
Running analyses with ADL: CutLang

Gökhan Ünel (ATLAS)

1

• arXiv paper: internals, user manual, how to run examples etc.

• Web page: user manual, examples & source code tgz:

arXiv:1801.05727

https://cutlang.hepforge.org

✂

👅

and

the ADL/CutLang team

https://arxiv.org/pdf/1801.05727.pdf

2

Data Analysis

“ legacy method ”

EVENTS in
histograms

variables

events

out to statistical tool

3

there are other tools

Ri
ve

t
MadAnalysis

C
he

ck
M

at
e

4

Running analyses with ADL
Once an analysis is written, it needs to run on events.

ADL is multipurpose & framework-independent: It can be
translated / integrated into any language or framework for
analysis tasks:

Physics information is fully contained in ADL. Current compiler infrastructures
can be easily replaced by future tools / languages / frameworks.

✂

👅

5

• CutLang v2 is an ADL runtime interpreter
• Run time interpretation of the ADL file: No compiling!

• replace any cut, any ADL line and rerun the analysis

• ADL blocks have to be in order:

• [initializations] [definitions] [objects] [definitions] commands

• CutLang v2 provides a full working environment
• Works on any *nix system, relies on ROOT & C++, lex & yacc for parsing

• Works with multiple input data formats

• Currently: LVL0, ATLAS OpenData, CMS OpenData, Delphes, LHCO, FCC,
CMSNANOAOD,….

• more can be easily added…

• Additional tools to help the analyst and the advisor

• All definitions, cuts and object selections are saved into the output ROOT file

• Shell & Python scripts for plotting & addition of “user functions” being updated

ADL & CutLang v2

• Root: standart HEP library and analysis tool
• available since 1994

• 4 vector operations, histogramming utilities are based on these libraries

• lex: standard unix lexical analyzer
• available since 1975

• Linux version is flex

• helps us to define the "keywords" in ADL / CL and to make it case insensitive

• yacc: yet another compiler compiler
• available since 1975

• Linux version is bison

• helps us to define the grammar of ADL/CL, what to do with the keywords

• An update is in progress
• all these tools produce a single executable in C/C++, heavy to maintain

• functions & attributes into different libraries for easy maintenance

6

Root, Lex and Yacc

7

DDSXL
• After DSL-grammar decoupling, next is multiple grammars for multiple domains.

• We designed a new protocol called Dynamic Domain Specific eXtensible Language

(DDSXL)

• it can contain numerous programming languages and frameworks.

• each developer to integrate their own module independently from other

modules

• 3 independent developer types: maximum efficiency for the developers

• it allows each micro team to use/integrate solutions they are experts in

• it integrates a domain ecosystem (such as CL) into the development environment

• a set of rules determined through communication over the network.

• DDSXL Core

• main service & entry point, always alive, no dependencies

• all packages register to this service

• Extension (ADL)

• produces an Abstract Syntax Tree (AST) for the associated engine

• Engine (CutLang)

• receives the AST, can do basic arithmetic & logic,

• depends on Library/ies for specific functions

• Library/ies (ML functions, complex kinematic variable functions...)

• offers recipes for specific functions,

• can be many running on different hosts / addresses

8

DDSXL components

• Developer types in DDSXL excosystem

• Core developer: experts in RPC, network communications, etc...

• Extension developer: specializes in parsers, compilers, AST etc...

• Engine developer: experts in the relevant domain that can solve problems

• Library developer: researchers in the relevant domain only

• Status

• Execution protocol steps and technologies to be used are identified

• gRPC (https://grpc.io/) & GraphQL (https://graphql.org/)

• Test servers and clients are written, functionality validated

• Run time library addition successfull

• Development ongoing

9

DDSXL development & status

https://grpc.io/

10

CutLang works in several environments

Linux MacOS Windows

Native ✓ ✓

Docker ✓ ✓ ✓

Conda 
cmd line ✓ ✓

Conda 
-> Jupyter ✓ ✓

Web 
-> Jupyter ✓ ✓ ✓

To reach the widest possible audience, CutLang runs on various
computer platforms:

A ROO/C++/CutLang
kernel available in
jupyter/Binder.

Docker, Conda interfaces and CutLang kernel for Jupyter written by Burak Şen, METU.

11

CutLang works in several environments

You could even run
CutLang on your
mobile!

(via Jupyter/Binder
interface)

(enter the “binder” dir)

• The execution order is top to bottom.
• units are in GeV, comment character is #, mostly case insensitive

• Most mathematical functions are available
• sin(), sinh(), cos(), cosh(), tan(), tanh(), Hstep(), abs(), sqrt(), ^, *, /, +,

-, interval inclusion [] and exclusion][

• Predefined concepts
• particles are: ELECTRON, MUON, TAU, PHOTON, JET, FATJET, MET

• particles are already sorted in decreasing transverse momentum order

• particle attributes and functions are: charge q mass m, energy E,
transverse momentum pT, total momentum P, pseudorapidity Eta,
angular distances dPhi,…

12ADL/CL Syntax (1)

• On the blackboard, we write
• When you type it in latex it is jet_1

• CL understands particleName_index notation:

• On the computer, we write
• CL understands particleName[index] notation:

13particle notation
jet1

jet[3]

• Is pseudo rapidity a property of a particle or an attribute?
What about the mass? is it an attribute? is it a function?
• all suggestions are equally valid, and can be used interchangibly

• I only care about the result of my analysis

• However, when I speak or write I might say either of
• “the mass of a particle set” m ()

• “the particle set’s mass” { }m

• CL understands both notations

14

properties, attributes & functions

more natural in Turkish

• Main keywords:
• use select / reject (or cmd) to select/reject events

• use define (or def) to define constants, functions and composite particles

• use histo to book and fill histograms

• use region (or algo) to define independent algorithms

• use object (or obj) to define new/composite particle objects

• use sort to sort particles according to a property

• use table to define a table (currently 1D only)

• use weight to define an event weight

• use save to record surviving events

• use Union to define a new set of particles

• use Comb to construct probability combinatorics

15ADL/CL Syntax (2)

• Further cleaning or refining can be achieved using derived objects
• Derived objects can be used to derive further refined objects

• JETS —> goodJETs —> cleanJETs —> verycleanJets …

• Multiple selection criteria can be applied

• The criteria selection line can contain at most 2 different type of objects

• e.g. reject jets too close to electrons

• The whole criteria line returns a boolean for the considered pair (ji and pj)

• intrinsic loop

• Analysis algorithms can use the original objects or derived objects

16Derived objects

• It is possible to group together
• charged leptons,

• derived objects

• The resulting group is not sorted.
• use sort cmd

17

Unions of objects

• i.root : root file of your events

• iTYPE : the type of your root file

• -i my.adl : your analysis text file

• -e 20000 : run for 20000 events

• -s 100 : start from event no 100

• -j 4 : use 4 cores. (if you have!)

18

using the CMDLine
CLA i.root iTYPE -i my.adl -e 20000 -s 100 -j 4

• is a ROOT file

• all regions are processed in parallel and

saved as TDirectories

• each TDirectory contains the associated

• cutlist, definitions and derived objects

19

Output file

• It is possible to save events, histograms, etc at any stage of the
analysis
• save filename

• do not write the .root extension, it will be added automatically.

• there can be multiple save commands in the same region

• use different names

• it is possible to save variables for later use
• save filename cvs variablelist

•

• print command is used for debugging

•

20

saving and printing

• 1 and 2 D histograms are available
•

• it is customary to give a histo name starting with h

• any title text can be given within quotation marks

• number of bins, min, max, function to be plotted

•

• do not use _ (underscore) but use - (minus) in names

• x parameters, y parameters, x function, y function

• Variable bin size is also possible
•

• bin boundaries are space separated not comma

21

Histogramming

• Standard/internal functions:
Sufficiently generic math and
HEP operations are a part of
the language and any tool that
interprets it.

• Math functions: abs(), sqrt(), sin(),
cos(), tan(), log(), …

• Collection reducers: size(), sum(),
min(), max(), any(), all(),…

• HEP-specific functions: dR(), dphi(),
deta(), m(), ….

• Object and collection handling: sort,
comb(), union()…

• External/user functions:
Variables that cannot be
expressed using the available
operators or standard
functions would be
encapsulated in self-contained
functions that would be
addressed from the ADL file.

• Variables with non-trivial algorithms:
MT2, aplanarity, razor variables, …

• Non-analytic variables: Object/
trigger efficiencies, variables/
efficiencies computed with ML, …

22

ADL syntax: functions

ADL syntax rules: https://twiki.cern.ch/twiki/bin/view/LHCPhysics/ADL

https://twiki.cern.ch/twiki/bin/view/LHCPhysics/ADL

• User defined selection functions are somewhat difficult to
incorporate into an interpreter

• Currently we define a user function type and compile it in.
• CLv2 will provide the means to do this automatically

• Currently Razor functions are pre-integrated:

• Simple functions can be interpreted using CL math functions

23User (external) functions

std::vector<TLorentzVector> fmegajets(std::vector<TLorentzVector> myjets);

double fMR(std::vector<TLorentzVector> j);

double fMTR(std::vector<TLorentzVector> j, TVector2 amet);

double fMTR2(std::vector<TLorentzVector> j, TLorentzVector amet);

24optimization functions
W → jj

• search all possible combinations to find the “best” candidates

We use negative indices if they are to be determined at run time, using a criterion,
such as: ~=

Repeating the same negative value helps speeding up since ji jk = jk ji

1) define your unknowns with negative indices

2) use defined objects as regular objects

3) define a χ2 to optimize

4) minimize the χ2 to find the unknowns

 Reconstruction example
25

tt̄

t → Wb → j j jb
tt̄

jb

W
j
jjb

W
j
j

There are 6 jets in the event of which 2 can be b-tagged

+ LOTS of other jets from spectator quarks and QCD effects

Which one is which?

• We use C notation

• condition ? do if true  
 : do if false

26the ternary function

• weights are needed for MC processes
• simulate the relative importance of certain events

• simulate the efficiencies (trigger, pileup, vertex, others…)

• Two possibilities
• via a simple coefficient

• via a table

27

weights

28

1	2	3	4	5Lets	assume	we	have	5	jets

we	can	make	2	hadronic	Zs

12		34

12		35

12		45

13		24

13		25

13		45

……

CutLang	code	to	define	all	possibilities,	with	some	cuts:

12		34

12		35

12		45

13		24

13		25

13		45

……

region testA

select Count(hZs) >= 2

CutLang	code	to	use		those	cuts:

Some	combinations	are	removed	because	of	the	selection	cuts	above.

Lines	with	1	remaining	Zh	are	removed	since	we	required	at	least	2	hadronic	Zs

12		35

13		24

13		25

……

But	which	combination	to	use?	
define zham : {hZs[-1]}m

define zhbm : {hZs[-2]}m

define chi2 : (zham - 91.2)^2 + (zhbm - 91.2)^2

…..

select chi2 ~= 0

Combinations

you will learn more during the next session
Hands-on exercises

p r a c t i c e m a k e s p e r f e c t
29

Enjoy analyzing LHC data with CutLang

• Python is very popular, all new students
know it

• they also know math and english, expressing
analysis algorithm in a human readable language
is easier to understand and debug

• decoupling computing and physics helps with
both technical and algorithm point of views

• Python has lots of external libraries
(sciPy,NumPy,..)

• when your only tool is a hammer, it is natural to
see all problems as nails.

• why should we read & decipher complex math
functions to understand the analysis algorithm?
Separate the two.

• you can access the same functions via ADL
"external" function calls

• Learning Python will be useful for the life
after physics!

• let us worry about physics first! Our goal should
not be teaching a computing language or helping
people to practice it.

• using the best tool for the job helps getting the
best results.

• swiss army knife (a GPL) has a screw driver too, but
when I work on my projects I use an easy grip
screwdriver (a DSL)

• Python has better graphics libraries,
young people hate ROOT.

• ADL is a language, feel free to write your own
interpreter/compiler with Python.

• It is possible to write a clean analysis
code with Python too!

• Sure. When one writes such a clean code and
decouples from computing technicalities, one
ends up with ADL.

• But, we usually have either spagetti code with
physics ideas entangled with classes or
"organized" code with classes calling classes
calling classes calling...

30

why not python?

