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Inclusive quarkonium photoproduction

• We are looking at processes in which a near on-shell photon hits and
breaks a proton to produce a quarkonium:

γ(Q2 ∼ 0) + p→ Q+ X

• treated in the Weizsäcker-Williams approximation
• extensively studied at HERA, relevant for the future EIC
• onium photoproduction achievable also in inclusive UPC reactions at

the LHC
[see K. Lynch talk on Tuesday]

• resolved and di�ractive contributions can be removed with cuts on
elasticity z = PQ ·Pp

Pγ ·Pp
• feed-downs may be important and require dedicated studies
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Quarkonium Production Model

Phys.Rept. 889 (2020) 1-106 & EPJC (2016) 76:107 for reviews

• A longstanding debate: not yet clear which mechanism is dominant
• Di�erences in the treatment of the hadronization
• 3 common models:

1. Color Singlet Model:
hadronization w/o gluon emission; colour and spin are preserved
during the hadronization

2. NRQCD and Color Octet Mechanism:
higher Fock states of the mesons taken into account; QQ̄ can be
produced in octet states with di�erent quantum number as the
meson;

3. Color Evaporation Model:
based on quark-hadron duality;
only the invariant mass matters; semi-soft gluons emissions;
color-wise decorrelated cc̄ prod. and hadr.
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Leading PT approximation of NLO J/ψ + g: NLO?

P. Artoisenet et al., PRL 101 (2008) 152001, J.-P. Lansberg, EPJC 61 (2009) 693 & PLB 679 (2009) 340

• NLO? only contains the real-emission
contributions with an IR cut-o�,

√
smin
ij ,

and is expected to account for the
leading PT contributions at NLO (P−6

T )
• Succesfully checked against full NLO

computations for PT > 3 GeV
•
√
smin
ij /mc ∈ [1 :3] suitable for our

study;
√
smin
ij = 2mc remarkably

reproduces NLO results

Let’s revisit HERA data!
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Revisiting HERA data (I)
CF, J.-P. Lansberg, H.-S. Shao, Y. Yedelkina, PLB 811 (2020) 135926
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All the computations are done with HELAC-Onia [H.-S. Shao, CPC198 (2016) 238]. See also https://nloaccess.in2p3.fr

Scale and mass uncertainties are shown by the hatched and solid bands respectively.

[The quark and antiquark attached to the ellipsis are taken as on-shell and their relative velocity v is set to zero.]
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All the computations are done with HELAC-Onia [H.-S. Shao, CPC198 (2016) 238]. See also https://nloaccess.in2p3.fr
Scale and mass uncertainties are shown by the hatched and solid bands respectively.

[The quark and antiquark attached to the ellipsis are taken as on-shell and their relative velocity v is set to zero.]

J/ψγ

c γ + g→ ψ + g@ αα2
s

J/ψγ⋆

γ

γ + q→ ψ + q@ α3 [NEW!]

J/ψ

c

c

γ + J/ψ
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c̄

γ

{
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s (4FS)
γ+g→ψ+c+c̄@ αα3
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J/ψ
γ

c +
J/ψ

γ
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{
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s
γ+q→ψ+g+q@ αα3

s

[+ γ + g→ ψ + g]
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• LO QCD works well at low PT

• LO QED small, but much harder
spectrum

• J/ψ+charm matters at large PT
• NLO(?) close to the data, the overall

sum nearly agrees with them
• Agreement with the last bin when

the expected b→ J/ψ feed down
A (in gray) is subtracted

The CSM up to αα3
s reproduces J/ψ photoproduction at HERA

→ we will restrict to CSM for our EIC predictions
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b→ J/ψ feed-down at HERA
J.-P. Lansberg, Phys.Rept. 889 (2020) 1-106;
CF, J.-P. Lansberg, H.-S. Shao, Y. Yedelkina, PLB 811 (2020) 135926
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• b→ J/ψ feed-down estimated from bb̄ production data from H1 [EPJC 72 (2012) 2148]

• fraction of J/ψ from b over 40% for PT . 10 GeV
• may become important also at the EIC at √sep = 140 GeV
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J/ψ + X at the EIC [√sep = 45 GeV
]

CF, J.-P. Lansberg, H.-S. Shao, Y. Yedelkina, PLB 811 (2020) 135926
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• At √sep = 45 GeV, one gets into
valence region

• Yield steeply falling with PT
• Yield can be measured up to
PT ∼ 11 GeV with L = 100 fb−1

[using both ee and µµ decay channels and εJ/ψ ' 80%]

• QED contribution leading at the
largest reachable PT

• γ + q fusion contributes more than
30% for PT > 8 GeV
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• At √sep = 140 GeV larger PT range,
up to ∼ 18 GeV

• QED contribution also leading at the
largest reachable PT

• γ + g fusion contributions dominant
up to PT ∼ 15 GeV

• J/ψ + 2 hard partons [i.e. J/ψ + {gg, qg, cc̄}]
dominant for PT ∼ 8− 15 GeV

• It could lead to the observation of
J/ψ + 2 jets with moderate P jet

T
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J/ψ+charm associated production at the EIC
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• Same LO VFNS computation previously
shown in green except for the
charm-detection e�ciency εc:

dσVFNS = dσ3FS[1− (1− εc)
2]+ (dσ4FS − dσCT)εc

• At √sep = 45 GeV, yield limited to low
PT even with L = 100 fb−1

• But it is clearly observable if εc = 0.1
with O(500, 50, 5) events for
L = (100, 10, 1) fb−1

• At √sep = 140 GeV, PT range up to
10 GeV with up to thousands of events
with L = 100 fb−1

• Could be observed via charm jet

• 4FS γc→ J/ψc depends on c(x) and could be enhanced by intrinsic charm
• Small e�ect at √sep = 140 GeV [We used IC c(x) encoded in CT14NNLO]
• Measurable e�ect at √sep = 45 GeV

: BHPS valence-like peak visible!

Inclusive onium photoproduction, QaT 2023
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Negative cross-sections at high energies
A. Colpani Serri, Y. Feng, CF, J.-P. Lansberg, M.A. Ozcelik, H.-S. Shao, Y. Yedelkina, PLB 835 (2022) 137556
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A scale prescription for µF

J.-P. Lansberg, M.A. Ozcelik: EPJC 81 (2021) 6, 497

Q

Q

• In principle, such negative terms should be compensated by
the evolution of the PDFs governed by the DGLAP equations;

• Aγg, Aγq are process-dependent, while the DGLAP equations
are process-independent, which makes the compensation
imperfect;
• But as Aγg = Aγq, we can choose µF such that
lim
ŝ→∞

σ̂NLO
γi = 0

• This amounts to consider that all the QCD corrections are in
the PDFs
• The choice of factorisation scale to avoid possible negative

hadronic cross-section: µF = µ̂F = MQeAγi/2;
• For J/ψ (Υ) photoproduction: µ̂F = 0.86MQ

(PT ∈ [0, ∞], z < 0.9)
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Results with µ̂F = 0.86M

A. Colpani Serri, Y. Feng, CF, J.-P. Lansberg, M.A. Ozcelik, H.-S. Shao, Y. Yedelkina, PLB835 (2022) 137556
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Exp. data: H1 [M. Krämer, NPB 459 (1996) 3-50]; FTPS [B.H.Denby et al., PRL 52 (1984) 795-798]; NA14 Coll. [R. Barate et al., Z.Phys.C 33 (1987) 505]

• PDF uncertainties increase at large
√
s (i.e. small x)

• The µR unc. are reduced at NLO in comparison with LO

• Increase of µR unc. from √sγp & 50 GeV from the loop corr.
• At NNLO we expect a further reduction of µR uncertainties
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PT-di�erential cross sections at NLO
A. Colpani Serri, Y. Feng, CF, J.-P. Lansberg, M.A. Ozcelik, H.-S. Shao, Y. Yedelkina, PLB835 (2022) 137556

10-9

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

101

102

 0  2  4  6  8  10  12  14

EIC140: √s = 140 GeV, Wγp ∈ [20:80] GeV, z < 0.9, Q2 < 1 GeV2

H1: √s = 319 GeV, Wγp ∈ [60:240] GeV, z ∈ [0.3:0.9], Q2 < 2.5 GeV2

|RJ/ψ    (0)|2 = 1.25 GeV3

20% FD (ψ′→ J/ψ)

mc = 1.5 GeV
CT18NLO

EIC140 (×10-2)

H1

dσ
(e

 p
 →

 J
/ψ

 X
)/

dP
T
   

[n
b/

G
eV

]

PT [GeV]

H1 data: HERA2 [EPJC 68, 401 (2010)]
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NLO, µF = µR = 0.77mT

NLO, µF = 1.7mc, δµR = min/max σ(µR = mT, 2.5, 5, 10 GeV)
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• for PT-dependent cross-sections:
lim
ŝ→∞

c(γi)1 (pT)/c
(γi)
1 (pT) ∝ (PT/MQ)2

⇒ µ̂F = MQe
c(1)

γi /2c(1)
γi ∝ MQeP

2
T/M2

Q

• Common dynamical scale choice:
µF = (0.5, 1, 2)mT

• one can use µF = α
√
M2
Q + P2

T or

µF =
√
(βMQ)2 + P2

T
• if PT is large, then µF ∝ PT

• For µF = µ̂F with < P2
T >= 2.5GeV2 (for J/ψ at HERA energies), we get α = 0.77 and

β = 0.7
• All choices give similar results, compatible with the latest H1 data
• NLO? predictions for the EIC at 140 GeV compatible with full NLO
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σep(
√
s)

A. Colpani Serri, Y. Feng, CF, J.-P. Lansberg, M.A. Ozcelik, H.-S. Shao, Y. Yedelkina, PLB835 (2022) 137556

Exp. √sep L (fb−1) NJ/ψ NΥ(1S)
EicC 16.7 100 1.5+0.3

−0.2 · 106 2.3+1.1
−1.4 · 100

AMBER 17.3 1 1.6+0.3
−0.3 · 104 < 1

EIC 45 100 8.5+0.5
−1.0 · 106 6.1+0.7

−0.8 · 102

EIC 140 100 2.5+0.1
−0.4 · 107 7.6+0.3

−0.7 · 103

LheC 1183 100 9.3+2.9
−2.9 · 107 8.1+0.4

−0.7 · 104

FCC-eh 3464 100 1.6+0.2
−1.0 · 108 1.8+0.1

−0.2 · 105

We expect µR unc. to shrink at NNLO:
Possibility to constrain PDF with di�erential measurements

Rem. Nψ′ ' 0.08× NJ/ψ , NΥ(2S) ' 0.4× NΥ(1S) , NΥ(3S) ' 0.35× NΥ(1S)
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Conclusions

• The CSM up to αα3
s reproduces photoproduction at HERA up to

scale-uncertainty
Agreement improved when accounting for J/ψ+charm and b→ J/ψ FD

• The estimations for EIC can rely on CSM only

• NLO QCD corrections are important for PT-integrated σ

• A specific µF choice can be employed to avoid a possible over
subtraction of collinear divergences which lead to negative NLO σ
values at large √sγp

• Loop corrections matter and significant NNLO corrections (likely
positive) are expected as well as a further reduction of the µR unc.,
esp. around 100 GeV

• This would likely allow one to better probe gluon PDFs at small-x and
µF ∼ M.

Thank you
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Kinematics and cross section

CF, J.-P. Lansberg, H.-S. Shao, Y. Yedelkina, PLB 811 (2020) 135926

• sep = (Pe + Pp)2 = 4EeEp; sγp = W2
γp = (Pγ + Pp)2; Pγ = xγPe, so sγp = xγsep

• z = PQ ·Pp
Pγ ·Pp : fraction of the photon energy taken by the J/ψ in the proton rest frame

• cross section:
dσ

dzdPT
=

1∫
xmin

γ

dxγ
2xaPT fγ/e(xγ ,Q2

max)fa/p(xa(xγ), µF)

z(1− z)

× 1
16πŝ2 |M(γ + a→ Q+ k)|2 ,

where xa =
M2
T−m2

Q z
xγsepz(1−z) and xmin

γ =
M2
T−m2

Q z
sepz(1−z)

• WW distribution

fγ/e(xγ ,Q2
max) =

α

2π

[
1 + (1− xγ)2

xγ
ln Q2

max
Q2

min(xγ)
+ 2m2

exγ

(
1

Q2
max
− 1
Q2

min(xγ)

)]

where Q2
min(xγ) = m2

ex2
γ/(1− xγ)
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VFNS treatment of J/ψ+charm yield

CF, J.-P. Lansberg, H.-S. Shao, Y. Yedelkina, PLB 811 (2020) 135926

J/ψ+charm production follows from
• γ + g→ J/ψ + c+ c̄@ αα3

s (3FS)
• γ + {c, c̄} → J/ψ + {c, c̄}@ αα2

s (4FS)

dσγc→J/ψ+c =
1

2
(
ŝ−m2

c
)dxc fc/p(xc , µ2

F)

×
∣∣Mγc→J/ψc

∣∣2dΦ(pγ , pc → PQ , p′c),
with

fc/p(xc, µ2
F) = f̃ (1)c/p(xc, µ2

F) +O(α2
s),

where

f̃ (1)c/p(xc, µ2
F) =

αs
2π

log
(

µ2
F

m2
c

) ∫ 1

xc

dz
z Pqg(z)fg/p

( xc
z , µ2

F

)
with AP splitting function Pqg(z) = 1

2

[
z2 + (1− z)2

]
. Overlap CT to be subtracted

from 3FS:

dσCT,γc→J/ψ+c =
1

2
(
ŝ−m2

c
)dxc f̃ (1)c/p(xc , µ2

F)
∣∣Mγc→J/ψc

∣∣2dΦ(pγ , pc → PQ , p′c).
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b→ J/ψ feed-down

CF, J.-P. Lansberg, H.-S. Shao, Y. Yedelkina, PLB 811 (2020) 135926
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General structure of NLO corrections
M. Krämer, NPB 459, 3 (1996)

Q

Q Q

Q

Q Q

Q

Singularities at NLO [and how they are removed]:
• Real emission

• Infrared divergences: Soft [cancelled by loop IR
contr.]

• Infrared divergences: Collinear
• initial state [subtracted via “renormalisation”

of collinear PDFs (Altarelli-Parisi
counter-terms)]

• final state [cancelled by loop IR contr.]

• Virtual (loop) contribution
• Ultraviolet divergences: [removed by

renormalisation]
• Infrared divergences: [cancelled by real Infrared

contribution]
• We use the FDC code to produce NLO results

[J.-X. Wang Nucl.Instrum.Meth. A534(2004)241-245]

[The quark and antiquark attached to the blob are taken as on-shell and their relative velocity v is set to zero.]
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Scale uncertainty for a fixed scale

A. Colpani Serri, Y. Feng, CF, J.-P. Lansberg, M.A. Ozcelik, H.-S. Shao, Y. Yedelkina, PLB835 (2022) 137556

• scale uncertainties are usually evaluated as

∆σ(µ) =
|σ(2µ)− σ(µ/2)|

2
• wider variations necessarily lead to wider uncertainties
• we used the following rescaling

∆ξ σ(µ) =

∣∣∣∣σ(ξµ)− σ(µ/ξ)

2
ln 2
ln ξ

∣∣∣∣
• one can then consider a local uncertainty, connected to ∂σ

∂ log µ as:

lim
ξ→1

∆ξ σ = ln 2×
∣∣∣∣ ∂σ(µ)

∂ ln µ

∣∣∣∣
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