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The SENSEI Experiment

⭆ Si Skipper Charge-Coupled Devices (SENSEI, DAMIC, DAMIC-M, OSCURA)

⭆ Probes sub-GeV DM via e- recoil and (~eV) DM absorption

⭆ Sub-electronic (~0.1 e-) readout noise

⭆ Energy threshold as low as ~1.1 eV (Silicon bandgap)

⭆ Lowest single-electron rate (~1e-4 e-/pix/day) in Silicon semiconductors.

⭆ Developed by LBNL MicroSystems Lab Energy 

1cm
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Silicon

◈ DM candidates: 

♦ Sub-Gev DM-e- scattering

♦ Dark photon absorption

♦ mCP (new! arXiv:2305.04964 )

◈ Silicon SCCDs as ionization detectors

♦ Energy transfer via electron recoil (or absorption) 

♦ Ionized h+ are captured and stored by SCCD.

♦ Signal is readout afterwards.

Electron recoils for sub-GeV DM in Skipper-CCDs

R. Essig et al, JHEP 05 (2016), 046

Expected spectrum for e- recoil
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CCD basics
◈ CCD = pixelated silicon array

◈ Collect, store and read 

◈ ~2/2.5g per device

◈ ~5.5Mpixels of 15x15x675 μm3 each
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◈ In a conventional CCD, charge is moved to the sense node and readout once. 

Then it is drained and charge is lost.

◈ Longer integration reduces noise but cannot reduce 1/f noise.

◈ Skipper-CCD moves charges towards and backwards

the floating sense node to achieve multiple 

non-destructive readout

Skipper-CCD basics
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Skipper-CCD output stage

The Skipper technology
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Skipper-CCD basics
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Locations: where is SENSEI?
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→ 107 meters underground

→ 1 device (2 grams) installed

→ Same site as dev site

Final location ←

2 kilometers underground ←

6 devices (15g) installed * ←

Near dev site (Canada) ←

* 40 grams after new visit (see next slides!)



Single Electron Event (SEE) contributions

10

Amplifier 

light

Dark 

current

Spurious 

charge

H SW OG sense
node

Transistor

Conduction band

Valence band

E ~ kT



Single Electron Event (SEE) contributions
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→ Dark current rate (presumably from thermal agitation) is higher than the expected (theoretical) at 135K

Dark current
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Dark Current 

= 

(Surface + Bulk) Dark Current

Operating
temperature

Measured DC 
rate
at 135K 

Expected bulk
DC curve

Expected surface 
+ bulk DC curve



Dark current
→ Dark current rate (presumably from thermal agitation) is higher than the expected (theoretical) at 135K

→ Origin? Du, Egana, Essig and Sholapurkar (2011.13939) proposed the source of this discrepancy may come 
from the interaction of high energy events with the CCD as it is was hinted in SENSEI2020@MINOS:

Extra shielding
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→ Dark current rate (presumably from thermal agitation) is higher than the expected (theoretical) at 135K
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Dark current

Extra shielding
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Preliminary

Credits to Essig et al.



Amplifier light study 
→ How does output transistor bias voltage affect light emission and readout noise?
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Transistor



Determination of contributions
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Determination of contributions
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Last report @ EXCESS Feb 2022
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→ This is the result presented for 2020@MINOS run, new update coming soon for SNOLAB first run.

→ No excess reported but take in mind single-electron event resolution + particle discrimination.

→ Spatial correlation of high energy events (>O(100keV)) with 1e- events: cherenkov radiation / radiative 
recombination (arXiv:2011.13939). Talk with Daniel!



SCCD EXCESS @ SNOLAB
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→ No exponential rise with lower-energies: rejection of surface events discards first-bin events.

→ Not explained (yet) by any background model.

→ SENSEI@SNOLAB (and DAMIC-M@LSM) will probe this excess very soon.



Second science run @ SNOLAB
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❖ Detailed results

❖ mCP exclusion limits

❖ Last SNOLAB visit



The SENSEI Collaboration

Thank you!
Any questions?
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The SENSEI Collaboration

BACK UP SLIDES
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◈ Underground site reduces muon environmental radiation

◈ Inner (1” each) and outer (2” each) lead bricks 

reduces gamma environmental radiation

◈ Copper module for IR radiation

◈ Temperature at 135K and high-vacuum regime.

◈ Operated with specifically designed readout electronics 

(LTA - Low Threshold Acquisition board)

MINOS2020 setup: location and shielding

Lead

Copper
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Lead

Copper

MINOS shielding

24



Single electron event rate

◈ Spatial correlation between high energy events (>360eV) 
and 1e- events.
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Sample image
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SC@Sense node
(1.1+-0.2) 10-5 e-/pix

~3x10-6 e-/pix
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Latest Results: SENSEI@MINOS

Heavy mediator e- scattering Light mediator e- scattering Absorption
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SENSEI@SNOLAB
◈ **Extraordinary** support from SNOLAB during COVID-19 

pandemic

○ 6 CCDs (15g) deployed.

○ 2km of granite, 3” of lead, 20” of polyethylene and 
water

◈ First science run of SENSEI@SNOLAB

○ 6 months of data-taking: 129 images, no 
binning, 50% blinded

○ 300 Skipper samples → 0.14e- noise

○ 1 e- density (after cuts): ~2 x 10-4 e-/pixel
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◈ Electronic noise

◈ Crosstalk

◈ Edges of CCDs

◈ Bad pixels/columns

◈ Serial register hits

◈ Bleeding (CTI)

◈ High-energy halo

◈ Low-energy halo

SENSEI@SNOLAB: event selection criteria

Bad columns

Charge transfer 
inefficiencies

Edge of CCD

Regions around high and 
low energy events

SENSEI@SNOLAB data
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SENSEI@SNOLAB: event selection criteria
◈ Electronic noise

◈ Crosstalk

◈ Edges of CCDs

◈ Bad pixels/columns

◈ Serial register hits

◈ Bleeding (CTI)

◈ High-energy halo

◈ Low-energy halo

SENSEI@SNOLAB masks
Black = unmasked regions, ~20% survival

Bad columns

Charge transfer 
inefficiencies

Edge of CCD

Regions around high and 
low energy events
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SENSEI@SNOLAB: results

Heavy mediator e- scattering Light mediator e- scattering Absorption

Preliminary Preliminary Preliminary
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Skipper-CCD basics
◈ In a conventional CCD, charge is moved to the sense node and readout once. 

Then it is drained and charge is lost.

◈ Longer integration reduces noise but cannot reduce 1/f noise.

◈ Skipper-CCD moves charges

towards and backwards the

floating sense node

to achieve multiple readout
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◈ Skipper technology allows to read repeatedly the same pixel 

to achieve sub-electron noise

◈ ~2e- noise goes to<0.1e- using the skipper technology

◈ Low energy threshold down to ~1.1eV (Si band gap)

◈ Capability of unambiguously count clusters 

of few electrons

◈ 15x15 μm2 pixels allow for spatial resolution of events

Skipper-CCD basics

noise=0.068e-

10.1103/PhysRevLett.119.131802
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Amplifier light
→ Increases linearly with time but spatially localized near the readout stage.

→ In SENSEI 2019 this effect was a mayor SEE contributor
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Amplifier light study 
→ How does output transistor bias voltage affect light emission and readout noise?
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Expected electronic recoil spectrum 
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Why are SEEs relevant?

R. Essig et al, JHEP 05 (2016), 046

⭆ Because of spatial random coincidence of SEEs can generate higher 

energy events
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◈ In a conventional CCD, charge is moved to the sense node and readout once. 

Then it is drained and charge is lost.

◈ Longer integration reduces noise but cannot reduce 1/f noise.

◈ Skipper-CCD moves charges

towards and backwards the

floating sense node

to achieve multiple 

non-destructive readout

Skipper-CCD basics
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Single Electron Event (SEE) contributions
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