Computer algebra tools for quarkonium NLO computations

Vladyslav Shtabovenko
University of Siegen
Center for Particle Physics Siegen (CPPS)

Quarkonia as Tools 2023
in
Centre Paul Langevin, Aussois, France
$9^{\text {th }}$ of January 2023

Outline

1 Motivation

2 Diagram generation

3 Dirac and color algebra

4 Loop integrals

5 Summary and Outlook

Motivation

- Perturbative quantum field theory (QFT) calculations often mean evaluation of Feynman diagrams
- Higher order perturbative calculations are challenging but also necessary
- Increasing experimental precision (high luminosity LHC, . . .) calls for better theory input
- The challenges are often of technical rather than conceptual nature
- New advances require better algorithms and a lot of computer power
- Software tools are indispensable

A typical Feynman diagram calculation may involve many different building blocks

Diagrams

- Feynman rules
- Diagram generation
- Filtering
- Topologies

Amplitudes

- Expansions
- Dirac algebra
- Color algebra
- Tensor reduction
- Projectors

Loop integrals

- Partial fractioning
- IBP reduction
- Mappings between integrals
- Master integral evaluation

Miscellaneous

- Renormalization
- Phase space
- Matching
- Phenomenology
- ...
.. many of which can be automatized completely or to some extent!
- Symbolic manipulations are usually automatized using FORM [Vermaseren, 2000; Kuipers et al., 2013] and MATHEMATICA
- Other frameworks (e. g. MAPLE, GINAC [Bauer et al., 2002], REDUCE etc.) can be useful for different tasks
- Writing big codes from scratch can be time-consuming and error-prone
- More pragmatic approach: employ tools available on the market, combine them in a smart way
- Many calculations up to 1-loop are automatizable either fully or to some extent
- In the field of heavy quarkonia we have HELAC-ONIA [Shao, 2016], MADGraph /MADONIA [Alwall et al., 2014; Artoisenet et al., 2008], FDC [Wang, 2004], HepLib [Feng et al., 2023], FeynCalc [VS et al., 2020] + FeynOnium [Brambilla, Chung, Vs, Vairo, 2020]
- However, often quarkonium calculations (especially beyond tree-level) are done by chaining different tools together using private codes.

Diagram generation

- Two main tools on the market: FeynArts [Hahn, 2001] and QGRAF [Nogueira, 1993]
- FeynArts is an all-in-one solution: diagram generation, visualization, Feynman rules insertion
- Easy to use, works with Mathematica, new models can be added via FeynRules [Christensen \& Duhr, 2009; Alloul et al., 2014]
- Can become slow when generating and filtering large (>100) numbers of diagrams
- Often preferred in tree-level and 1-loop calculations
- QGRAF only generates the amplitudes but does not visualize them or insert Feynman rules
- New models are easy to write, only need to specify vertices and types of fields (bosonic/fermionic)
- Output can be formatted to be readable by any CAS
- Visualizing diagrams requires additional tools (e. g. GraphVIz)
- Need additional codes for inserting Feynman rules
- Extremely fast, even when producing millions of diagrams, preferred tool in the multi-loop community

Dirac and color algebra

- Theories with fermions \Rightarrow Dirac matrices in the amplitudes
- Dimensional regularization (loop integrals) implies that the algebra must be done in D dimensions
- Need to simplify chains with common indices/momenta and calculate traces in D dimensions

$$
\begin{aligned}
\gamma^{\mu} \gamma^{\nu_{1}} \ldots \gamma^{\nu_{n}} \gamma_{\mu} & =(d-4)(-1)^{n} \gamma^{\nu_{1}} \ldots \gamma^{\nu_{n}}+2(-1)^{n} \gamma^{\nu_{3}} \gamma^{\nu_{2}} \gamma^{\nu_{1}} \gamma^{\nu_{4}} \ldots \gamma^{\nu_{n}} \\
& +2 \sum_{j=4}^{m}(-1)^{n-j} \gamma^{\nu_{j}} \gamma^{\nu_{1}} \ldots \gamma^{\nu_{j-1}} \gamma^{\nu_{j+1}} \ldots \gamma^{\nu_{n}} \\
\not p \gamma^{\nu_{1}} \ldots \gamma^{\nu_{n}} \not p & =(-1)^{n} p^{2} \gamma^{\nu_{1}} \ldots \gamma^{\nu_{n}}+2 \sum_{i=1}^{n}(-1)^{i+1} \gamma^{\nu_{1}} \ldots \gamma^{\nu_{i-1}} \gamma^{\nu_{i+1}} \ldots \gamma^{\nu_{n}} \not p p^{\nu_{i}}
\end{aligned}
$$

- Issues with γ^{5} : cannot simultaneously preserve $\left\{\gamma^{\mu}, \gamma^{5}\right\}=0$ and the cyclicity of the trace in D dimensions
- Different schemes for treating γ^{5} : NDR [Chanowitz et al., 1979], BMHV [Breitenlohner \& Maison, 1977; 't Hooft \& Veltman, 1972], Larin [Larin, 1993], ...
- See [Gnendiger et al., 2017] for a good overview
- Ready-to-use tools: Tracer [Jamin \& Lautenbacher, 1993], FormTracer [Cyrol et al., 2017], FeynCalc, Package-X [Patel, 2015, 2017], HePMATH [Wiebusch, 2015]
- QCD is a nonabelian $\operatorname{SU}(3)$ gauge theory \Rightarrow Feynman rules involve color algebra
- Calculations are usually done for a generic N, helps to understand the structure of the results
- Standard rules to eliminate common indices and do the traces

$$
\begin{aligned}
\left(A T^{a} B T^{a} C\right) & =\frac{1}{2}(A C) \operatorname{Tr}(B)-\frac{1}{2 N} A B C \\
\left(A T^{a} B\right) \operatorname{Tr}\left(C T^{a} D\right) & =\frac{1}{2}(A D C B)-\frac{1}{2 N}(A B) \operatorname{Tr}(C D) \\
\operatorname{Tr}\left(A T^{a} B\right) \operatorname{Tr}\left(C T^{a} D\right) & =\frac{1}{2} \operatorname{Tr}(A D C B)-\frac{1}{2 N} \operatorname{Tr}(A B) \operatorname{Tr}(C D) \\
T^{a} T^{b} & =\frac{1}{2 N} \delta^{a b}+\frac{1}{2} d^{a b c} T^{c}+\frac{1}{2} i f^{a b c} T^{c} \\
i f^{a b c} & =2 \operatorname{Tr}\left(T^{a}\left[T^{b}, T^{c}\right]\right) \\
d^{a b c} & =2 \operatorname{Tr}\left(\left\{T^{a}, T^{b}\right\} T^{c}\right)
\end{aligned}
$$

- Automatizable using e. g. ColorMath [sjödahl, 2013], FormTracer, FeynCalc, color.h [van Ritbergen et al., 1999]

Loop integrals

- Upon simplifying Dirac and color algebra we get

$$
i \mathcal{M} \rightarrow \sum_{i} c_{i}^{\mu_{j_{1}} \cdots \mu_{j_{n}}} I_{\mu_{j_{1}} \ldots \mu_{j_{n}}}
$$

- $c_{i}^{\mu_{j_{1}}}$ mostly made of Dirac matrices, polarization vectors and Levi-Civita tensors
- $I_{\mu_{j_{1}} \ldots \mu_{j_{n}}}$ are tensor loop integrals
- Naive (text book) approach: calculate each integral separately
- Better: try to reduce them to a smaller set of master integrals
- But first we need to get rid of tensor indices!
- Two popular methods: projectors or tensor reduction
- Projectors: work out projection operators P_{i} in Dirac and color space for all possible contributions

$$
\mathcal{M}=\sum_{k} a_{k} I_{k} \Rightarrow I_{k}=\operatorname{Tr}\left(P_{i} \mathcal{M}\right)
$$

- Tensor reduction: for each integral write down the ansatz with all possible tensor structures, then contract and solve a system of linear equations

$$
I_{\mu_{j_{1}} \cdots \mu_{j_{n}}}=\sum_{j} r_{j}^{\mu_{j_{1}} \cdots \mu_{j_{n}}} I_{j}
$$

- I_{j} are scalar integrals with scalar products in numerators and propagators raised to integer powers
- These scalar integrals are still not all independent!
- Common technique at 1-loop: Passarino-Veltman [Passarino \& Veltman, 1979]
- PaVe-workflow: tensor reduction \rightarrow PaVe coefficients functions B_{11}, C_{001} etc.

PaVe reduction PaVe scalar functions $A_{0}, B_{0}, C_{0}, D_{0}, \ldots$

- Bottom line: Every 1-loop I_{j} (quadratic propagators!) mapped to a linear combination of $A_{0}, B_{0}, C_{0}, D_{0}, \ldots$
- PaVe functions are well understood, can be evaluated analytically (Package-X) or numerically (LoopTools [Hahn \& Perez-Victoria, 1999], ...)
- Multi-loop: no x-loop PaVe functions, proceed on a case-by-case basis
- Main idea: reduce each x-loop scalar integral I_{j} to a smaller set of master integrals (MI)
- Main technique: reduction via integration-by-parts identities (IBPs) [Chetyrkin \& Tkachov, 1981; Tkachov, 1981]
- IBP-reduction done via publicly available tools FIRE, [Smirnov \& Chuharev, 2020], KIRA [Klappert et al., 2021], LiteRED [Lee, 2014]
- Profit: Calculate only the MI, instead of every I_{j}
- To set up the IBP-reduction we need to map each I_{j} to an integral family (also called topology)
- A topology is a set of propagators that form a basis (complete and linearly independent set)
- Example: 1-loop Box
- The topology is made of 4 propagators that form a complete basis

$$
\left\{q^{2}-m_{0}^{2}, \quad\left(q+p_{1}\right)^{2}-m_{1}^{2}, \quad\left(q+p_{2}\right)-m_{2}^{2}, \quad\left(q+p_{3}\right)^{2}-m_{3}^{2}\right\}
$$

- Compact notation for integrals from this topology

$$
G_{\mathrm{box} 11}(1,1,1,1), \quad G_{\mathrm{box} 11}(1,1,0,2), \quad G_{\mathrm{box} 11}(1,0,0,0), \quad G_{\mathrm{box} 11}(1,2,0,-1)
$$

- box1l is the identifier of this topology, can be a number or any other string
- The indices denote powers of the corresponding propagators

$$
G_{\mathrm{box} 11}(1,2,0,-1) \equiv \int_{q} \frac{1}{\left[q^{2}-m_{0}^{2}\right]} \frac{1}{\left[\left(q+p_{1}\right)^{2}-m_{1}^{2}\right]^{2}}\left[\left(q+p_{3}\right)^{2}-m_{3}^{2}\right]
$$

- The reduction is done topology-wise: G 's with more/higher indices $\Rightarrow G$'s with less/lower indices
- In principle, one could reduce each single integral separately, but this is extremely inefficient
-What if the corresponding propagators do not form a basis?
- For linear/quadratic propagators there can be two reasons:

1) The basis is overdetermined due to linearly dependent propagators
2) The basis is incomplete due to missing propagators

- Missing propagators: Just add some suitable scalar products to have the complete basis
- Heavy quarkonium calculations: linearly dependent propagators when switching to the center of mass kinematics
- Example: Integral with linearly dependent propagators

$$
\int_{l} \frac{1}{\left[l^{2}\right]} \frac{1}{\left[\left(k_{1}+l-P / 2\right)^{2}-m^{2}\right]} \frac{1}{\left[(l-P / 2)^{2}-m^{2}\right]} \frac{1}{\left[(l+P / 2)^{2}-m^{2}\right]}
$$

Splits into two pieces when applying partial fraction decomposition

$$
\frac{1}{2}\left(\int_{l} \frac{1}{\left[l^{2}\right]^{2}} \frac{1}{\left[\left(k_{1}+l-P / 2\right)^{2}-m^{2}\right]} \frac{1}{\left[(l-P / 2)^{2}-m^{2}\right]}+\int_{l} \frac{1}{\left[l^{2}\right]^{2}} \frac{1}{\left[\left(k_{1}+l-P / 2\right)^{2}-m^{2}\right]} \frac{1}{\left[(l+P / 2)^{2}-m^{2}\right]}\right)
$$

- Tools for finding such relations: MultivariateApart [Heller \& von Manteuffel, 2022], \$APART [Feng, 2012], FEyNCalc
- Starting point: amplitudes with many propagators and numerators. Need to
- Identify present topologies and rewrite integrals as $G_{\text {topo }}(1, \ldots) \Rightarrow$ easy
- Minimize the number of topologies via suitable mappings \Rightarrow not that easy
- Example: I_{1} and I_{2} fit into the same topology (actually, they are identical)
- Unfortunately, this is not obvious in the propagator representation

$$
\begin{aligned}
I_{1} & =\int_{q} \frac{1}{\left[q^{2}-m_{1}^{2}\right]} \frac{1}{\left[\left(q-p_{1}\right)^{2}-m_{2}^{2}\right]} \frac{1}{\left[\left(q-p_{2}\right)^{2}-m_{3}^{2}\right]} \\
I_{2} & =\int_{q} \frac{1}{\left[\left(q+p_{1}+p_{2}\right)^{2}-m_{1}^{2}\right]} \frac{1}{\left[\left(q+p_{2}\right)^{2}-m_{2}^{2}\right]} \frac{1}{\left[\left(q+p_{3}\right)^{2}-m_{3}^{2}\right]}
\end{aligned}
$$

- There exists a suitable loop-momentum shift

$$
I_{1} \stackrel{q \rightarrow q+p_{1}+p_{2}}{=} I_{2}
$$

- Finding such shifts in a systematic way is challenging.
- Enumerating all possible shifts by brute force is rather hopeless, especially beyond 1 loop ...
- More efficient: represent loop integrals through Feynman-parametric integrals or graphs
- Feynman parametric representation of an L-loop scalar Minkowskian integral [Nakanishi 1971, Zavialov 1979, Smirnov 2006]

$$
\left(\frac{e^{\varepsilon \gamma_{E}}}{i \pi^{d / 2}}\right)^{L} \int \frac{\left(\prod_{i=1}^{L} d^{d} k_{i}\right)}{P_{1}^{m_{1}} \ldots P_{N}^{m_{N}}}=\frac{(-1)^{N_{m}} \Gamma\left(N_{m}-\frac{L d}{2}\right)}{\prod_{j=1}^{N} \Gamma\left(m_{j}\right)} \int_{0}^{\infty} \prod_{j=1}^{N} d x_{j} x_{j}^{m_{j}-1} \delta\left(1-\sum_{i=1}^{N} x_{i}\right) \frac{\mathcal{U}^{N_{m}-\frac{(L+1) d}{2}}}{\mathcal{F}_{M}^{N_{m}-\frac{L d}{2}}}
$$

with N quadratic/eikonal propagators P_{i} and $N_{m}=\sum_{i=1}^{N} m_{i}$ with $m_{i} \geq 0$

- Euclidean case: remove $(-1)_{m}^{N}$, replace \mathcal{F}_{M} with \mathcal{F}_{E}
- Symanzik polynomials \mathcal{U} and \mathcal{F} encode most of the integral properties (nice summary in [Bogner \& Weinzierl, 2010])
- Main advantage: ambiguity under shifts of loop momenta eliminated!
- Employ a function of $(\mathcal{U}, \mathcal{F})$ and m_{i} to characterize the given loop integral (topology)?
- Find mappings between different topologies?
- In principle, yes! But things are not so simple ...
- Introduce the characteristic polynomial P
- Popular choices: $P=\mathcal{U} \times \mathcal{F}$ or $P=\mathcal{U}+\mathcal{F}$
- P depends on the Feynman parameters x_{i} and is not unique!
- Ambiguity under shifts of loop momenta \Rightarrow ambiguity under permutations of x_{i}
- A new P^{\prime} from P by permuting x_{i} (e.g. $x_{1} \leftrightarrow x_{2}$) still describes the same loop integral
- Need to find some canonical ordering of the
 Feynman parameters x_{i} in the given P
- Possible solution: Algorithm invented by Alexey Pak [Pak, 2012]
- Rough idea: Write P as a matrix, find the canonical form by swapping/sorting rows and columns

$$
=-\Gamma(3-d) \int_{x_{i}} \underbrace{\left(x_{1} x_{2}+x_{1} x_{3}+x_{2} x_{3}\right)^{3-\frac{3 d}{2}}}_{\mathcal{U}}
$$

- Pak algorithm: canonical ordering of $x_{i}+$ symmetries between the corresponding lines.
- Very detailed description in the PhD thesis of Jens Hoff [J. S. Hoff, 2015]
- Technical implementation in Mathematica straightforward
- Automatic calculation of $\mathcal{U}+\mathcal{F}$ in UF.M (now part of FIESTA [Smirnov et al., 2022] and FIRE)
- Many of Pak's ideas implemented in ToPoID [J. Hoff, 2016], https://github. com/thejensemann/TopoID
- Pak algorithm + UF-parametrization pave way to
- Topology identification
- Mappings between master integrals
- Derivation of Feynman-parametric representations for analytic calculations
- Analytic regularization [Panzer, 2015a, 2014, 2015b]
- And many more!
- Corresponding routines available in FeynCalc, tapir [Gerlach et al., 2023], PYSECDEC [Borowka et al., 2018], LiteRed
- Suppose that you are done with the IBP-reduction [Chetyrkin \& Tkachov, 1981; Tkachov, 1981] of your loop integrals, what are the next steps?
Find mappings between master integrals from different integral families
Visualize your unique master integrals
Calculate them analytically/numerically?
- With Pak algorithm at our disposal finding mappings between master integrals is straightforward
- Example (using FeynCalc): 2-loop self-energies with one or two massive lines

$\operatorname{In}[1]:=$ topos $=\{$ FCTopology[prop2Lv1, $\{\operatorname{FAD}[p 1], \operatorname{FAD}[\{p 1+q 1, m\}], \operatorname{FAD}[p 2], \operatorname{FAD}[p 2+q 1], \operatorname{FAD}[p 1-p 2]\},\{p 1, p 2\},\{q 1\},\{ \},\{ \}]$, FCTopology[prop2Lv2, \{FAD[p1], FAD[\{p2, m\}], FAD[\{p2 + q1, m\}], FAD[p1 + q1], FAD[-p1 + p2]\}, \{p1, p2\}, \{q1\}, \{\}, \{\}]\};
- We have a list of master integrals that are not all unique
$\begin{aligned} \operatorname{In}[2]:= & \text { glis }=\{\operatorname{GLI[prop2Lv1,~}\{\mathbf{0}, \mathbf{1}, \mathbf{1}, \mathbf{1}, 1\}], \text { GLI[prop2Lv2, }\{0,1,1,1,1\}], \text { GLI[prop2Lv2, }\{1, \mathbf{0}, \mathbf{1}, 1,1\}],\end{aligned}$ GLI[prop2Lv2, $\{1,1,0,1,1\}], ~ G L I[p r o p 2 L v 2, ~\{1,1,1,0,1\}]\}$
- FeynCalc identifies three mappings between our masters
$\operatorname{In}[3]:=$ FCLoopFindIntegralMappings[glis, topos][[1]]
Out[3]= $\left\{G^{\text {prop2Lv2 }}(1,0,1,1,1) \rightarrow G^{\text {prop2Lv1 }}(0,1,1,1,1), G^{\text {prop2Lv2 }}(1,1,0,1,1) \rightarrow G^{\text {prop2Lv1 }}(0,1,1,1,1), G^{\text {prop2Lv2 }}(1,1,1,0,1) \rightarrow G^{\text {prop2Lv2 }}(0,1,1,1,1)\right\}$
- Working principle based on FindRules from FIRE
- Could also use LiteRed's FindSymmetries
- Given a propagator representation of a loop integral, how to obtain its graph representation?
- Can be done using AZURITE [Georgoudis et al.. 2017], PlanarityTest, [Bielas et al., 2013], LiteRed and also FeynCalc
- Two-step approach: FCLoopIntegralToGraph reconstructs the graph, FCLoopGraphPlot plots it.
$\ln [4]=$ FCLoopIntegralToGraph[FAD[\{p1, m1\}, \{p2, m2\}, \{Q1 + p1, m3\}, Q2-p1, Q1 + p1 + p2, Q2-p1-p2, Q2 + Q3-p1-p2], \{p1, p2\}]; FCLoopGraphPlot[\%]

- The plot can be styled to make it more visually appealing
$\operatorname{In}[5]:=$ FCLoopIntegralToGraph[FAD[\{p1, m1\}, $\{\mathrm{p} 2, \mathrm{~m} 2\},\{\mathrm{Q} 1+\mathrm{p} 1, \mathrm{~m} 3\}, \mathrm{Q} 2-\mathrm{p} 1, \mathrm{Q} 1+\mathrm{p} 1+\mathrm{p} 2, \mathrm{Q} 2-\mathrm{p} 1-\mathrm{p} 2, \mathrm{Q} 2+\mathrm{Q} 3-\mathrm{p} 1-\mathrm{p} 2],\{\mathrm{p} 1, \mathrm{p} 2\}]$; FCLoopGraphPlot[\%, GraphPlot $->$ \{MultiedgeStyle $->0.35$, Frame $->$ True $\}$, Style $->\{$
\{"InternalLine", , _ , mm_ /; ! FreeQ[mm, m1]\} -> \{Red, Thick\},
\{"InternalLine", _, _, mm_l; ! FreeQ[mm, m2]\} -> \{Blue, Thick\},
$\{$ "InternalLine",, ,, mm _ $/ ;$! FreeQ[mm, m3]\} -> $\{$ Green, Thick $\}$,
\{"ExternalLine", Q1\} -> \{Brown, Thick, Dashed\}\}]

- At NLO we have plenty of options for the evaluation of 1-loop master integrals (quadratic propagators)
- Analytically via Package-X
- Numerically using LoopTools, CoLLIER [Denner et al., 2017], ONELOop [van Hameren, 2011], QCDLOop [Carrazza et al., 2016], ...
- Beyond 1-loop things are not that simple
- Numerical evaluation using FIESTA and PySEcDec
- Analytic results can be difficult to get, unless already available in the literature.
- Plethora of different methods, impossible to discuss in one talk
- Probably the most promising technique are differential equations [Kotikov, 1991a, 1991b, 1991c; Bern et al., 1994; Remiddi, 1997; Gehrmann \& Remiddi, 2000; Henn, 2013]

Summary and Outlook

Summary

- Loop calculations is a vibrant field with new ideas being developed on a monthly basis
- Useful for heavy quarkonia, where often at least 1-loop accuracy is needed to match the experimental precision
- As far as 1-loop virtual corrections are concerned, all necessary tools for analytic results are publicly available
- It only takes dedication and willingness to learn how to use those programs

