FCAL: forward detectors

Yan Benhammou Tel Aviv University **On behalf of the FCAL collaboration**

FCAL Collaboration

~ 70 physicists join their effort to develop the technologies of special calorimeters in the very forward region of future experiments at e⁺e⁻ colliders

FCAL collaborates with the Detector Concepts ILD and SiD of the ILC and works together with CLICdp.

¥

AGH

CERN

DESY

FCAL is a worldwide detector Research & Development collaboration.

FCAL detectors in LC Experiments

LumiCal

- Precise integrated luminosity measurements;
- Extends a calorimetric coverage to small polar angles. Important for physics analysis.

Design

- electromagnetic sampling calorimeter;
- 30 layers of 3.5 mm thick tungsten plates with 1 mm gap for silicon sensors;
- symmetrically on both sides at ~2.5m from the interaction point for ILD.

BeamCal

- forward activity;
- Bunch-by-bunch luminosity measurements;
- Beam diagnostics and tuning;
- similar construction, with tungsten absorber but radiation hard sensors (GaAs, CVD diamond)

LHCal

- extends the coverage of HCAL;
- Sampling calorimeter (silicon)
- 29 layers of 16mm thickness. Absorber : tungsten og iron. Simulation exists

• Complete the coverage of e.m. calorimetry down to very small angles to reject SM backgrounds w/ far-

performance tests of prototype detectors in the beam

Tungsten plates

- 10 new tungsten absorber plates
- High requirements to geometrical accuracy (~50 µm for thickness) make it difficult to use pure W.
- the absorber alloy : 93% tungsten, 5% nickel & 2% copper.
- Good flatness $\sim 30 \,\mu m$ observed
- Glued to permaglass frame
- Used in assembled calorimeter in 2019/2022 beam test campaigns

Enough plates for 20X₀

Baseline sensor: GaAs

BeamCal

Dedicated ASIC development with fast OR to be used in the feedback system

Test-beam fully instrumented detector plane

x, μm

BeamCal ASIC v3 Design

Different sensor materials: GaAs, Si, Diamond, Sapphire; Different sensor segmentation – input capacitance; Different MIP response and maximum signal: 0.8 pC – 30 pC.

7

Specification	Value	
Q _{in}	> 2.8 fC	
ENC	< 1000 - 1500 e ⁻ rms	
Number of channels	8	
Maximum input rate	1 / 554ns	
Baseline restoration	1%	

Pad Capacitance: ~20pF (New Sapphire Design)

- Programmable time constant
- Active baseline restoration
- Programmable baseline restoration current

Firstly, BeamCal is hit by beam halo (muons)

- MIP deposition, low noise electronics
- Clean environment
- Good for calibration
- ~25ns later, BeamCal is hit by collision scattering
 - Large deposit energy
 - Physics readout

Designed at Pontificia Universidad Católica de Chile

LumiCal silicon sensor

LumiCal is a Si-W electromagnetic sampling calorimeter

- Compact design provides
- small Molière radius;
- bigger fiducial volume;
- better HE particle detection on top of background.
- Challenging requirements on geometrical compactness

Silicon pad sensor prototype is designed for ILD; produced by Hamamatsu

- thickness 320 μm
- DC coupled with readout electronics
 - p+ implants in n-type bulk
 - 64 radial pads, pitch 1.8 mm
- 4 azimuthal sectors in one tile, each 7.5°
 - 12 tiles make full azimuthal coverage

Designed in IFJ PAN Cracow

2014 Test Beam at CERN

- 4 LumiCal detector planes equipped with dedicated electronics (32 channels)
- 4.5 mm between tungsten plates

2016 Test Beam at DESY

- 8 LumiCal detector planes equipped with APV (2k channels)
- 1 mm between tungsten plates

2020 Test Beam at DESY

- 15 LumiCal detector planes equipped with APV (2k channels) and FLAME dedicated readout
- 1 mm between tungsten plates

Procedure was developed for 2014 beam test of LumiCal prototype at CERN (PS, 5 GeV e- beam). **Result** is $R_{\mathcal{M}} = 24.0 \pm 0.6$ (stat.) ± 1.5 (syst.) mm (Eur. Phys. J. C 78 (2018) 135.)

The effective Molière radius is 8.1 ± 0.1 (stat) ± 0.3 (syst) mm

9

2022 : from forward region to LUXE

- LUXE experiment :e-gamma interaction and creation of e+e-
- Part of FCAL decided to build the electromagnetic calorimeter based (for the e+) based on its knowledge :
 - Thin silicon sensors
 - Dedicated FCAL ASIC

very challenging to move from test beam to real experiment...

• FLAME will be used in LUXE

FLAME Readout ASIC for forward calorimeter

FLAME: 32-channel ASIC in CMOS 130 nm, with FE+ADC in each channel, followed by high speed data serializers and transmission (2 x 5.2Gb/s).

FLAME-based readout was used in FCAL and LUXE testbeams in 2021 and 2022. First data results already presented, detailed analyses in progress...

Marek Idzik (AGH-UST)

Ongoing analyses and readout R&D

- A lot of data was collected with FLAME ASIC plus with FPGA backend. Detailed analyses is ongoing to quantify the performance of deconvolution procedure in amplitude and time measurements.
- FLAXE a modified FLAME version for LUXE ECAL experiment was designed and will be submitted soon
- -digital serialization and data transmission circuitry is significantly simplified since very low trigger rate and output data rate is needed in LUXE.
- R&D on readout blocks in CMOS 65nm
- -prototype ultra-low power 80 MS/s 10-bit ADC designed&tested
- -prototype high speed ~10Gb/s data serializer&transmitter designed and under tests...
- R&D in CMOS 28nm has just started with design of ultra-low power ~200 MS/s 10-bit ADC.

13/

Wire bonding : loop size and fragility

Conductive glue CALICE

Glue: EJ2189 (silver based) **CALICE** standard

glue our sensor to the flex using **Anisotrope Conductive Film**

2 types of ACF : 3M (50 um) and Dexerials (3 um after curing)

Fanout integrated in the sensor

- Sensors are 500 um GaAs

Mechanics The geometry of LUXE is different from the FCAL, nevertheless, we

The geometry of LUXE is different from are facing common problems :

- How to build the detector, layer after layer ?
- How to maintain the sensor on the tungsten planes ?
- Same mechanical frame for sensors and FEB ?
 How to drive the different cables ?

e tungsten planes ? ors and FEB ?

Data transmission

- In 2022, we (WADAPT collaboration) has been granted by AIDAinnova to continue the **R&D** on wireless data transmission
- Create a mockup with detectors and transmission chip to enable transmission in between layers
- Work on the antennas
- Collaborate to update existing chip

Summary and ...

FCAL has developed a design for the very forward region of a detector at an e+e- collider

Three compact calorimeters are foreseen:

- BeamCal for bunch-by-bunch luminosity
 measurement and electron tagging
- LumiCal for precise measurement of the integrated luminosity.
- LHCal to extend the coverage of HCAL
- Sensors for prototypes of BeamCal and LumiCal are designed and fabricated
- **Dedicated FE ASICs are designed and fabricated**

...outlook

- Investigate the gluing of the sensors to the readout/HV planes, but also sensors to tungsten planes.
- Development of miniaturized FLAME front end boards
- Look carefully at the connections FEB detector readout
- Develop sapphire sensors and test it

LumiCal

eamC

 \mathbf{m}

- Finish the development of the dedicated ASIC and test with sensors
- Develop a system to align and monitor the position at the μ m level

Thank you for attention!

LumiCal thin module prototype assembly

Compactness is an essential requirement to provide small Molière radius/accurate shower position reconstruction.

In current LumiCal conceptual design the space between absorbers is 1 mm!

 Carbon fiber support facilitate handling and mounting on tungsten planes

Sc1, Sc2 and Sc3 are scintillator counters; T1, T2 – three pixel detector planes; Tg – the copper target for bremsstrahlung photon production.

8 (256 channels) thin LumiCal modules (> 2k channels);

•

- 2 used as a tracker / tagger for e/γ separation;
- 6 in calorimeter (3 8 X0) installed in 1 mm gaps between absorbers;
- DAQ : SRS system, designed by RD51 collaboration;
- EUDET / AIDA beam Telescope : 6 planes with MIMOSA chip; •

DESY test beam facilities: • Electron beam 1 – 5 GeV;

• Dipole magnet 1 – 13 kGs;

mechanical frame designed at CERN

Shower Study for 5 GeV electrons 2016 test beam

The measurement of the longitudinal and transverse shower size is in good agreement with simulations

Eur.Phys.J. C79 (2019) no.7, 579

position reconstruction (440±20) μ m

LumiCal Energy Response

LumiCal prototype demonstrates good linear response to the beam of 1 – 5 GeV.

Small nonlinearity is explained by limited number of sensitive planes. Tested and corrected in MC.

*R*_M shows slight dependence on E is explained by the fact that for higher energies smaller fraction of the shower is deposited in calorimeter with only 6 working layers

Electron-photon identification in tracking layers in front of LumiCal

The composition of back scatters observed in tracking planes

photon / electron identification efficiency more than 90% at 2.5 mm matching distance This is still under study, adding to the MC the inefficiency of certain pads

Efficiency and the purity of photon ID as a function of distance between the hits in tracking planes and shower position in

calorimeter % 100 Efficiency/Purity, 99 98 97 96E 95E MC Efficiency 94E **93**E MC Purity 92È 0 8 Matching distance, [mm]

2020 Test Beam Campaign at DESY

LumiCal prototype with 15 sensitive sensor layers • 3 planes equipped with FLAME dedicated LumiCal Readout (Slides 23-24) • Others - with double gain readout using APV25 • Edge scan for fiducial volume study • Data collection with tilted calorimeter to study bias in position reconstruction • Test electron/gamma response •

Data Analysis is in progress....

•

BeamCal Beamstrahlung at linear colliders (due to nm bunch sizes)

Low energy electron deposition per BX

Single high energy electron

Beam parameters and luminosity measurement

beam			resolution, 14		
parameter	unit	nom.	no E_{γ}		
σ_x	nm	655.0	700. ± 49.	66	
$\Delta \sigma_x$	nm	0.0	$7. \pm 30.$	1	
σ_y	nm	5.7	5.8 ± 7.1	5	
$\Delta \sigma_y$	nm	0.0	$\textbf{-0.53} \pm \textbf{0.97}$	0.2	
σ_z	μm	300	331. ± 67.	29	
$\Delta \sigma_z$	μm	0.0	$3. \pm 56.$		

- Fast luminosity estimate using beamstrahlung (bunch-by-bunch at ILC)
- Beam parameter estimation
- Fast feedback to the machine
- Low angle electron tagging

Fast readout of structured areas after each BX

FLAME – in beam test 2020 at DESY

Analogue front-end comprising:

- Charge sensitive preamplifier with variable gain:
- High gain for test beam up to 200 fC with **MIP** sensitivity
- Low gain for shower development (up to 6 pC)
- Differential CR-RC shaper with 50ns peaking time

10-bit multichannel SAR ADC • DNL, INL < 0.5 LSB • ENOB > 9.5 mW per channel at 40 MSps)

 Sampling rate up to 50 MSps Ultra low power consumption (below 1

- each
- by connecting consecutively each three sensors