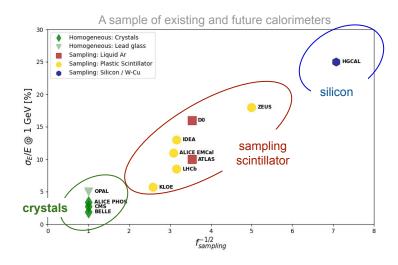
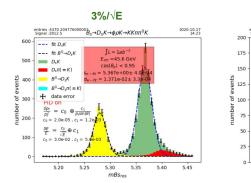
Homogeneous Calorimetry

ECFA Detector R&D Roadmap Task Force 6: Calorimetry Community Meeting

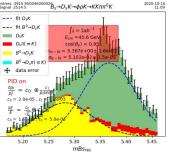
12/01/2023

Marco Lucchini

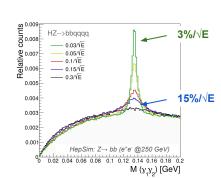

Outline


- Motivations for homogeneous calorimetry
- Requirements and directions within the ECFA roadmap context
- Panorama (most likely incomplete) of existing R&D's
- A possible path for the next 5+ years
- Synergies within the DRD
- Wishlist for the DRD

Charge of the talk: The presentation should focus on the plans for the coming **five to six years** but a look beyond that period is allowed. It should outline the goals of the R&D in that period and intermittent steps. The research plans are to be **oriented at the goals formulated in the ECFA Detector Roadmap**). Outline also what kind of collaborative tools you would expect from a DRD Calorimetry. Note that at this community meeting no commitment in terms of milestones and deliverables is required. The meeting should issue a panorama of the envisaged actions and should attract groups to join the DRD.

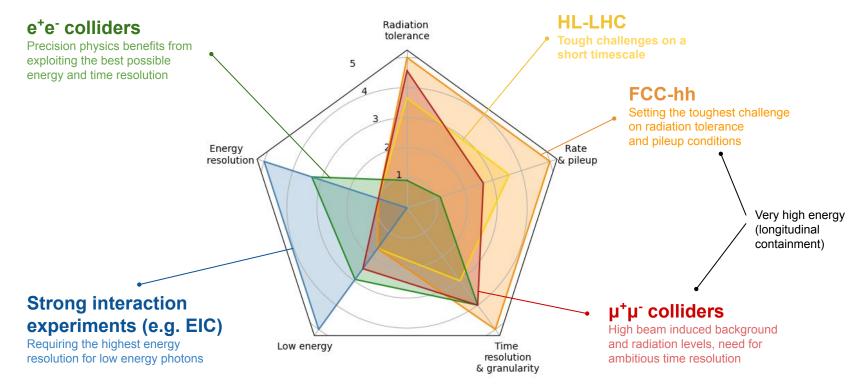

Motivations for homogeneous calorimetry

- Homogeneous calorimetry remains the only way to get a 1-3%/√(E) energy resolution for photons (but also a good option for shower imaging and time resolution)
- Potential to improve event reconstruction and expand the landscape of physics studies


15%/√E

CP violation studies with *B_s* decay to final

states with low energy photons


[R.Aleksan et al., Study of CP violation in B[±] decays to D0(D0)K[±] at FCCee, <u>arXiv:2107.05311</u>]

Clustering of π^{0} 's photons to improve performance of jet clustering algorithms

[M.Lucchini et al., New perspectives on segmented crystal calorimeters for future colliders, 2020 JINST 15 P11005] 3

Qualitative representation of **requirements** for calorimetry **at future colliders**

DETECTOR RESEARCH AND DEVELOPMENT THEMES DETECTOR COMMUNITY THEMES (DCTs)

DRDT 1.1 Improve time and spatial resolution for gaseous detectors with

DRDT 1.2 Achieve tracking in gaseous detectors with dE/dx and dN/dx capability

DRDT1.3 Develop environmentally friendly gaseous detectors for very large

DCT 2 Develop a master's degree programme in instrumentation

in large volumes with very low material budget and different read-out

long-term stability

areas with high-rate capability

schemes

Gaseou

203

203

< 2030

From the 2021 ECFA Detector R&D Roadmap

https://cds.cern.ch/record/2784893

	DRDT1	DRDT1.4 Achieve high sensitivity in both low and high-pressure TPCs										
Liquid		DR072.1 Develop readout technology to increase spatial and energy resolution for liquid detectors DR072.2 Advance noise reduction in liquid detectors to lower signal energy thresholds										
	DR DT 2	Improve the material prop in liquid detectors	perties of target and de	lector components	< 2070	2030-	2035-	2040-	> 2045			
	DR DT 2	 4 Realise liquid detector ter large systems 	chnologies scalable for	integration in	< 2030	2035	2040	2045	> 2045			
	DRDT 31 Achieve full integration of sensing and microelectronics in monolithic											
Solid state	DR DR		DRDT 6.1	Develop radiation-hard calorimeters with enhanced electromagnetic energy and timing resolution		>						
	DR	Calorimetry	DRDT 6.2	Develop high-granular calorimeters with multi-dimensional readout								
PID and	DR	cutorinicaly		for optimised use of particle flow methods								
Photon	DR		DRDT 6.3	Develop calorimeters for extreme radiation, rate and pile-up								
	DR			environments								
	DR	PID and Photon				1	1	-	1			
Quantum	DR DR		DRDT 4.1	Enhance the timing resolution and spectral range of photon detectors								
	DR		DRDT 4.2	Develop photosensors for extreme environments		-			\rightarrow			
Calorimetry	DR		DRDT 4.3	Develop RICH and imaging detectors with low mass and high			-					
				resolution timing								
	DR DR		DRDT 4.4	Develop compact high performance time-of-flight detectors								
	DR DT 7											
	DRE	^{**} • • • • • • • • • • • • • • • • • •										
	DRE											
	Low power / environmental impact awareness											
	DRDT 8.4 Adapt and advance state-of-the-art systems in monitoring											
		including environmental,	radiation and beam asp	vects					5			
	DCT1	Establish and maintain a European coordinated programme for training in										

EIC

EEMCal

- Electron Endcap EM Calorimeter for Electron Ion collider [ref]
- **PWO** / heavy glasses
- SiPMs (TBC)
- Target: 1-2% / √E

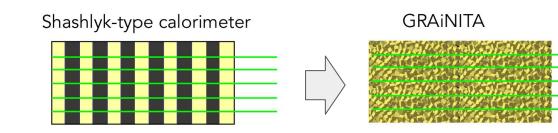
ALICE Photon Spectrometer (Upgrade) . Csl

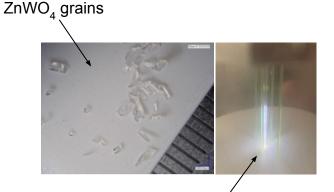
- Higher rate and radiation levels
- Csl(Tl) →**Pure Csl**
- Pin diodes \rightarrow **APDs**

Bulk crystal technology: a consolidated solution in the short-mid term

- upgrades mainly targeting enhanced time resolution with new electronics
- new calorimeters for measurements of low energy photons/electrons

PWO + APDs + upgraded FEE




- Upgrade of FE and photodetectors (APDs→SiPMs) [[[e]]
- Measure photons with p_T<1GeV

GRAINITA calorimeter

- Ultra fine sampling opaque EM calorimeter readout with WLS fibers
- Geant4 simulation of ZnWO₄ + CH₂I₂ cubes $\rightarrow \sigma_{E}/E \sim 2\%/\sqrt{E}$
- Ongoing proof-of-concept with lab measurements and prototypes
- See presentation at FCC Italy-France Workshop [Ref] by M-H Schune (Université Paris-Saclay, CNRS-IN2P3)

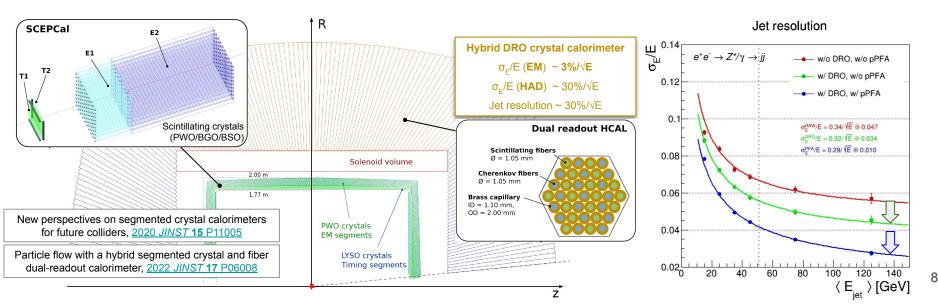
ZnWO₄ + propanol + Y11 WLS fibers

Target

application: e⁺e⁻

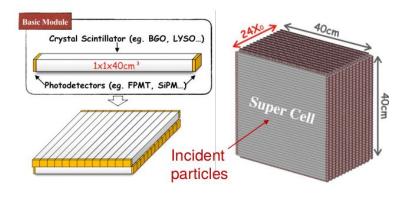
colliders

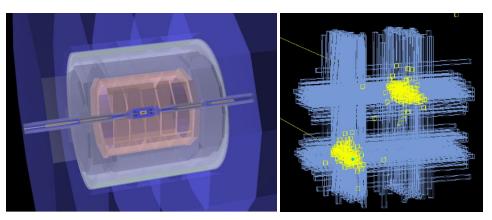
Segmented Crystal EM Precision Calorimeter


• Includes timing and dual-readout capabilities for optimal integration with a dual-readout fiber calorimeter à la IDEA and PFA algorithms (see presentation by R.Santoro)

Target

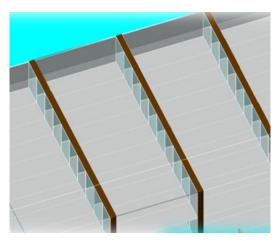
application: e⁺e⁻


colliders


- Ongoing efforts within the US <u>Calvision</u>, IDEA and CERN Crystal Clear collaborations
 - Proof-of-concept with lab measurements and prototypes (PWO, BGO, BSO, ... with SiPMs)
 - Ongoing simulation effort in DD4HEP and FCC software + DR-PFA developments

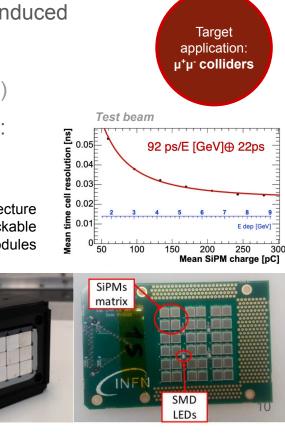
High Granularity Crystal Calorimetry

- **High granularity** crystal EM calorimeter made of a grid of ~1x1x40cm³ bars
- Baseline concept under development for CEPC (Y.Liu, M.Ruan, et al.)
- Advanced simulation and reconstruction effort including PFA algorithms
- **Ongoing R&D** and prototyping [<u>Ref</u>]: BGO/PWO with SiPM readout

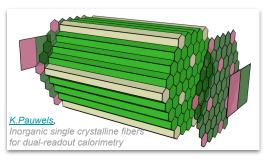


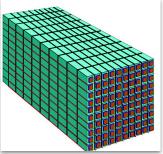
CRystal calorImeter with Longitudinal InformatioN

• **Timing and longitudinal segmentation** to tackle the beam induced

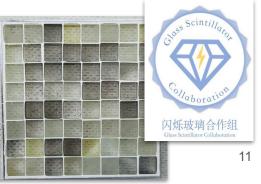

background (BIB) challenge of muon colliders

- Radiation hardness is a major challenge (segmentation helps)
- **Ongoing** R&D and **prototyping** (I.Sarra, L.Sestini et al. [<u>ref</u>]):
 - 10x10x40 mm³ PbF₂/PWO-UF crystals
 - 3x3 mm² UV extended SiPM readout


Modular architecture based on stackable modules

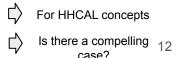

Homogeneous Hadron Calorimeters

- Full absorption dual-readout hadron calorimetry concepts aiming at further boosting the energy resolution for hadronic showers→~15%/√E
- **Major challenges: requires breakthrough in mass production** (quality/uniformity) and cost reduction for high density scintillators (crystals/heavy glasses)
 - Various options under investigation by the international community (DSB:Ce, AFO:Ce, ...)
 - Recent R&D collaboration and progress on Gd-rich heavy glasses for a HHCAL for CEPC

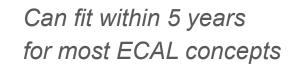

Exploiting **bulk** cost-effective dense scintillators [CPAD2021, <u>M.Demarteau et al.</u>]

Bulk scintillating glass production as part of EIC R&D

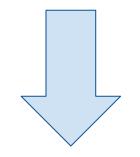
0 cm + 2 3 4 5 6 7 8 9 10 11 12 15 14 15 19 17 18 10


<u>Sen.QIAN.</u> R&D for high density, high light yield glass scintillator for CEPC

State-of-the-art and outlook


- Where do we stand?
 - **Scintillator technology** for homogeneous calorimetry has made several progress in the last decade (continuous discovery of new crystals and new high density scintillating glasses)
 - A wide range of options is now available and customizable for a specific application (see talk by E.Auffray) although 'traditional' crystals remain often a baseline choice (PWO, BGO, BSO, CsI)
 - Market driven by non-HEP applications (many vendors but often relying on cheaper Chinese producers)
 - **Silicon Photomultiplier** technology is becoming the preferred choice for most high granularity, cost-effective and compact calorimeter concepts
 - Market driven by LIDAR/PET applications: new manufacturers joining the business but not many offer small cell size and radiation tolerant products (typically relying on a few vendors)
 - Achieving the target energy and time resolutions for EM showers (1-3%/√E and 10-30 ps resp.)
 is within reach for many detector concepts
- What would require substantial technological progress ('breakthrough')?
 - Scintillators with enhanced radiation tolerance at levels of 10¹⁵⁻¹⁶ neq/cm² and O(10) MGy
 - Compact photodetectors with radiation tolerance up to 10¹⁵⁻¹⁶ neq/cm²
 - Dense scintillators with <1\$/cm³
 - Time resolution below 5 ps

For extreme radiation environments



A possible path for the next 5+ years

- Proof-of-principle
- Optimization of conceptual designs
- Development of prototypes
- Beam test with prototypes

In parallel but also beyond the 5+ years

Technology development

- New materials
- New photodetectors
- Characterization and radiation testing
- Strengthen collaboration with manufacturers

Possible synergies

- Innovative homogeneous calorimeter concepts are pushing the R&D in similar directions → there are many potential synergies
 - Infrastructure
 - Test beam infrastructure
 - DAQ, tracking systems, movable tables, reference timing detectors, cold boxes?
 - Common lateral "containment" calorimeters to allow testing single cell performance
 - Irradiation facilities
 - Common facilities and instrumentation for irradiation of components

• Sharing of knowledge and technological developments:

- New materials, new photodetectors, electronics, mechanics, cooling
- Software development and simulation (migration to key4hep software package?)
- Sharing expensive R&D (and build a critical mass)
 - Development of custom dense* scintillators with manufacturers
 - Consider common photodetector developments (e.g. common SiPM wafers at vendors) (smaller cell size SiPMs*, digital SiPMs, low power, radiation hard, ...)

Possible synergies

 Innovative homogeneous calorimeter concepts are pushing the R&D in similar directions
 → there are many potential synergies

 Infrastructure

Most **synergies** in common with other calorimeter concepts (and DRDs), some are **particularly important for homogeneous calorimetry:**

- High density (small X_0 , R_M , λ_1) scintillators
- Large dynamic range (and low noise) photodetectors and electronics readout
- Low-material-budget mechanical supports, cooling and readout
 - Development of custom dense* scintillators with manufacturers
 - Consider common custom production of SiPM wafers at vendors (smaller cell size SiPMs*, digital SiPMs, radiation hard photodetectors, ...

Wishlist for the DRD?

- Become a place to exploit the above synergies at best
- Support for common beam time requests (e.g. on behalf of the calorimetry DRD) ?
- Offer technical/engineering taskforce and support to develop common DAQ, mechanics, etc. for prototyping?
- Common DRD fundings to support specific activities?
- More... ?

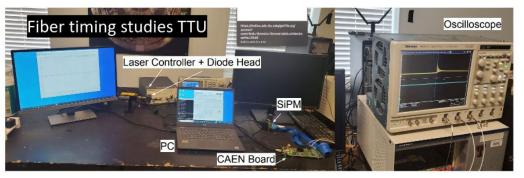
Summary

- Many enthusiastic R&D's on innovative concepts of homogeneous calorimeters are ongoing in the international community to address the requirements of possible future colliders experiments
- Many technological aspects, challenges and strategies are in common (enhance granularity with SiPM readout, embed timing capabilities, enhance radiation tolerance)
- The **DRD** could become a framework **to exploit synergies** and optimize resources

Additional material

US Dual Calorimetry effort

The US Department of Energy has awarded a 3 -year grant (April 2022 start) totaling 1.5M\$ to a consortium of US Universities and laboratories to work on "maximal information calorimetry", using dual-readout/timing/advanced simulation techniques. The current participants are FNAL (Freeman, Hirschauer, Merkel, Wenzel), Argonne (Chekanov), Caltech (Newman, Zhu), Maryland (Belloni, Eno), MIchigan (Qian, Zhou, Zhu), Milano-Bicocca (Lucchini), MIT (Harris),Oak Ridge (Demarteau), Princeton (Tully), Purdue (Jung), Texas Tech (Akchurin, Kunori), U. Virginia (Hirosky, Ledovskoy). More information can be found at: https://detectors.fnal.gov/projects/calvision/

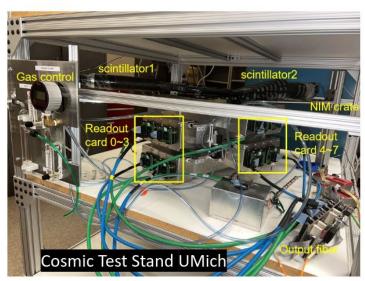

During our first year, we have started work in the following areas:

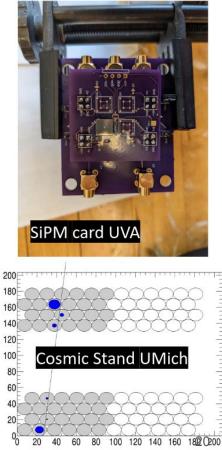
- Using cosmic rays and test beam to measure scintillation/Cherenkov light separation in scintillating crystals with extended wavelength SiPMs
- Using test beam to investigate the use of timing in a dual-readout scintillating fiber/ quartz fiber spaghetti calorimeter
- Simulation of a collider detector with a homogeneous crystal dual-readout ECAL and a dual-readout fiber spaghetti calorimeter
- Working with scintillating glass experts and our needs to understand what could be engineered towards cheaper dualreadout materials
- Advanced reconstruction algorithms

One of our main goals for the full period is to build a large crystal array to be used in conjunction with the IDEA calorimeter for test beam studies.

We are in collaboration with the CERN homogeneous materials group and the IDEA collaboration.

Our work: hardware




Crystal characterization CalTech

PbF ₂ 4		PWO 4				
ID	Dimension (mm ³)	Qty.	Polishing			
PbF ₂ -4	25×25×60	1	All faces			
PWO-4	25×25×60	1	All faces			
Two same	oles from U. Marvland red	ceived on Oct.	28, 2022			

Experiments

Measured at room temperature: X-ray excited luminescence (XEL), Longitudinal/Transverse transmittance (LT/TT), Emission Weighted Longitudinal transmittance (EWLT), Pulse Height Spectra (PHS), Light Output (LO) & Decay Time (τ), Light Response Uniformity (LRU). Light Yield (LY) with Emission Weighted Quantum Efficiency (EWQE) taken out.

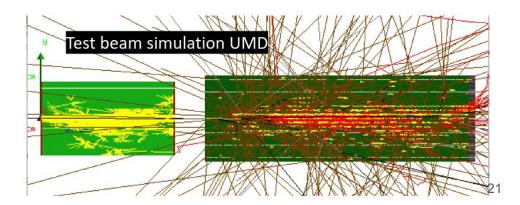


z [mm]

CalVision

Our work: simulation

https://atlaswww.hep.anl.gov/calvision/


SIM files for 1 GeV muons for ECAL with PbWO4 (5cm x 1 cm, 4 crystals in depth)

Full Simulation: Argonne

SIM+REC+DST files for HZ \rightarrow gg+nunu using CLIC but with ECAL based PbWO4 (5cm x 1 cm, 4 crystals in depth)

Jets are mis-calibrated i.e. 2 jet mass ≠ 125 GeV!

