, 22cm*22cm
e 22X0

* 300 kg

* 6300 channels

The sensitive layer is composed of 210 plastic scintillator
strips. The strip size is

5mmx 45 mm x2 mm?3.

Each scintillator is coupled with a SiPM at

the bottom

Effective granularity of 5x5mm?2
(but with x10 less channels) - relevant for r
consumption control Tff\f
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| Large scale prototypes and common beam tests 8

AHCAL :
* 38 layers 72x72 cm? -
* 3x3 cells scintillator + SiPM

* 1.7 cm Stainless Steel (~4A)
* 6t, 1x1x1.5 m?
* 20k channels

iW-ECAL
15 layers 18x18 cm?
0.5x0.5 cm? Si cells
2.8456 mm W (21 Xg)
100 kg, 0.4x0.4x80 cm?
15k channels

22X0
300 kg
6300 channels

P Common ECAL+AHCAL beam tests with high energy beams are mandatory
® At Europe, only at CERN. Available during LS3 ?

P Test of the technology & study of the PFA performance and deep understanding of shower developments

P Requires also common developments on software: common DAQ, simulations, Geant4 , event model, high
level reconstruction tools

e Not covered in this talk
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Constructing large scale
PF ECAL calorimeters:
R&D challenges ahead us

*Disclaimer: for lack of time and personal bias | will emphasize the SiW-ECAL
wherever the SIW-ECAL and Sc-ECAL share commonalities



IWhat for?

p HL-LHC Upgrade of existing detectors

® ALICE FoCAL pixel calorimeter

® HGCAL with high granular Si and SC calorimeter systems
p Other applications in the short term (i.e. 2025-2026)

® For example: LUXE (featuring two silicon-tungsten highly granular and compact ECALs (CALICE
and FCAL adaptations). XFEL pulsed electron beam (as ILC)

p Mid-term: Higgs Factories - Particle Flow Calorimeters
® PF calorimetry: up to about O(108) readout cells for barrel calorimeters (SiW-ECAL case)

® Linear colliders (low rates favoring self-trigger and low consumption electronics through power-
pulsing)

® Circular colliders (higher rates, specially running at Z-pole, challenging the power consumption
budgets and/or the cooling needs)

p Longer term

®* Muon colliders and/or Hadron-hadron machines (high rates and high radiation environments)

adrian.irles@ific,uv.es ECFA Detector R&D Roadmap TF6 lgll FISICA A
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| The path to Large Scale prototypes 3

P Ongoing R&D phase with the goal of the construction of multilayer scale ECAL (and HCAL)
PF prototypes

e With high granularity (up to 5x5mm?)
®* Extreme compactness to ensure the smallest moliere radius
e Fully implementing power pulsing!

® To be tested in beam facilities in order to ensure a proper integration/interplay of the two sections
(ECAL+HCAL) which is crucial for PFA

p Adaptation of the concepts to different projects
® Lineal-vs-circular » low or high rates » Power pulsing or not, self trigger or not
® e+e-vs hadron » no strict radiation hardness requirement vs the opposite
® First phase of simulation studies required.

» Application of new ideas

adrian.irles@ific.uv.es ECFA Detector R&D Roadmap TF6 lEl m:.m A
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| Readout Modules 12 |

The core of the prototypes are the readout modules entities, consisting of:
P VFE (ASICS, common developments within CALICE)
p PCBs

® Very dense PCBs with up to 1024 channels + extra components for power pulsing and noise filtering in
18X18cma2

p Active material
e Large surface silicon sensors (9x9cm? directly glued to the back of the PCB) » SIW-ECAL (CALICE)
® |arge surface silicon sensors (8" wafers wire-bonded through PCB holes) + CMS-HGCAL
e Scintillator strips individually wrapped connected to SiPM » Sc-ECAL (CALICE)

256 P-I-N diodes

0.25 cm? each
9 X 9 cm? total ared

EUDET layout
Prototype from Hamamatsu
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|PCBs 13 |

p Very dense PCBs:

® j.e. at SIW-ECAL they are known as featuring 1024 readout channels (with digital, analogue, clock
signals) in a 18x18 cmA2 board

Wire bonding from PCB
to silicon through holes

SiW-ECAL current prototype Chip-On-Board soluti R&D
MS HGCAL H _ p-On-Board solution (
CMS HGCAL Hexaboard solution. phase, tested recently in beam test)

Wire bonding from PCB to silicon

through holes Meets industry requirements — The most compact solution... but
bulky components compromise no space for required components
compactness (i.e. for power pulsing)
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| Open challenges (very-front-end)

P ASICs for prototyping are already available
Near Future (~1-5years):
P Plans: how to implement high precision timing? (keeping low power budget)
® Current TDC allows for ~ns timing measurements — to be further characterized and tested in beam test
® New ideas associated to R&D on sensors
Mid/Long Term — Next Generation ASICs
P design / performance goals are highly experiment dependent

e However, low consumption is seek for all of them (even if active cooling systems are foreseen).

P Adaptation to circular e+e- machines with higher rates:

® |Interplay with forward calorimetry developments (where the rates are relatively high even at linear colliders)
e Externally trigger? Low consumption without powerpulsing?

p For hadron machines, radiation issues become relevant again: where can we irradiate large surface detectors?
P High processing speed, high data compression, etc.

® “adding software” into the front end (neural networks)

adrian.irles@ific,uv.es ECFA Detector R&D Roadmap TF6 lgll FISICA A
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| Open challenges (silicon sensors) 15 |

p Highly integrated silicon sensors - CMQOS, ultragranular option, _
fully digital (see T. Peitzmann talk) LGAD (Low Gain Avalanche Detector)

» How to implement timing? Inverse type

e APD, LGADs, (thin sensors with gain)

® Newer options SPAD (avalanche diode with geiger-mode gain,
can be monolithic)

Multiplication area

e Require dedicated electronics - challenge on the power
mManagement

» Thicker sensor - larger charge S/N 6-8 Oct. 2021 at ELPH, Tohoku University

* 3 days X 12 hours positron beam: ~770 MeV smpliierkonand

P Integration of larger surface 8" sensors

. Setup Discrete Skiroc2-CMS
® Experience from HGCAL Simplier boird g tessboard |
beam
P Strengthen synergies with industry. Il Il "1| Iﬂ
S”E:;e[;:" SinAg’I;EcseH M:I;II-DC:"

2 identical 3 identical 2 identical
sensors sensors sensors

EY [ET MG CHGI[RIVAXE ECFA Detector R&D Roadmap TF6 IF IC A
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| Open challenges (Silicon-PCB integration) 16 |

Near Future (~5 years)

P Current technological prototype solution for sensor-PCB connection is based on epoxy-silver glue.
® Mechanical strength, industrialization, durability... to be studied.

® Silver > may be an issue on high radiation environments

p R&D Alternative solutions:

® through-hole wire bonding (a la HGCAL - could limit the
extreme high granularity goals of PF ECALS)

® Check what the industry is doing (smartphones, LCD
screens, etq)

> Anysotropic Conductive Films, Micropearls...

/ Conductive particle
(investigated also in the context of LUXE) GQQ:’C‘% 8 09\_%"

9008 o%oé’éﬁ ~_
P Similar issues are to be investigated about the Binder

interconnection of the (PCB+Silicon) to

Heat, Pressure
absorber/mechanics

P . . . oooooooooo‘&ot ACF ’\) :
Independently of the active material (Si or Sc) S I mfﬂwwm+j(ug

Conductivity
" Glass

EY [ET MG CHGI[RIVAXE ECFA Detector R&D Roadmap TF6 IF IC A
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| Open challenges (Scintillators/SiPMs)

. Strip wrapping and assembly on EBU was done by hand
Ong°|ng and Near Future ("5 years) (Shanghai Institute of Ceramic)

i

P Engineering work for large scale production

® |njection moulding, automated assembly, system for QC/QA

p Improvement of timing performance with dedicated timing
layers ~10ps

e Scintillator tile + larger SIPM with high light yield -» better
time resolution

® Cherenkov detector based on RPC-GasPM (New R&D )

p R&D on new materials:

® High Granular Crystal Calorimetry

Long bar config!

EY [ET MG CHGI[RIVAXE ECFA Detector R&D Roadmap TF6
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| Open challenges (PCBs)

R&D happens in close communication with concept groups

Near Future (~1-3years)
p R&D iterations for PCB design optimization for testbeam and other applications
p Compactness requirements:

® Going thinner — challenge for very complex PCBs

® Thinner passive components — needed for all, but key for power pulsing
operation

p R&D on high reliability connectors/components — its importance is sometimes
underestimated

Mid/Long Term Future
p Adaptation to different experiments (higher rates, higher radiation damage)
P Industrialization, mass production.
p Obtain Quality Assurance competences — in synergy with industry and other DRD

p For hadron machines, radiation issues become relevant again: where can we
irradiate large surface detectors?

EY [ET MG CHGI[RIVAXE ECFA Detector R&D Roadmap TF6
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| Full length modules & Open challenges

EY [ET MG CHGI[RIVAXE ECFA Detector R&D Roadmap TF6

P Already an existing prototype (2m) for SiW-ECAL

® Non compact mechanics
® Not optimized for power pulsing

® New prototype to be built with the new design of PCB
optimized for power pulsing (with local storage of power)

p Power pulsing is a particular challenge for long layers

® Build long layers as exercise to solve other issues for this type
of detectors (connectors, signal processing)

» What about for high rate circular colliders?

® These machines require, in the next 2-3 years, dedicated
simulation studies before hardware requirements can really
be formulated (CEPC may accelerate this process)
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| Mechanics / Cooling & Open challenges 20

Zoom into ILD Ecal barrel
p Compactness requirements on ECAL for PFA are very
strict

Heat

® Very little space for services / DAQ exchanger

® Cooling system developed for ILD » SIW-ECAL
readout electronics desighed accordingly

Near Future (1-5years)

Pipes of
cooling system

B Study the impact of “extra” cooling to cope with high * Total average power consumption 20 kW for a calorimeter

. . . . t ith 108 cells*

rates from other experiments (or with very demanding ?ySOeI‘rITyW{I)OSSiblgeﬂ'?rough PP
timing requirements).

* Simulation and integration studies _//7

]

e still, the goal should be to perform R&D on low

consumptlon electronics 40-70mm
for services
as readout,
cooling and
power

~200mm for up to 30 layers
with 10-20 kcells each

CORPUSCULAR —
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| Tentative roadmap 22

P 2023-2024 Beam tests of updated power pulsed systems

® |Large scale multilayer calorimeters

p 2023-2025 Simulation studies for hardware specifications for high-rate Higgs Factories and timing
p 2025-2027
® Other applications —i.e. LUXE

* Prototypes and combined beam tests implementing high-rate Higgs Factories specifications?

adrian.irles@ific_uv.es ECFA Detector R&D Roadmap TF6 lmEll FISICA A
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Thanks to Y. Benhamou, V. Boudry, J. Liu, Y. Liu, W. Ootani, R. Poeschl, T.

Suehara, and more for the material in these slides




Back-up slides



| Jet energy resolution: how to improve it?

Calorimeter Energy Resolution (GeV)

adrian.irles@ific.uv,es ECFA Detector R&D Roadmap TF6
N
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Tracker and Calorimeter Resolution in Absolute Scale

T T TTTTT
PR

T T TTTT I{ : T T

T
PR R
]

TTTTT T
R

_________

I

Energy %Qe V) andMomer%'Qm (GeVric).

TPC Momentum Resolution (GeV/c)

In a “typical jet” the energy is carried by

p Charged particles (e*, h*,u*): 65%
® Most precise measurement by Tracker
p Photons: 25%

® Measurement by Electromagnetic Calorimeter (ECAL)
P Neutral Hadrons: 10%
® Measurement by Hadronic Calorimeter HCAL and ECAL
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| Jet Energy Resolution

10 1|I‘ll I I I I I 1 I I I I I 1 | I I I | | 1 I I 1
R — Particle Flow (ILD+PandoraPFA) |
] A e Particle Flow (confusion term) o
8 I i ---- Calorimeter Only (ILD) =
| 50 % /\E(GeV) @ 3.0 % ]
(o) 0
E L
wg L
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0 i | | e | ]
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| Very Front End electronics

p SKIROC and SPIROC (SiW-ECAL and SC-ECAL)

® Large dynamic range and low noise
¢ Dual readout: high and low gain plus TDC
® Auto-trigger at ~0.5 MIP

® Low Power: (25uW/ch) power pulsing: switch off electronics bias currents
during bunch trains

p Common efforts in CALICE
® Designs by Omega of ASICs for AHCAL, SDHCAL, ECAL with
same readout scheme and basic features

® Also other independent developments (KlauS - for AHCAL)

v
e
A

ime

s
Train length 2820 bunch X (950 ps)

g 2IVIEGA

Microelectronics

e 1ms (.5%) .5ms (.25%) .5ms (.25%)/\ 199ms (99%) =

1% duty cycle 99% idle cycle

N.B. Final numbers may vary
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| Ultra Compact Readout & Open challenges 28

P Ultra compact DAQ developed to match testbeam -
requirements (100% occupancy) and ILD conditions (including — Detector
compactness requirements) ' Interface (DIF)

Adapter card >.
_— (SMB) for signal
buffering +
power
regulation.

e Will be used for LUXE

P Dedicated developments and R&D would be needed for
different projects

® Higher rates (Z-pole), higher radiation (hadron machines) SL-Board

PRRAT ARy .

g AARAE R RA AR
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| International Large Detector (a PFA detector) B

From key requirements from physics:
- pt resolution (total ZH x-section)
o(1/p) =2x10° GeV"' @ 1 x 102/ (pt sin'0) ~ CMS /40

-vertexing (H — bb/cc/TT)
o(do) <5 @ 10/ (p[GeV] sin®?0) um ~CMS/ 4

-jet energy resolution (H — invisible) 3-4%

~ ATLAS / 3,

- hermeticity (H — invis, BSM) 6min = 5 mrad

To key features of the detector:

- low mass tracker:
- main device: Time Projection Chamber (dE/dX"!
- add. silicon: eg VTX: 0.15% rad. length / layer)

- high granularity calorimeters
optimised for particle flow

EY [ET MG CHGI[RIVAXE ECFA Detector R&D Roadmap TF6 !:STIETLQ A
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| SIW-ECAL for future LC 30

P Tungsten as absorber material

e Narrow showers

® Assures compact design

® | ow radiation levels forseen at LC 223.2 mm (A= +38.2 mm) for barrel
223,6 mm (A=Y380.6 mm) for endcaps

o X,=3.5mm, R =9mm, | =96mm

P Silicon as active material

® Support compact designs

e Allows pixelisation
®* Robust technology

e Excellent signal/noise ratio

The SIW ECAL R&D is tailored to meet the specifications for the ILD ECAL baseline
proposal

EY [ET MG CHGI[RIVAXE ECFA Detector R&D Roadmap TF6 lﬂETlg A
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| Technological solutions for final detector | 31 |

SiW Ecal Analogue Scintillator HCAL s
and ECAL Semi Digital HCAL

W Heat shield: 100+400 pm SPIROC2E, Tile, 3mm thick  polyimide Foil —_ Elertm:cs . Readout pads
BGA372 obust Interface
(copper) LV LED / Flexlead ~ Conneglor \ i o Mylar layer {500} PCEB interconnect (1em x 1em)
2 S, . U L7_5 max PCB (1.2mm) f Readout ASIC
absorber i PCB support (FR4 or polycarbonate) ! (Hardroc2, 1.4mm)
material: = L R
o ) 0.5 -
~—) "
Cathode glass (1.1mm)
\4 ; i«f 100 u Mylar{173p) Ceramic ball spacer (1.2mm) *+ resistive coating
r«’iizie\ftglreFouls, Cooling Pipe \ Central Interfa(;e Board- Glass fiber frame (1.2mm) Anode glass (0.7mm)
wrapping  HBU, 0.75mm thiCkS'PM it Cassette Bottor Plate CIB (1.7mm thick) + resistive coating
A (Steel, 0.5mm thick) CIB socket (~2.4mm)
Semi-conductor readout Optical readout Gaseous readout
Typical segmentation: 0.5x0.5 cm Typical segmentation: 3x3cm? Typical segmentation: 1x1cm?

Integrated front end electronics
No drawback for precision measurements NIM A 654 (2011) 97
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| Ultra thin PCBs

p PCB with naked die placed in carved cavities and
wirebonded to the board

p Very thin board ~1.2mm (ILD requires 1.8mm for board and
comp.)

® 10 layers (+ gnd cupper layer)
® To be compared with 2.8-3mm of the FEV10-13

®* pbut they include BGA SKIROCs and extra components as
decoupling capacitances...!!

LABORATOIRE
DE L'ACCELERATEUR

Microelectronics

SUNGKYUNKWAI =
6 UNIVERSITY(SKKLU =OS EOS CORPORATION

Zoom into ASIC cavities

,,,,,,,,,,,,,,,,,,

Before application of After application of
€poxy epoxy
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Bonding scheme

300u el couche ¢l E% <: %-gﬂ fin
re v — 3
Frcg ;gu kY T g - T de e jg. ::j ﬁ:
preg 100w —\— T R | /-C3 cu Jau
_¢“='f< mm :}_:_?::'_ eyt — isassiis g uesusnia ’ ? bl
= = preg . ——o 5 —=- CB ¢y 35
~ i greg 150 =y ,h‘l 1,& "L‘-‘ 9 cu 35 fini
-r__——g\ 10 :‘-_,_:_J,n- A e
BOMY_SKIRDC2_LTT V2 R.SLIWK 01- 84448542
CARLALAORSAY 1172012 sli-d]lul.nr-as!r' | 2.9 1.5 | 1.6 | 1.4 1.6 36 Ji.4] 1)1.5] 3.4 |
= L
fnmm £z =3 g ss s : it . 9+2 |ayerS boal’d
I
|

« Overall height ~1.2mm

« ASICs buried in cavities to ensure overall flatness
. Need to make sure that bondlng wires don't pass
board surface

22

. ~177 Bonding wires

. Bonding by CERN Bondlab

« Regular exchange allowed to iron
out early shortcomings

apaisgel op-Top
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| Ultra thin PCBs
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ITechnological prototype: time travel
2010-2015

T - Sy —

mﬁ@c@w“ﬁ”‘r b

ARASAAANAAN KRN

N N
- N
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| LUXE (Laser Und XFEL Experiment)

= membership of Russian
%3, institutes suspended

74 QUEEN'S
M UNIVERSITY
fa) BELFAST

Tz
m? |
UNIVERSITY OF
PLYMOUTH

HELMHOLTZ
Hetmholtz-Institut Jena "
X Cus —|
=== |

* UNIVERSITY

o
F WARSAW
”i‘. : : [ ARSA
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| LUXE (Laser Und XFEL Experiment)

33\ institutes suspended

TDR to appear in 2023
Operation from 2025-2032 (+Xx)

HELM
Helmholt

[Flc VMIVERSITAT T« UNIVERSITY
B VALENCIA o Vs OF AW
j HMION
= 000
C mem gl
Y = o TEL AVIV UNIVERSITY
[ =al k5 - s
ey Gl )| yeb e on
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| Positron and electron detection systems

7 'M:;; f

Positron detection system proposal
Based on a pixel tracker + ECAL-p based on
FCAL prototypes of LumiCal

But using CALICE-Hammatsu sensors

High
Granular
Calorimetry

7

e+ side

Photon beam

Pixel tracker

Laser pulse

CALI(eD

Electron detection system proposal
Based on a pixel tracker + SiW-ECAL of CALICE
(15 layers with modified/extended geometry)

Calorimeter ﬁ e detector (TBD) :

Dipole magnet 2

e side

IP area

Pixel tracker

@emsstrah]ung v’s) J:@ '

P
P

A

EY [ET MG CHGI[RIVAXE ECFA Detector R&D Roadmap TF6

INSTITUT DE FISICA
CCCCCCCCCCC


mailto:adrian.irles@ific.uv.es

| Positron and electron detection systems B

Positron detection system proposal
Based on a pixel tracker + ECAL-p based on
FCAL prototypes of LumiCal

using “CALICE sensors”

High
Granular
Calorimetry

CALI(eo

Electron detection system proposal
Based on a pixel tracker + SiW-ECAL of CALICE
(15 layers with modified/extended geometry)

Two detectors of the scale of CALICE prototypes
running in real experiment conditions.

Integration challenge: Very thigh compactness
requirements

adrian.irles@ific.uv.es ECFA Detector R&D Roadmap TF6 !HETLQ A
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| “Spinoffs” of CALICE R&D I: CMS HGCAL

* The developments in CALICE have paved Most prominent: The CMS Endcap Calorimeter Upgrade HGCal
the way for a number of applications of : -

highly granular calorimeters and related
technologies in HEP

Central contributions by groups very active in
CALICE including CERN, DESY, LLR, OMEGA.
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| The next decade: ps timing in calorimeters

Pioneered by LHC Experiments, timing detectors are/will be also under scrutiny by CALICE Groups
Inverse APD as LGAD?

P* Strip P* Stri P* Stri
- i Inverse APD
by Hamamatsu
P Substrate .

e : Gain ~ 50

* Shot noise may be limiting
factor

* Expect interesting comparison
between inverse APD

Current

Bottom stocl plate

Under development:

GRPC with and LGAD as e.g. used by

PETIROC 5 i

< ' - Noise floor, gain independent ° MNOT that Members of CALICE are
< 20ps time jitter 3 also members of ATLAS-HGTD

* Developed for CMS Muon upgrade T E—T >

Gain

Expect interesting results on timing detectors from CALICE in coming years
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