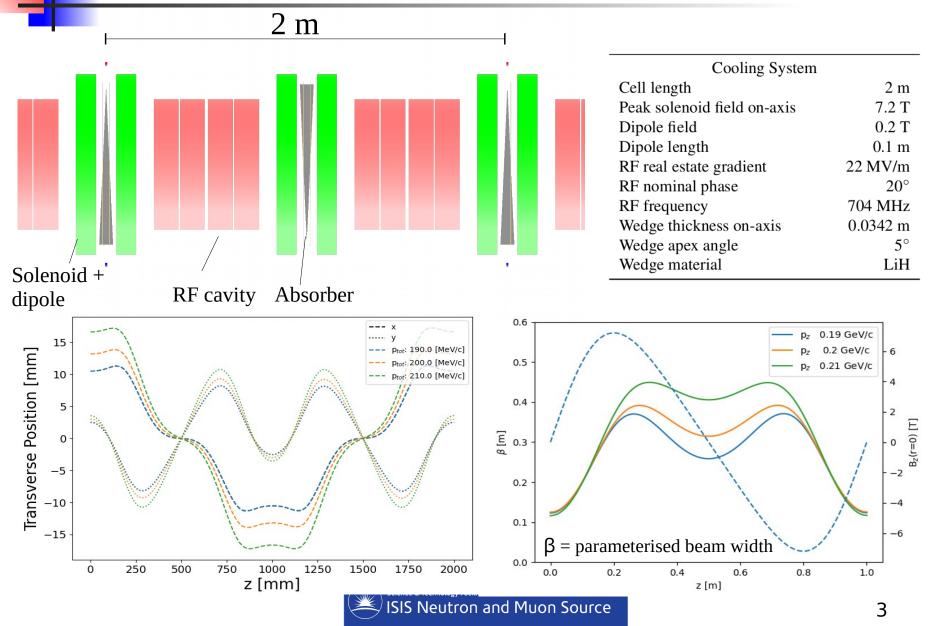
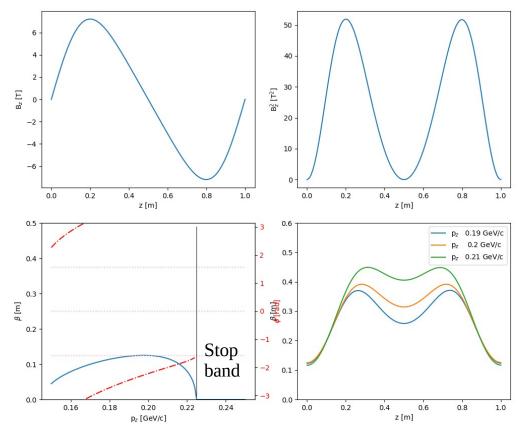
Rectilinear Cooling Channel Status

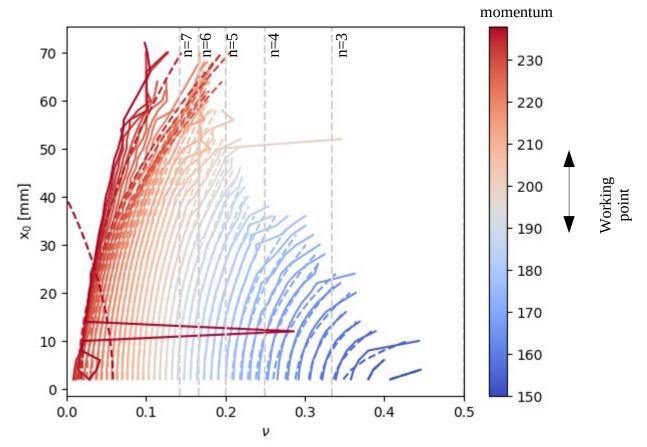
Science & Technology Facilities Council ISIS Neutron and Muon Source


C. T. Rogers ISIS Rutherford Appleton Laboratory

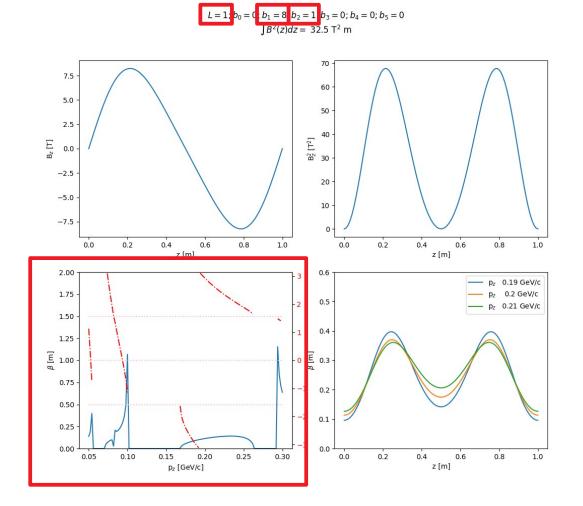
- Acceptance is a crucial part of the cooling optimisation
 - Acceptance of solenoid lattices is not well understood (by me)
 - i.e. no "easy" formula for the acceptance
- Looking at acceptance scalings
 - Scaling with momentum
 - Scaling with beta
- Just looking at solenoids
 - No dipoles
 - No RF
 - No wedges
 - Assume the other stuff is a (small) perturbation



Preliminary Cooling Cell Concept

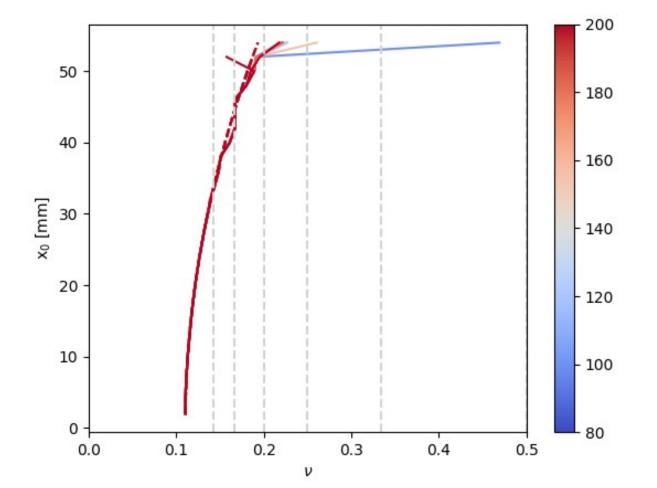

 $\int B^2(z) dz = 24.66 \text{ T}^2 \text{ m}$

Optics


Note optics dependence on momentum

Detuning – vs momentum

- Tune dependence on amplitude
 - Particle initial coordinates are (x,px,y,py) = (x0, 0, 0, 0)
 - Momentum scan, indicated by colour

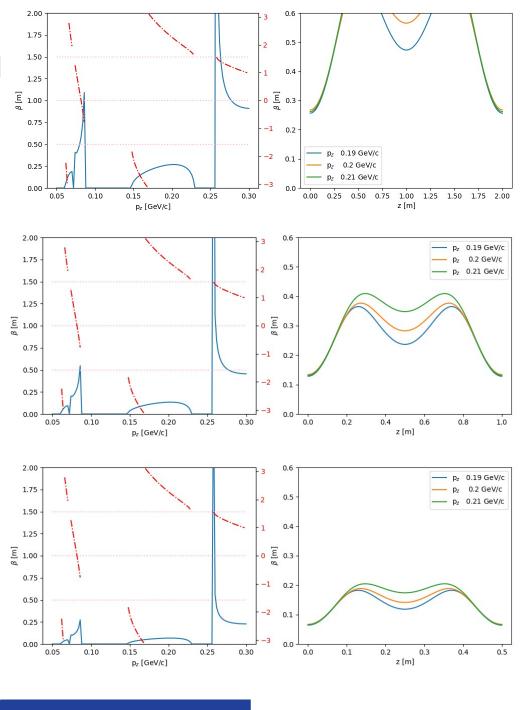

Momentum scaling (movie 1)

Momentum scaling

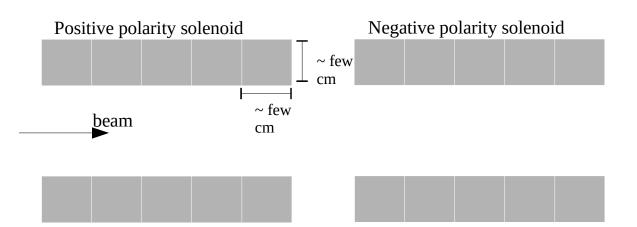
Scales perfectly

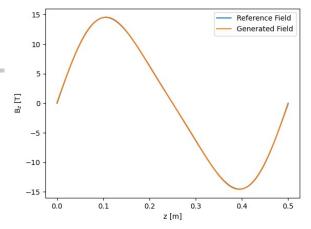
Acceptance

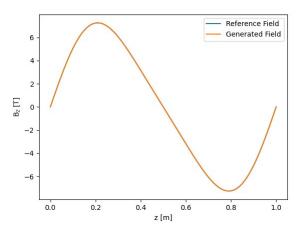
• Normalised Amplitude ~ x^2 0 0 $A_{\perp}^2 = \frac{1}{\beta_{\perp}} \left(x^2 + y^2 \right) + \beta_{\perp} \left(\frac{\mathcal{P}_x}{\mathcal{P}_z} + \frac{\alpha_{\perp}}{\beta_{\perp}} x + \frac{\mathcal{L}}{\beta_{\perp}} y \right)^2 + \beta_{\perp} \left(\frac{\mathcal{P}_y}{\mathcal{P}_z} + \frac{\alpha_{\perp}}{\beta_{\perp}} y - \frac{\mathcal{L}}{\beta_{\perp}} x \right)^2,$

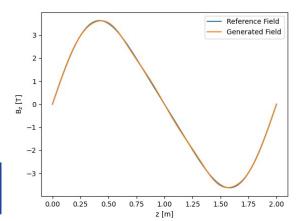

Transverse beta - constant

- Acceptance is constant with momentum
- Probably obvious from equations of motion
 - $d\underline{p}/dz = q d\underline{x}/dz \times \underline{B}$

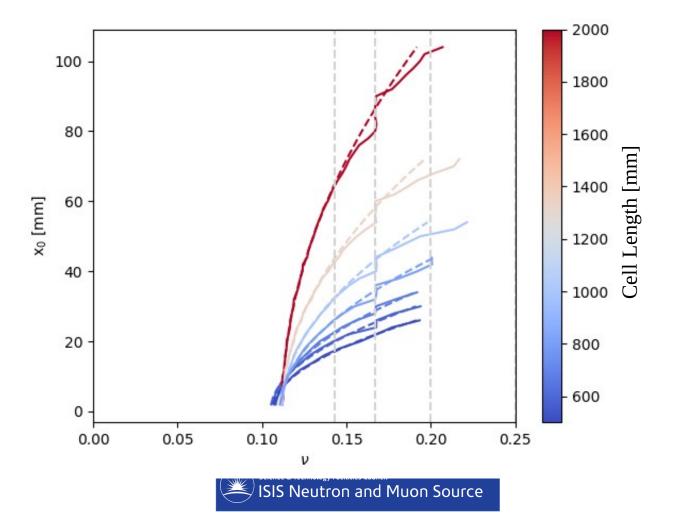

Beta Scaling

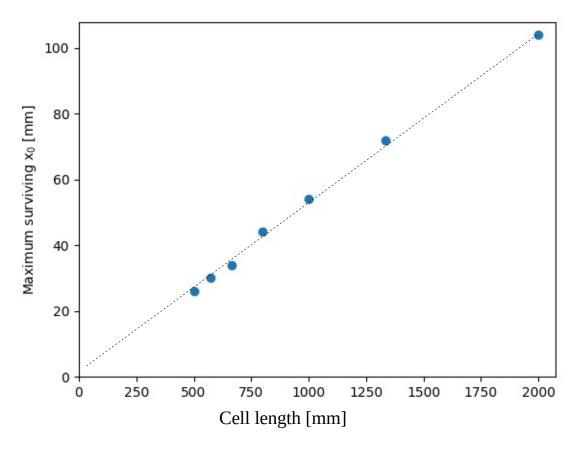

- What about if we scale β_1 ?
 - Set B and 1/L




Beta Scaling

Use "pixel" model to generate fields in G4BL




Tune dependence

Tune dependence

Acceptance

- Acceptance
 - Line is for guidance only I haven't properly fitted
 - "cell length" is proportional to $1/B_z$ and β_\perp

- Should be able to phrase the acceptances in terms of theory
- Should use amplitude, not "x₀"
- Compare with cooling formulae; look at where is the optimum

ToDo (2)

Mu						Timeline													
				In general deliverables should come in the form of a document.		2023				2024				2025			2026		
OF	jective	Level	WRS	Activity/Deliverables	Responsible	01			04	11 C							01.0		, 3 Q4
		Level		· · · · · · · · · · · · · · · · · · ·	Responsible		42	45	04	210	42 G	13 U	4 4	1 92	45	Q4		12 04	5 624
	2	1	2	Rectilinear Cooling															
		2	2.1	Beam physics design		_				_									
		3	2.1.1	Optics design, including tapering, understanding dynamic aperture					.										
		3	2.1.2	Tapering and matching between sections; further optimisation of the lattices		L													
		3	2.1.3	Alignment and tolerances															
		3	2.1.4	Collimation systems and radiation protection															
		3	2.1.5	Radiation load on SC magnets and other equipment															
		3	2.1.6	Liaison with RF and magnets															
		2	2.2	Beam loading															
		3	2.2.1	Effect of beam loading for each cell															
		3	2.2.2	Investigate mitigation, together with RF team															
2		2	2.3	Estimate significance of space charge															
		2	2.4	Beam instrumentation		_													
		3	2.4.1	Preliminary ideas for beam instrumentation - time, energy, beam profile															
		3	2.4.2	Physics design															
		2	2.5	Absorber design															
		3	2.5.1	Estimate magnitude of heat deposition															
		3	2.5.2	Absorber design															
		2	2.6	Engineering integration															
		3	2.6.1	Integration of magnets and RF															
		3	2.6.2	Alignment system															
		3	2.6.3	Integrated thermal design															
		3	2.6.4	Vacuum systems															

