Sandwich calorimeters with fully-embedded electronics: Hadronic section

Katja Krüger (DESY)

ECFA Detector R&D Roadmap Task Force 6: Calorimetry Community Meeting 12 January 2023

Intro

Requirements for the Hadronic Section

Differences and common aspects with EM section

- Hadronic sections have larger volume than EM sections, and similar or higher number of layers
 - \rightarrow Larger area to be covered
 - \rightarrow Cost/area is more important
- Some requirements are less stringent than for EM section
 - Smaller channel density
 - Compactness not as critical
 - Hadronic energy distributed over large volume and many channels, with large flucutations: less sensitive to single-cell precision
- Many similar challenges:
 - Integration
 - Industrialisation of production, QC
 - Cooling
 - Considerations in terms of power pulsing vs. continuous running

[•]

Detection Technologies for the Hadronic Section

	Optical Readout	Gaseous	Readout
Technology	Plastic scintillator tiles	RPCs / µMe	gas / GEMs
Readout concept	Analog	Semi-Digital	Digital
HCAL prototype	AHCAL Physics & technological prototype	SDHCAL Technological prototype	DHCAL Physics prototype

State of the Art

SDHCAL Technological Prototype

Achievements in Beam Tests

1*1*1 m³ prototype based on RPCs with 1 cm² pads

- 48 layers with ~440.000 channels
- built 2011

Successfully operated in many beam tests 2012 – 2022

• publications on operation, energy reconstruction, simulation

Tested also with a few μ Megas layers

AHCAL technological prototypes

Achievements in Beam Tests

AHCAL prototype for ILC

- 0.72*0.72*1 m³ prototype based 3*3*0.3 cm³ scintillator tiles
- 38 layers with ~22.000 channels
- built 2017-2018
- Several successful beam tests 2018 2022
- First publication on construction & operation

AHCAL prototype for CEPC

- 0.72*0.72*1 m³ prototype based 4*4*0.3 cm³ scintillator tiles
- 43 layers with ~14.000 channels
- built 2021-2022

Successful first beam test in 2022

Both prototypes use electronics developed for ILC (power pulsing)

AHCAL technological prototypes

Achievements in Beam Tests

AHCAL prototype for ILC

- 0.72*0.72*1 m³ prototype based 3*3*0.3 cm³ scintillator tiles
- 38 layers with ~22.000 channels
- built 2017-2018

Several successful beam tests 2018 – 2022

• First publication on construction & operation

AHCAL prototype for CEPC

- 0.72*0.72*1 m³ prototype based 4*4*0.3 cm³ scintillator tiles
- 43 layers with ~14.000 channels
- built 2021-2022

Successful first beam test in 2022

CMS HGCAL

High granularity for HL-LHC

- CMS calorimeter endcap will be replaced for HL-LHC by High-Granularity calorimeter
 - High granularity for pile-up rejection & particle flow
- Synergy with high granularity calorimeter concepts developed for electron-positron colliders
 - silicon in the front and close to the beam pipe
 - scintillator tiles wherever radiation levels allow
 - ~400 m² in ~4000 boards
 - ~240k scintillator channels, 4-30 cm² cell size
- New challenges compared to e+e-
 - Radiation levels
 - Operation at $-35^{\circ} \text{ C} \rightarrow \text{CO2}$ cooling
 - Data rates, continuous running
- Needs to be ready for installation in 2026/27
 - Transition from R&D phase to production ongoing
 - Setting up full production and assembly infrastructure

Valuable experience for the construction of a highly granular calorimeter as part of any future collider detector

DESY. Sandwich calorimeters with fully embedded electronics: Hadronic section | ECFA TF 6: Calorimetry Community Meeting | Katja Krüger | 12 January 2023

CMS p-p collisions at 7 TeV per beam

MeV-neutron equivalent fluence in Silicon at 3000 fb

CMS HGCAL

High granularity for HL-LHC

- CMS calorimeter endcap will be replaced for HL-LHC by High-Granularity calorimeter
 - High granularity for pile-up rejection & particle flow
- Synergy with high granularity calorimeter concepts developed for electron-positron colliders
 - silicon in the front and close to the beam pipe
 - scintillator tiles wherever radiation levels allow
 - ~400 m² in ~4000 boards
 - ~240k scintillator channels, 4-30 cm² cell size
- New challenges compared to e+e-
 - Radiation levels
 - Operation at $-35^{\circ} \text{ C} \rightarrow \text{CO2}$ cooling
 - Data rates, continuous running
- Needs to be ready for installation in 2026/27
 - Transition from R&D phase to production ongoing
 - Setting up full production and assembly infrastructure

Valuable experience for the construction of a highly granular calorimeter as part of any future collider detector

DESY. Sandwich calorimeters with fully embedded electronics: Hadronic section | ECFA TF 6: Calorimetry Community Meeting | Katja Krüger | 12 January 2023

Plans

Relevant objectives

- DRDT 6.2 Develop high-granular calorimeters with multi-dimensional read-out for optimised use of particle flow methods.
- DRDT 6.3 Develop calorimeters for extreme radiation, rate and pile-up environments.

Calorimeters base	d on Gaseous Readout		
R&D Need	Main direction	Target facilities	Related DRDT
Scalability of technol-	Large area PCBs with robust inter-	ILC, FCC-ee, CLIC,	6.2, 6.3
ogy	connection, large scale precise ab-	FCC-hh	
	sorber structures		
Rate capability	Semi-conductive Glass RPC	FCC-hh	6.3
Control of pad mul-	Avoid/reduce double counting on	ILC, FCC-ee, CLIC,	6.2, 6.3
tiplicity	cell edges	FCC-hh	

Table 6.3: Overview of main R&D needs and corresponding directions of development for calorimeters based on gaseous readout connected to facilities and DRDTs.

R&D Need	Main Directions	Target facilities	Related DRDT
Optimisation of	Novel SiPMs with large spectral	ILC, FCC-ee, CLIC,	6.2, 6.3
Photon detectors	sensitivity and high-band semi- conductors for higher radiation tol- erance, Digital SiPMs	FCC-hh, Muon Collider	
Novel crystal tech- nologies	Co-doped garnet crystal fibres	HL-LHC, ILC, FCC-ee, CLIC, FCC-hh, Muon Collider	6.1, 6.2, 6.3
Longitudinal infor- mation	Longitudinal segmen-tation of crystals, z-position from timing	HL-LHC, ILC, FCC-ee, CLIC, FCC-hh, Muon Collider	6.1, 6.2, 6.3
Novel plastic scintil- lators	Radiation hardness, implementa- tion of dual readout	ILC, FCC-ee, CLIC, FCC-hh, Muon Collider	6.2, 6.3

Calorimeters based on Optical Readout

Table 6.4: Overview of main R&D needs and corresponding directions of development for calorimeters based on Optical Readout connected to facilities and DRDTs.

- For more details see also afternoon session
- Synergies with TF4 (Particle Identification and Photon Detectors)

Gaseous Readout Technologies: main R&D needs

Detection technology

- Environment-friendly gases
 - Strong synergies with TF1 (Gaseous Detectors)
 - Special focus here on use in environment of hadronic showers
 - Option being investigated: Hybrid (1 glass) RPCs
 - Add layer of secondary emitter to ease requirements on charge multiplication in gas gap
 - Status: first promising results, more studies needed
- Rate capability
 - Rate capability of RPC is limited by resistivity of the electrodes
 - Low resistivity needed for high rates
 - Option being investigated: thermoplastic with low bulk resistivity ($10^{11-12} \Omega$.cm achieved for PVdF, $10^{8-9} \Omega$.cm for PEEK)
 - Status:
 - First small test detectors: too high resistivity (PVdF), homogeneity issues (PEEK)
 - More studies needed
 - Other options: semi-conductive glass RPCs
 - Important ingredient: low noise electronics
 - Collaboration with industry needed

G10 board with signal pad(s) Secondary emitter coating 1.3 mm gas gap 2 mm glass Resistive paint Mylar

Gaseous Readout Technologies: main R&D needs

Scalability I

Large layers of several m² are challenging in several aspects, especially for good signal homogeneity across the whole area

- Homogeneous gas distribution needed
 - Status: optimising detector layout (spacers, ...), studies ongoing
- Reproducibility of RPC construction
 - Controlled spacers, uniformity of the colloidal coating, ...
 - Effect can be reduced by optimising the threshold to reduce the impact of the gain difference due to the detector geometrical inhomogeneity
- Precise mechanics
 - Develop procedures to build and assemble absorber structure with needed precision at reasonable cost
 - Status: large prototype built with electron beam welding; further studies and optimization of absorber structure desirable

_	_	-	_		_	_	_	_	
•	•	•	•	•	۰	۰	٠	٠	۰
8	8	8		8	•	•		•	8
8	8	8		•	•				
	8				8				8
•	8	8			8				8
•					8				
	8				ð		8		
	8								8
	8				8				8
8					8		8		
•					8				
	8								

Gaseous Readout Technologies: main R&D needs

Scalability II

Large layers of several m² are challenging in several aspects, especially for good signal homogeneity across the whole area

- Large area PCBs
 - Inhomogeneous signals observed at PCB boundaries
 - Can be reduced by using larger PCBs
 - Large area PCBs would reduce the number of components to handle
 - Status: produced PCBs of ~1m length
 - For full detector: industry
 - Shorter term: prototyping capabilities in labs (CERN) needed
 - Also relevant to other readout technologies

Optical Readout Technologies: main R&D needs Scalability III

Hadronic section of a full collider detector will require two orders of magnitude more tiles than AHCAL prototype, one order more than CMS HGCAL

- Megatiles would allow larger units for mechanical assembly
- Challenge: reach good uniformity while keeping the cell-tocell light cross talk small
- Status:
 - Several generations of Megatiles produced, reaching reasonable uniformity and light yield
 - Plan to build a large layer and include it in the AHCAL prototype

Common R&D topics for Gaseous and Optical Readout

Integration & Readout Electronics

- Large number of channels of highly granular hadron calorimeter sections make electronics embedded
 in the active layer essential
- The details of the integration and readout concept depend on the environment
 - Linear e+e-: Low rate, low radiation, power pulsing
 - Circular e+e-: High rate, low radiation, continuous power
 - Hadron collider: very high rate, high radiation, continuous power
- Dedicated embedded very-frontend readout ASICs
 - Synergies with TF7 (Electronics and Data Processing)
 - Can profit a lot from synergies between calorimeter concepts
 - Linear e+e-: HARDROC (RPC), SPIROC (SiPMs), SKIROC (Si), ...
 - Circular e+e-: KLauS (SiPM), PETIROC as starting block (RPC)
 - Hadron collider: HGCROC (Si and SiPM)
- Depending on data rates, several stages of data concentration and selection might be needed
 - For existing concepts: work on miniaturization ongoing
 - AHCAL plans to exploit synergies with SiW ECAL developments of interface boards
 - For other future applications: will likely need dedicated studies
 - FCCee: Need simulation to estimate impact of high rate Z pole running on data rates and readout needs
 - Interesting field for new concepts like DNNs on ASICs (implemented for HGCAL)

Common R&D topics: Gaseous and Optical Readout

Continuous running, active cooling

- For circular e+e- (and hadron) colliders, readout ASICs will need to run continuously
- Higher power consumption will likely require cooling within the active layers
 - Need to study impact in simulation
 - Started for SDHCAL
 - Need to develop a suitable cooling (that introduces minimal non-homogeneity)
 - Test it in prototypes, both for SDHCAL and AHCAL

Common R&D topics: Gaseous and Optical Readout

Timing

- Precise hit time measurement can be beneficial in several areas
- In high rate environments, interesting for pile-up rejection
- Could use "time" as additional information in particle flow algorithms to improve 2-particle separation
 - Simulation studies needed to determine what resolution is really needed
 - Might depend on detector and on algorithm
 - Status: first studies for SDHCAL and April PFA
- Particle ID with time-of-flight:
 - needs very good resolution O(10-30 ps)
- Current calorimeter prototypes reach O(1 ns) for MIP hits
- The technologies have a lot of potential for better time resolution
 - RPC: multi-gap RPCs have demonstrated ~60ps for MIP hits
 - Plan: build a timing layer for SDHCAL, more effort needed on electronics developments
 - Scintillator: tiles/strips with high light yield reach ~30 ps resolution for MIP hits
 - Requires small tiles, crystal scintillator
- Also readout electronics contributes to time resolution \rightarrow synergies with TF7

purity for neutral particle

Beam tests of calorimeter systems

Putting it all together

In order to determine the capabilities of a calorimeter concept, we need to test the complete system of EM section and hadronic section (and tail catcher)

- For the large CALICE prototypes of the concepts for the hadronic section, these tests have just started
 - Very limited data for SiW ECAL together with SDHCAL or AHCAL
 - 2 weeks of data taking in 2022 for Sci ECAL + AHCAL (CEPC prototypes)
- More beam tests planned in the coming years
- Data can not only be used to determine calorimeter energy resolution, but also provide important input to other areas
 - Tuning of particle flow algorithms
 - Tuning of hadronic shower models, in Geant4 or with fast generative approaches (ML)

Summary

- Highly granular hadronic sections foreseen and under study for lepton and hadron colliders
- Some challenges specific to the technology being addressed
 - Gaseous: rate capability, scalability
 - Optical: see also afternoon session
 - Synergies with TF1 and TF4
- Common challenges, to be addressed in the coming years
 - Integration & Readout electronics \rightarrow synergies with TF7
 - Continuous running & active cooling
 - Timing
- Optimisation depends on software: simulation tools, particle flow algorithms, detector concept full simulation models, ...
- Testing the developed technologies in beam is essential

Thank you!

Backup

Publications

AHCAL

- Physics prototype
 - Construction and Commissioning of the CALICE Analog Hadron Calorimeter Prototype, C. Adloff et al., <u>JINST 5 (2010)</u> <u>P05004</u>; e-print: <u>arXiv:1003.2662</u>
 - Electromagnetic response of a highly granular hadronic calorimeter, C. Adloff et al., <u>JINST 6 (2011) P04003</u>; eprint: <u>arXiv:1012.4343</u>
 - Hadronic energy resolution of a highly granular scintillator-steel calorimeter using software compensation techniques, C. Adloff et al., <u>JINST 7 (2012) P09017</u>; e-print: <u>arXiv:1207.4210</u>
 - Track segments in hadronic showers in a highly granular scintillator-steel hadron calorimeter, C. Adloff et al., <u>JINST 8 (2013)</u> <u>P09001</u>; e-print: <u>arXiv:1305.7027</u>
 - Validation of GEANT4 Monte Carlo Models with a Highly Granular Scintillator-Steel Hadron Calorimeter, C. Adloff et al., <u>JINST</u> 8 (2013) P07005; e-print: <u>arXiv:1306.3037</u>
 - Pion and proton showers in the CALICE scintillator-steel analogue hadron calorimeter, B. Bilki et al., <u>JINST 10 (2015)</u> <u>P04014</u>; e-print: <u>arXiv:1412.2653</u>
 - Hadron shower decomposition in the highly granular CALICE analogue hadron calorimeter, G. Eigen et al., <u>JINST 11 (2016)</u> <u>P06013</u>; e-print: <u>arXiv:1602.08578</u>
 - Shower development of particles with momenta from 1 to 10 GeV in the CALICE Scintillator-Tungsten HCAL, C. Adloff et al., JINST 9 (2014) P01004; e-print: arXiv:1311.3505
 - Shower development of particles with momenta from 15 GeV to 150 GeV in the CALICE scintillator-tungsten hadronic calorimeter, M. Chefdeville et al., <u>JINST 10 (2015) P12006</u>; e-print: <u>arXiv:1509.00617</u>
- Technological prototype
 - Design, Construction and Commissioning of a Technological Prototype of a Highly Granular SiPM-on-tile Scintillator-Steel Hadronic Calorimeter, e-Print: 2209.15327 [physics.ins-det]

Publications

SDHCAL

- Construction and commissioning of a technological prototype of a high-granularity semi-digital hadronic calorimeter, G. Baulieu et al., <u>JINST 10 (2015) P010039</u>; e-print: <u>arXiv:1506.05316</u>
- First results of the CALICE SDHCAL technological prototype, V. Buridon et al., <u>JINST 11 (2016) P04001</u>; eprint: <u>arXiv:1602.02276</u>
- Resistive Plate Chamber Digitization in a Hadronic Shower Environment, Z.Deng et al., <u>JINST 11 (2016) P06014</u>; e-print: <u>arXiv:1604.04550</u>
- Tracking within Hadronic Showers in the CALICE SDHCAL prototype using a Hough Transform Technique, Z.Deng et al., <u>JINST</u> <u>12 (2017) P05009</u>; e-print: <u>arXiv:1702.08082</u>
- Particle identification using Boosted Decision Trees in the Semi-Digital Hadronic Calorimeter prototype, the CALICE Collaboration, <u>JINST 15 (2020) P10009</u>.
- Energy reconstruction of hadronic showers at the CERN PS and SPS using the Semi-Digital Hadronic Calorimeter, the CALICE Collaboration, <u>JINST 17 (2022) P07017</u>
- Energy reconstruction for a hadronic calorimeter using multivariate data analysis methods, B. Liu et al., JINST 14 (2019) 10, P10034

DHCAL

- DHCAL with Minimal Absorber: Measurements with Positrons, B. Freund et al., <u>2016 JINST 11 P05008;</u> eprint: <u>arXiv:1603.01652</u>
- Analysis of Testbeam Data of the Highly Granular RPC-Steel CALICE Digital Hadron Calorimeter and Validation of Geant4 Monte Carlo Models, M. Chefdeville et al., <u>NIM A939 (2019) 89-105</u>; e-print: <u>arXiv:1901.08818</u>

Other gaseous technologies

4 microMegas layers have been built and tested in the SDHCAL prototype •

RPC units #10, 20, 35 and 50

In addition, within the ANR-Blanc, 4 units of SDHCAL-MM 1m x 1m each were produced, tested in a muon beam. The 4 units of SDHCAL-MM were inserted in the SDHCAL-RPC prototype replacing the

2500

First studies also with MicroWell technology •

Differences

Linear and Circular Higgs/EW/top factories

- Higgs/EW/top factory options differ in various aspects
- Highest centre-of-mass energy
 - Impacts highest expected particle and jet energies
 → calorimeter thickness, absorber material, granularity
- Beam structure
 - Linear colliders have bunch trains, circular colliders not

 → readout electronics (power pulsing or continuous
 running), cooling
- High statistics Z pole running at FCC-ee and CEPC
 - Very high rates

 \rightarrow trigger system, rate capability of the detector technology

More interest in detector capabilities for flavour physics
 → b/c tagging, particle ID

