

#### SPS contribution to double $J/\psi$ hadroproduction

Zhi-Guo He

II. Institut für Theoretische Physik, Universität Hamburg

Quarkonia as Tools 12.01.2023, Aussois,France





2 Theoretical aspect of double  $J/\psi$  hadroproduction

3 SPS contribution vs. experimental measurements

#### 4 Summary and Outlook

## Factorization of heavy quarkonium production

• The general factorization formula:

$$\sigma_{(A+B\to quarkonium+X)} = \sum_{n} \int \sigma_{A+B\to (Q\bar{Q})_n+X} \times f[(Q\bar{Q})_n \to quarkonium]$$

• The models in market include color-singlet model (CSM), color evaporation model (CEM), and nonrelativistic QCD (NRQCD) factorization.

#### The challenges to NRQCD:

- The long-standing  $J/\psi$  polarization puzzle.
- 3 The universality of the NRQCD LDMEs for  $J/\psi$  production up to QCD NLO.
- The success of CSM to account for  $J/\psi$  production in  $e^+e^-$  annihilation, and  $\eta_c$  meson hadroproduction at LHC.

UHH

What can quarkonium pair hadroproduction tell us?

UHI #

- Kinematically, it can be viewed as a gluon-gluon fusion type "Drell-Yan" process.
- To test the NRQCD factorization or other models, and to provide crucial constraint on the corresponding non-perturbative parameters. (Barger et al. 1996)
- Help to improve the NRQCD factorization formula for double P-wave production. (He et al. 2018)
- To study the transverse momentum dependent parton distribution function. (Lansberg et al. 2018)
- **③** To extract  $\sigma_{\text{eff}}$  for DPS process. (Kom, et al. 2011)

#### Other benefits

• To help to understand the new fully heavy tetraquark states  $(Q\bar{Q}Q\bar{Q})$ . (LHCb Collaboration 2020)

12.01.2023 4 / 25

UH

Table: The summary of experimental measurements of quarkonium pair hadroproduction.

| Collaboration | $\sqrt{s}$ | kinematic cut condition                                                         |
|---------------|------------|---------------------------------------------------------------------------------|
| LHCb          | 7 TeV      | ${\cal P}_T^{J/\psi} < 10 { m GeV}$                                             |
|               | 13 TeV     | $2.0 < y^{J/\psi} < 4.5$                                                        |
| D0            | 1.96 TeV   | $p_{\mathcal{T}}^{J/\psi}$ $>$ 4.0GeV, $ \eta^{J/\psi} $ $<$ 2                  |
| CMS           | 7 TeV      | $p_T^{J/\psi} >$ 4.5GeV, $ y^{J/\psi}  <$ 2.2 $^1$                              |
| ATLAS         | 8 TeV      | $p_T^{J/\psi} > 8.5 	ext{GeV,0} <  y^{J/\psi}  < 1.05 \ 2.0 < y^{J/\psi} < 4.5$ |

#### Very rich observables

•  $\sigma$ ,  $\frac{d\sigma}{dp_T^{\psi}}$ ,  $\frac{d\sigma}{dy^{\psi}}$ ,  $\frac{d\sigma}{dp_T^{\psi\psi}}$ ,  $\frac{d\sigma}{dy^{\psi\psi}}$ ,  $\frac{d\sigma}{dm^{\psi\psi}}$ ,  $\frac{d\sigma}{d|\Delta y|}$ ,  $\frac{d\sigma}{d|\Delta \phi|}$ ,  $\frac{d\sigma}{dA_T}$ .

<sup>1</sup>The lower bound of  $p_T^{J/\psi}$  depends on  $y^{J/\psi}$ 

Zhi-Guo He

double  $J/\psi$  hadroproduction at LHC

12.01.2023 5 / 25

#### SPS contribution at LO

UHI L

• Representative Feynman diagrams at LO:



#### 4 different types of topological Feynman diagrams:

- a) Non-gluon fragmentation type I
- b) Non-gluon fragmentation type II
- c) One gluon fragmentation like
- d) Two gluons fragmentation like

According to the scaling  $d\sigma/dp_T^2 \propto 1/p_T^N$  and the topological properties of the Feynman diagrams, the partonic sub-processes can be divided into 4 categories:

- NNLP-I, with N = 8, including  $m = {}^{3}S_{1}^{[1]}$  and  $n = {}^{3}S_{1}^{[1,8]}, {}^{1}S_{0}^{[8]}, {}^{3}P_{J}^{[1,8]}$ ;
- ② NNLP-II, with N = 8, too, including  $m, n = {}^{1}S_{0}^{[8]}, {}^{3}P_{J}^{[1,8]}$ ;
- **③** NLP, with N = 6, including  $m = {}^{3}S_{1}^{[8]}$  and  $n = {}^{1}S_{0}^{[8]}, {}^{3}P_{J}^{[1,8]}$ ; and
- LP, with N = 4, including  $m = n = {}^{3}S_{1}^{[8]}$ .

#### Note

While the NNLP-I and NNPL-II subprocesses exhibit the same  $p_T$  scaling, the topology of Feynman diagrams are different. In the latter case, there are the diffraction-like ones as in Fig. (b), which can largely enhance the differential cross section in large  $|\Delta y|$  and large  $m_{J/\psi J/\psi}$  regions.

ヘロト 人間ト 人間ト 人間ト

The power counting for each channel at large  $p_T$  II

• Together with the scaling of LDMEs, the relative contributions each channel at QCD LO are:

| ( <i>m</i> , <i>n</i> ) | ${}^{3}S_{1}^{[1]}$ | ${}^{3}S_{1}^{[8]}$ | ${}^{1}S_{0}^{[8]}$ | ${}^{3}P_{J}^{[8]}$ | ${}^{3}P_{J}^{[1]}$ |
|-------------------------|---------------------|---------------------|---------------------|---------------------|---------------------|
| ${}^{3}S_{1}^{[1]}$     | $1/p_{T}^{8}$       | $v^{4}/p_{T}^{8}$   | $v^{3}/p_{T}^{8}$   | $v^{4}/p_{T}^{8}$   | 0                   |
| ${}^{3}S_{1}^{[8]}$     | _                   | $v^{8}/p_{T}^{4}$   | $v^{7}/p_{T}^{6}$   | $v^{8}/p_{T}^{6}$   | $v^{8}/p_{T}^{6}$   |
| ${}^{1}S_{0}^{[8]}$     | _                   |                     | $v^{6}/p_{T}^{8}$   | $v^{7}/p_{T}^{8}$   | $v^{7}/p_{T}^{8}$   |
| ${}^{3}P_{J}^{[8]}$     | _                   |                     | —                   | $v^{8}/p_{T}^{8}$   | $v^{8}/p_{T}^{8}$   |
| ${}^{3}P_{J}^{[1]}$     |                     | _                   |                     |                     | $v^{8}/p_{T}^{8}$   |

#### Note

The much more complicate power counting makes the theoretical predictions become more sensitive to the choice of LDMEs in NRQCD and can potentially result in large theoretical uncertainties.

double  $J/\psi$  hadroproduction at LHC

- The CS channel mainly contributes to total and differential cross sections at low  $p_T$ , small invariant mass, and small  $|\Delta Y|$  regions.
- The CO contribution are predominant in large |ΔY| and invariant mass regions due to the existence of diffraction-like gluon exchange.
- From the identical-boson symmetry and  $J/\psi + \chi_{cJ}$  suppression, the relative importance of the  $\chi_{cJ}$  ( $\psi(2S)$ ) feed-down contribution is reduced (enhanced) compared to single  $J/\psi$  hadroproduction case.
- Near the threshold region,  $\sigma \propto m_c^{-8}$ , so the theoretical predictions are very sensitive to the choice of  $m_c$  value.
- So For some observables, for example  $p_T^{\psi\psi}$  or  $|\Delta\phi|$  distribution, QCD higher order contribution is necessary.



- The relativistic corrections to double  $J/\psi$  hadroproduction was found to be ignorable for total cross section and become non-ignorable in large  $p_T$  region. (Li et al. 2013)
- The K-factors of the NLO QCD corrections to CS  ${}^{3}S_{1}^{[1]} + {}^{3}S_{1}^{[1]}$  channel were about 1.2 in 7 TeV LHCb case and were about 12 in 8 TeV CMS case. (Sun et al. 2016)
- The complete NLO QCD corrections are much more complicated, in particular, there are un-canceled infrared divergence in double P-wave channel, which will violate the conventional NRQCD factorization. (He et al. 2018)
- The partial α<sup>6</sup><sub>s</sub> contribution from loop-induced subset of Feynman diagrams will overtake the NLO results in large |Δy| and large invariant mass regions due to t-channel gluon exchange effect. (Lansberg et al. 2019)

12.01.2023 10 / 25

UHH KAR

- Alternatively,  $k_T$  dependent PDF can effectively take into account initial state radiation effect at QCD NLO order.
- The approaches include  $k_T$  factorization, parton reggeization approach (PRA) or high energy factorization, and NLO<sup>\*</sup> approach.
- In such LO calculation, with a proper PDF set, the CS channel can fairly well describe the distributions of  $p_T$  in whole range, moderate invariant mass and small  $|\Delta y|$  regions.
- The CO contribution although can be more than one order of magnitude higher in large invariant mass or large |Δy| region, SPS predictions still lie far below the experimental data.

#### New power counting in large $|\Delta y|$ region

- In collinear parton model, at LO,  $m_{\psi\psi}$  and  $|\Delta y|$  are related through  $m_{\psi\psi} = 2\sqrt{4m_c^2 + (p_T^{\psi})^2} \cosh(|\Delta y|/2).$
- When initial parton carries k<sub>T</sub>, the differential cross sections in large m<sub>ψψ</sub> and |Δy| regions are still strongly correlated.
- In such regions, the channels including t-channel gluon exchange type Feynman diagrams contribute predominantly.
- Moreover, large logarithmic of type  $(\alpha_s \ln |s/t|)^n$  will arise in the higher order QCD corrections, which can be resummed by BFKL resummation formalism.

#### 3 categories of channels according to t-channel gluon exchange:

- LT, including  $m = {}^{1}S_{0}^{[8]}, {}^{3}S_{1}^{[8]}, {}^{3}P_{J}^{[1,8]}$  and  $n = {}^{1}S_{0}^{[8]}, {}^{3}S_{1}^{[8]}, {}^{3}P_{J}^{[1,8]}$ .
- **2** NLT, including  $m = {}^{3} S_{1}^{[1]}$  and  $n = {}^{1} S_{0}^{[8]}, {}^{3} S_{1}^{[8]}, {}^{3} P_{J}^{[1,8]}$ .
- NNLT, including  $m = {}^{3} S_{1}^{[1]}$  and  $n = {}^{3} S_{1}^{[1]}$ .

UHH

## BFKL resummation in high energy factorization

• Represent Feynman diagrams for LT (b), NLT (c) and NNLT (d) channels:



• Schematic representation of the BFKL resummation:



Zhi-Guo He

double  $J/\psi$  hadroproduction at LHC

UΗ

## SPS contribution confront D0 @1.96 TeV

• The fiducial cross sections reported by D0 Collaborations:

 $\sigma^{\rm SPS}_{\rm D0, fid} = (70 \pm 6 \pm 22) \ {\rm fb}, \sigma^{\rm DPS}_{\rm D0, fid} = (59 \pm 6 \pm 22) \ {\rm fb},$ 

• The CSM (Qiao and Sun 2013) and NRQCD (He et al. 2021) predictions at QCD LO:

$$\sigma_{\rm D0, fid}^{\rm SPS, CSM} = 51.9~{\rm fb}, \sigma_{\rm D0, fid}^{\rm SPS, NRQCD} = 86.1^{+59.7}_{-34.0}~{\rm fb}$$

• The  $k_{\rm T}$  factorization (Baranov 2013) and  $\rm NLO^*$  calculations (Lansberg and Shao 2013):

$$\sigma_{\rm D0, fid}^{\rm SPS, k_T} = 55.1^{+28.5}_{-15.6} \,\, {}^{+31,0}_{-17.0} \,\, {\rm fb}, \\ \sigma_{\rm D0, fid}^{\rm SPS, \rm NLO^*} = 90^{+180}_{-50} \,\, {\rm fb},$$

The conclusion of depended on the SPS input. When complete NRQCD calculation is taken into account, it might be changed.

Zhi-Guo He

double  $J/\psi$  hadroproduction at LHC

UHH

# SPS contribution confront D0 @1.96 TeV $J/\psi+\Upsilon$

• The fiducial cross section reported by D0 Collaborations:

$$\sigma_{\mathrm{D0,fid}}^{\mathrm{SPS}} = 0 \, \mathrm{fb}, \sigma_{\mathrm{D0,fid}}^{\mathrm{DPS}} = (27 \pm 9 \pm 7) \, \mathrm{fb},$$

• LO NRQCD+  $\alpha_s^6$  CSM+ QED (Shao and Zhang 2016):

$$\sigma_{\rm D0, fid}^{\rm SPS} = 2.96^{+4.00}_{-1.66}$$
 fb

• The  $|\Delta \phi|$  distribution:



UΗ



• Total cross section (nb), NLO CSM (Sun et al. 2016) and LO NRQCD (He, Kniehl 2015) predictions:

| LHCb              | LO CSM          | NLO CSM                | LO NRQCD             |
|-------------------|-----------------|------------------------|----------------------|
| $5.1\pm1.0\pm1.1$ | $4.56 \pm 1.13$ | $5.41^{+2.73}_{-1.14}$ | $13.2^{+5.2}_{-4.1}$ |

• Invariant mass spectrum, NLO CSM, LO NRQCD, and  ${\rm k}_{\rm T}({\sf Baranov}, {\sf Rezaeian 2016})$  predictions:



The SPS contribution from LO CS can well describe LHCb data except for near threshold region.

Zhi-Guo He

double  $J/\psi$  hadroproduction at LHC

## SPS contribution confront LHCb @ 13 TeV I

 Various differential cross sections, NLO\*+ loop-induced CS predictions (Lansberg et al. 2019):



CS predictions with large theoretical uncertainties can cover LHCb data except for the upper  $|\Delta y|$  bins.

< □ > < □ > < □ > < □ > < □ > < □ >

• Various differential cross sections, LO CO+ NLO\*CS predictions (Lansberg et al. 2019):



CO contribution remedies the discrepancy.

< □ > < 凸

- 4 ∃ ▶

# SPS contribution confront CMS @ 8 TeV I

- UHI L
- Total cross section (nb), NLO CSM (Sun eta al. 2016), LO NRQCD (He, Kniehl 2015) and PRA (He et al. 2019) predictions:

| CMS           | LO CSM        | NLO CSM       | LO NRQCD                      | PRA                    |
|---------------|---------------|---------------|-------------------------------|------------------------|
| $1.49\pm0.07$ | $0.08\pm0.02$ | $0.93\pm0.25$ | $0.15\substack{+0.08\\-0.05}$ | $1.68^{+1.32}_{-0.78}$ |

•  $J/\psi$  pair  $p_T$  distribution,  $k_T$  factorization (Baranov and Rezaeian 2016) and PRA predictions:



SPS contribution can describe CMS measurements with a proper scheme to generate  $k_T$  dependent PDFs in non-zero  $k_T$  approaches.

Zhi-Guo He

double  $J/\psi$  hadroproduction at LHC

12.01.2023 19 / 25

## SPS contribution confront CMS @ 8 TeV II

•  $|\Delta y|$  and  $m_{\psi\psi}$  distributions, NLO CSM, LO NRQCD,  $k_{\rm T}$  and PRA predictions:



In the last bins, LT channel contribution is predominate and BKFL resummation can enhance fixed order results by a factor of 2.

Zhi-Guo He

double  $J/\psi$  hadroproduction at LHC

12.01.2023 20 / 25

UΗ

## SPS contribution confront CMS @ 8 TeV III

• NLO\*+ loop-induced CS and LO CO+NLO\* CS predictions (Lansberg et al. 2019):



SPS contribution lies far below CMS data in the last  $|\Delta y|$  and  $m^{\psi\psi}$  bins.

Zhi-Guo He

double  $J/\psi$  hadroproduction at LHC

#### SPS contribution confront ATLAS @ 8 TeV I



• Total cross section, PRA (He et al. 2019) predictions:

$$\begin{aligned} \sigma(pp \to J/\psi J/\psi + X) &= \begin{cases} 82.2 \pm 8.3 \text{ (stat)} \pm 6.3 \text{ (syst)} \pm 0.9 \text{ (BF)} \pm 1.6 \text{ (lumi) pb, for } |y| < 1.05, \\ 78.3 \pm 9.2 \text{ (stat)} \pm 6.6 \text{ (syst)} \pm 0.9 \text{ (BF)} \pm 1.5 \text{ (lumi) pb, for } 1.05 \le |y| < 2.1. \end{cases} \\ \sigma_{\text{ATLAS}}^{\text{PRA}} &= \begin{cases} 133.6^{+89.6}_{-52.2} \text{ pb, for} |y(J/\psi_2)| < 1.05 \\ 105.2^{+73.8}_{-41.6} \text{ pb, for} 1.05 < |y(J/\psi_2)| < 2.1 \end{cases} \end{aligned}$$

•  $p_T^{\psi}$  distribution, PRA predictions:



SPS can account for the total cross section and single  $J/\psi p_T$  distribution.

Zhi-Guo He

double  $J/\psi$  hadroproduction at LHC

## SPS contribution confront ATLAS @ 8 TeV II



•  $p_T^{\psi\psi}$  and  $m^{\psi\psi}$  distributions, PRA predictions:



For invariant mass spectrum, SPS preditions are much smaller than ATLAS measurement in the last few bins.

Zhi-Guo He

double  $J/\psi$  hadroproduction at LHC

12.01.2023 23 / 25

#### SPS contribution confront ATLAS @ 8 TeV III

• Differential cross sections in fiducial:  $CS NLO^* + LI$ ,  $NLO^*CS + CO$  (Lansberg al et. 2019)



SPS contribution itself agree well with ATLAS measurements in fiducial with proper LDMEs set(7) in NRQCD.

< □ > < □ > < □ > < □ > < □ > < □ >

UHH

#### Summary and Outlook



- Quarkonium pair hadroproduction offers rich observables to understand the production mechanism of heavy quarkonium as well as the property of patron distribution inside proton.
- For SPS contribution, the role of each channel in different kinematic region may be different due to different power counting rules.
- More careful theoretical investigations are needed in both near and far away from threshold regions.
- To compare theoretical predictions with experimental measurements, more detailed and precise data analysis would be welcomed.
- So A deep understanding of SPS contribution also helps to extract the value of  $\sigma_{\rm eff}$  in DPS process.

# Thank you!

12.01.2023 25 / 25