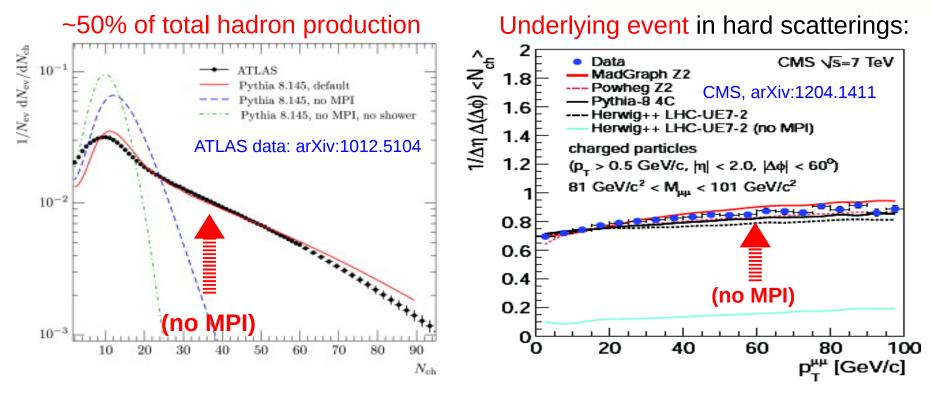


Double & triple quarkonia from N-parton scatterings in p-p, p-A, A-A

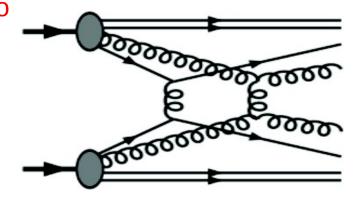

Quarkonia As Tools Aussois, Savoie, 12th Jan. 2023 David d'Enterria

(*) Details in DPS/TPS/NPS in pp, pA, AA review: D.d'E & A.Snigirev: arXiv:1708.07519 [Adv.Ser.Direct.High.En.Phys. 29 (2018) 159]

Multi-parton interactions at the LHC

MPI are intrinsic component of hadron collisions (p,Pb) = non-pointlike objects with finite transverse size and increasingly – larger gluon density with √s.

MPI O(1–3 GeV) clearly observed at hadron colliders:



■ Double <u>hard</u> parton scatts. (p_T,m_x>3 GeV) happen also & been observed

Double Parton Scattering x-sections (p-p)

Assuming that the probability to produce two hard collisions is independent, one can simply write double parton scatterings (DPS) cross section as the product of two single-parton scatterings (SPS) ones:

$$\sigma_{(hh' \to ab)}^{\text{DPS}} = \left(\frac{m}{2}\right) \frac{\sigma_{(hh' \to a)}^{\text{SPS}} \cdot \sigma_{(hh' \to b)}^{\text{SPS}}}{\sigma_{\text{eff}}}$$

normalized by an effective x-section (σ_{eff}), with a trivial combinatorial factor (m) to avoid double-counting in case of same particles produced.

- How to interpret σ_{eff} ? What values one would naively expect for it?
- Let's start with the most generic expression for DPS cross section:

$$\sigma_{(hh' \to ab)}^{\text{DPS}} = \left(\frac{m}{2}\right) \sum_{i,j,k,l} \int \Gamma_{h}^{ij}(x_{1}, x_{2}; \mathbf{b_{1}}, \mathbf{b_{2}}; Q_{1}^{2}, Q_{2}^{2}) \times \hat{\sigma}_{a}^{ik}(x_{1}, x_{1}', Q_{1}^{2}) \hat{\sigma}_{b}^{jl}(x_{2}, x_{2}', Q_{2}^{2}) \times \Gamma_{h'}^{kl}(x_{1}', x_{2}'; \mathbf{b_{1}} - \mathbf{b}, \mathbf{b_{2}} - \mathbf{b}; Q_{1}^{2}, Q_{2}^{2}) dx_{1} dx_{2} dx_{1}' dx_{2}' d^{2} b_{1} d^{2} b_{2} d^{2} b$$

Generalized PDFs = f(x, Q², **b**)

Double Parton Scattering x-sections (p-p)

Assumption 1: Generalized PDFs factorize into longitudinal & transverse components: transv. density = $f(\mathbf{b})$

$$\Gamma_{h}^{ij}(x_{1}, x_{2}; \mathbf{b_{1}}, \mathbf{b_{2}}; Q_{1}^{2}, Q_{2}^{2}) = D_{h}^{ij}(x_{1}, x_{2}; Q_{1}^{2}, Q_{2}^{2}) f(\mathbf{b_{1}}) f(\mathbf{b_{2}})$$

p-p transv. overlap function (mb⁻¹): $t(\mathbf{b}) = \int f(\mathbf{b}_1) f(\mathbf{b}_1 - \mathbf{b}) d^2 b_1$

<u>Assumption 2</u>: The longitudinal double-PDF is the product of 2 single PDF (i.e. no parton correlations in colour, momentum, flavour, spin,...)

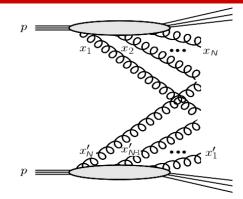
$$D_h^{ij}(x_1, x_2; Q_1^2, Q_2^2) = D_h^i(x_1; Q_1^2) D_h^j(x_2; Q_2^2)$$

 $\sigma_{\text{off}} = <$ Interparton transv. separation>². Derivable from <u>geometric p-p overlap</u>

$$\sigma_{\rm eff} = \left[\int d^2 b t^2(\mathbf{b})\right]^{-1}$$

But experimentally: $\sigma_{\rm eff}(\exp) \approx 15 \, {\rm mb.}$ proton "hard" radius: r = 0.3-0.7 fm appears smaller than e.m. one:

with naive expected size of $\sigma_{_{\text{eff}}}\!\approx$ 30 mb


Model	Form of density,	Predictions		Measurements	
for density	dN/d^3r	rms r	$\sigma_{\rm eff}$	Scale (fm)	
Solid sphere	Constant, $r < r_p$	$\sqrt{3/5}r_p$	$4\pi r_p^2/4.6$	$r_{p} = 0.73$	
Gaussian	$e^{-r^2/2\Sigma^2}$	√ 3Σ	$4\pi\Sigma^2$	$\Sigma = 0.34$	
Exponential	$e^{-r/\lambda}$	$\sqrt{12}\lambda$	35.5λ ²	$\lambda = 0.20$	
Fermi, $\lambda/r_0 = 0.2$	$(e^{(r-r_0)/\lambda}+1)^{-1}$	1.07r ₀	$4.6r_0^2$	$r_0 = 0.56$	

Understandable: Probability of 2nd scatt. is larger if 1st scatter already took place ("centrality bias"). David d'Enterria (CERN)

N-parton scattering x-sections (p-p)

Assuming that the probabilities for N hard collisions to be independent of each other, one can write a generic pocket-formula for NPS x-section:

$$\sigma_{hh' \to a_1 \dots a_n}^{\text{NPS}} = \left(\frac{m}{n!}\right) \frac{\sigma_{hh' \to a_1}^{\text{SPS}} \cdots \sigma_{hh' \to a_n}^{\text{SPS}}}{\sigma_{\text{eff,NPS}}^{n-1}}$$

normalized by the Nth–1 power of an effective x-section ($\sigma_{eff,NPS}$) plus a trivial combinatorial factor (m/n!) to avoid double,triple,N-counting in case of same particles produced:

• DPS:
$$m = 1$$
 if $a_1 = a_2$; and $m = 2$ if $a_1 \neq a_2$.

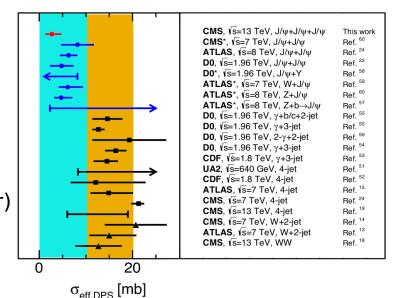
• TPS: m = 1 if $a_1 = a_2 = a_3$; m = 3 if $a_1 = a_2$, or $a_1 = a_3$, or $a_2 = a_3$; and m = 6 if $a_1 \neq a_2 \neq a_3$.

Ignoring all parton correlations, σ_{eff,NPS} is the inverse Nth–1 power of the integral of the Nth power of the pp overlap function:

$$\sigma_{\rm eff, \rm NPS} = \left\{\int d^2 b\, T^n(\mathbf{b})\right\}^{-1/(n-1)}$$

A generic framework for the most economical (geometrical) expressions for N-parton scattering cross sections is available.

QaT2023+, Aussois, Jan'23


Double Parton Scatterings

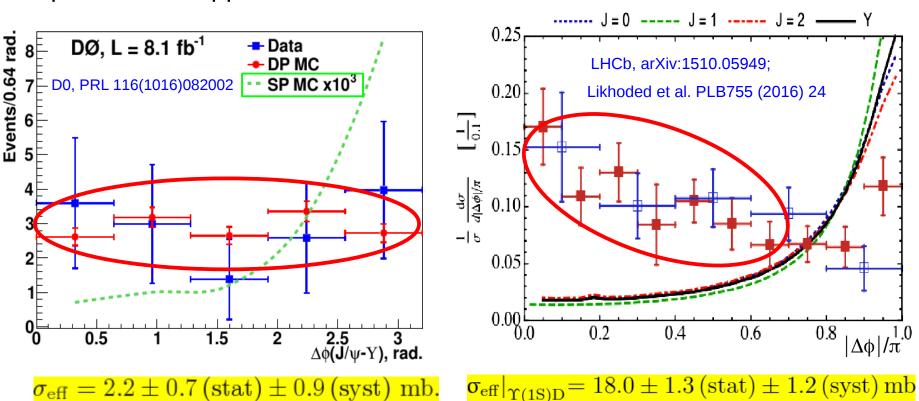
DPS studies at the LHC

- Motivation for studies of multiple production of hard/heavy particles:
 - (1) Generalized PDFs (x,Q²,b) of the proton, in particular the unknown energy evolution of transverse proton profile.
 - (2) Role of partonic correlations (in space, p, x, flavour, colour, spin,...) in hadronic wave functions.
 - (3) Backgrounds for rare (B)SM resonance decays w/ multiple heavy particles
- "Pocket formula" results at the LHC:

$$\sigma_{\rm DPS}^{\rm pp \to \psi_1 \psi_2 + X} = \left(\frac{m}{2}\right) \frac{\sigma_{\rm SPS}^{\rm pp \to \psi_1 + X} \sigma_{\rm SPS}^{\rm pp \to \psi_2 + X}}{\sigma_{\rm eff, DPS}}$$

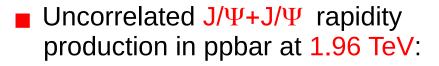
 $\sigma_{eff} \sim < \text{Interparton transv. separation}^2$ derivable from p-p transverse overlap: $\sigma_{eff} \sim 20-30$ mb (PYTHIA8/HERWIG p form-factor) $\sigma_{eff} \sim 15$ mb (from DPS of jets, EWK bosons) $\sigma_{eff} \sim 5$ mb (from di-quarkonia)

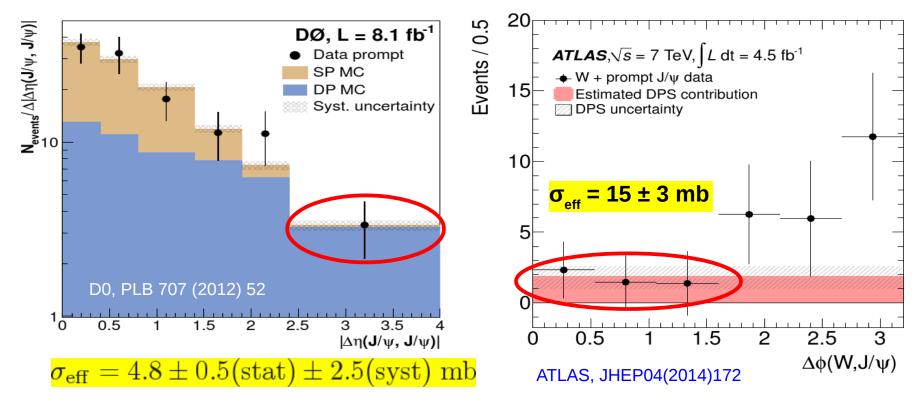
Reasons: Parton correlations? x-,flavour-dependent transverse p profile?


Novel observables: DPS with ions, Triple-parton scatterings (TPS) in particular with quarkonia final states: largest pQCD cross sections

DPS studies with $Q\overline{Q}$: p-p $\rightarrow J/\Psi+Y$, Y+D

Uncorrelated Y+D azimuthal

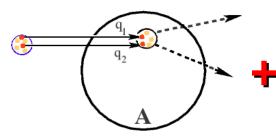

production in pp at 7 TeV:

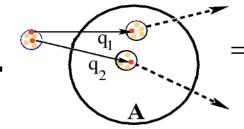


- Extracted σ_{eff} values differ by up to a factor of 8 for similar (g-induced) processes at 1.96 TeV & 7 TeV:
 - Energy-dependent parton transverse profile?
 - (Higher-order) SPS contributions under control?

DPS studies with $Q\overline{Q}$: p-p \rightarrow W⁺+J/ Ψ , J/ Ψ J/ Ψ

■ Uncorrelated W+J/Ψ azimuthal production in pp at 7 TeV:


- **Extracted** σ_{eff} values differ at 1.96 TeV & 7 TeV:
 - (Higher-order) SPS contributions under control?
 - Energy-dependent parton transverse profile? (Quark vs. gluon?)


Double Parton Scattering x-sections in p-A

Two contributions to DPS x-section in p-A:

 $\sigma_{(pA \to ab)}^{\text{DPS},1} = A \cdot \sigma_{(pN \to ab)}^{\text{DPS}} \quad \clubsuit \quad \sigma_{(pA \to ab)}^{\text{DPS},2} = \sigma_{(pN \to ab)}^{\text{DPS}} \cdot \sigma_{\text{eff,pp}} \cdot F_{pA}$

[DdE, Snigirev, PLB 718 (2013)1395] [Also Treleani, Strikman, Blok...]

 $\Rightarrow \sigma_{(pA)}^{\text{DPS}} = \sigma_{(pA)}^{\text{DPS},1} + \sigma_{(pA)}^{\text{DPS},2}$

p-A overlap function:

 $F_{pA} = \int d^2 r T_{pA}^2(\mathbf{r}) = 30.4 \text{ mb}^{-1}$ Pb Woods-Saxon density (r=6.62 fm a=0.546 fm) (r=6.62 fm, a=0.546 fm)

Relative weight of DPS terms: $\sigma^{DPS,1}$: $\sigma^{DPS,2} = 0.7$: 0.3 (small A), 0.33: 0.66 (large A)

"Pocket" formula for DPS p-A x-section:

► Ratio of DPS p-Pb/p-p x-sections: $\sigma_{\rm eff, DPS}/\sigma_{\rm eff, DPS, pA} \approx [A + A^{4/3}/\pi]$

DPS x-sections are large in p-A: a factor $\times 600$ (not $\times 208$) for p-Pb (!) Pb transverse density (F_{pA}) well known: Alternative extraction of $\sigma_{eff,pp}$ QaT2023+, Aussois, Jan'23 David d'Enterria (CERN)

Examples: DPS x-sections in p-Pb (8.8 TeV)

[DdE, Snigirev, NPA 931 (2014) 303]

Cross sections & rates for DPS processes with J/ψ,Y & W, Z bosons [Also V. Goncalves (2018): double-J/ψ; Paukunen (2019): double-D,...]

pPb (8.8 TeV)	$J/\psi + J/\psi$	$J/\psi + \Upsilon$	$J/\psi + W$	$J/\psi + Z$
$\sigma^{ ext{SPS}}_{ ext{pN} ightarrow a}, \sigma^{ ext{SPS}}_{ ext{pN} ightarrow b}$	45 μb (×2)	45 $\mu\mathrm{b},2.6~\mu\mathrm{b}$	45 $\mu \mathrm{b},60~\mathrm{nb}$	45 $\mu \mathrm{b},35~\mathrm{nb}$
$\sigma^{ ext{dPS}}_{ ext{pPb}}$	$45~\mu{ m b}$	$5.2~\mu{ m b}$	120 nb	$70 \mathrm{nb}$
$N_{pPb}^{DPS} (1 \text{ pb}^{-1})$	~65	~ 60	~ 15	~3
	$\Upsilon+\Upsilon$	$\Upsilon + W$	$\Upsilon + Z$	m ssWW
$\sigma^{ ext{SPS}}_{ ext{pN} ightarrow a}, \sigma^{ ext{SPS}}_{ ext{pN} ightarrow b}$	2.6 μb (×2)	$2.6~\mu\mathrm{b},60~\mathrm{nb}$	$2.6~\mu\mathrm{b},35~\mathrm{nb}$	$60 \text{ nb} (\times 2)$
$\sigma^{ ext{DPS}}_{ ext{pPb}}$	$150 \mathrm{~nb}$	$7 \mathrm{nb}$	4 nb	$150 \mathrm{~pb}$
$N_{pPb}^{DPS} (1 \text{ pb}^{-1})$	~ 15	~8	~ 1.5	~ 4

Leptonic final states: BR(J/ ψ ,Y,W,Z) = 6%, 2.5%, 11%, 3.4% Accept.*Effic.= 1% (J/ ψ , |y|=0,2), 20% (Y, |y|<2.5), 50% (W,Z |y|<2.4)

- Many double hard scatterings processes with visible p-Pb x-sections at the LHC. (Note: J/ψ values are per unit-|y|).
- Useful independent extraction of $\sigma_{eff,pp}$!

QaT2023+, Aussois, Jan'23

First study of DPS in p-Pb (LHCb, 8.2 TeV)

[LHCb, PRL 125 (2020) 212001]

🔆 d'Enterria et al.

 $+D^0D^0$

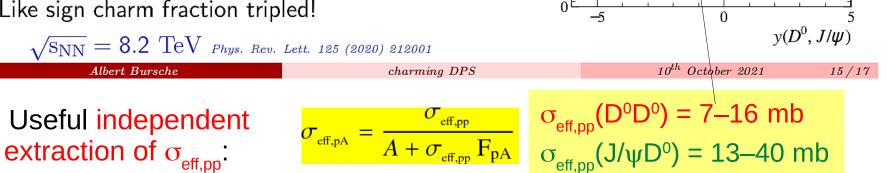
 $-\phi J/\psi D^0$

protons

lead ions

double charm production in proton lead collisions

- select pairs of D^0 , \overline{D}^0 , D^+ , D^- , D_5^+ , $D_5^$ and J/ψ


LHCb

 $\sqrt{s_{NN}} = 8.16 \text{ TeV}$

• sort them into pair production and "DPS" categories $\sigma_{C_1,C_2} = \alpha \frac{\sigma_{C_1} \sigma_{C_2}}{\sigma_{\text{eff}}}$

$$\begin{split} R^{D_1 D_2}_{\textit{forward}} &= \frac{\sigma_{D_1 D_2}}{\sigma_{D_1 \bar{D}_2}} = 0.308 \pm 0.015 \pm 0.010 \\ R^{D_1 D_2}_{\textit{backward}} &= 0.391 \pm 0.019 \pm 0.025 \\ R^{D^0 D^0}_{\textit{pp}} &= 0.109 \pm 0.008 \end{split}$$

Like sign charm fraction tripled!

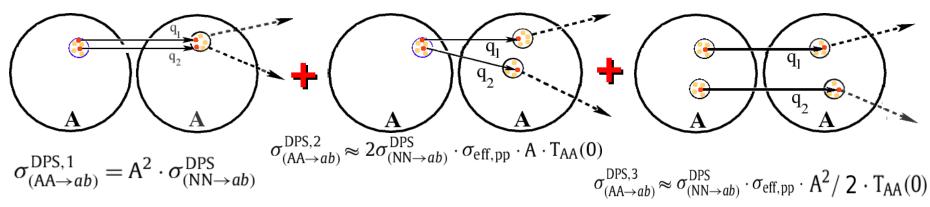
1.2

0.8 0.6

0.4

0.2

nPDF effects visible in -y/+y results.


QaT2023+, Aussois, Jan'23

(why LHCb does not quote the equivalent $\sigma_{_{eff,pp}}$ values?) David d'Enterria (CERN)

Double Parton Scattering x-sections in A-A

[DdE, Snigirev, PLB727 (2013)157]

Three contributions to DPS x-section in A-A:

Third "N_{coll} term" ∝ A²·T_{AA}(0), clearly dominant (1:4:200 ratio for PbPb) "Genuine" DPS (within same nucleon): ~2.5% (in Pb-Pb) or ~13% (Ar-Ar)
 "Pocket formula" for DPS A-A x-section:

$$\sigma_{(AA \to ab)}^{\text{DPS}} = \left(\frac{m}{2}\right) \frac{\sigma_{(NN \to a)}^{\text{SPS}} \cdot \sigma_{(NN \to b)}^{\text{SPS}}}{\sigma_{\text{eff},AA}} \qquad \sigma_{\text{eff},AA} = \frac{1}{A^2 [\sigma_{\text{eff},pp}^{-1} + \frac{2}{A} T_{AA}(0) + \frac{1}{2} T_{AA}(0)]} = 1.5 \text{ nb}$$

► Ratio of DPS Pb-Pb/p-p x-sections: $\sigma_{eff,pp}/\sigma_{eff,AA} \propto A^{3.3}/5 \simeq 9 \cdot 10^6$! Strong centrality dependence:

$$\sigma_{(AA \to ab)}^{DPS}[b_1, b_2] \approx \left(\frac{m}{2}\right) \sigma_{(NN \to a)}^{SPS} \cdot \sigma_{(NN \to b)}^{SPS} \cdot f_{\%} \sigma_{AA} \cdot \left\langle T_{AA}[b_1, b_2] \right\rangle^2$$

QaT2023+, Aussois, Jan'23

David d'Enterria (CERN)

Examples: DPS x-sections in Pb-Pb (5.5 TeV)

[DdE, Snigirev, NPA 931 (2014)303]

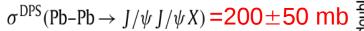
Cross sections & rates for DPS processes with J/ψ , Y & W, Z bosons:

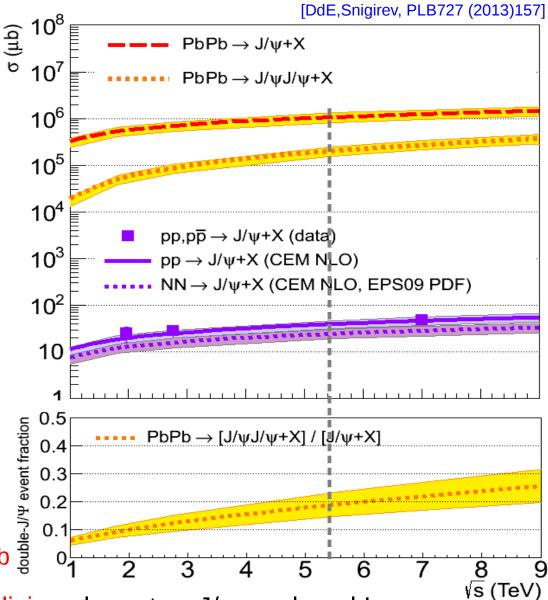
PbPb (5.5 TeV)	$J/\psi + J/\psi$	$J/\psi + \Upsilon$	$J/\psi + W$	$J/\psi + Z$
$\sigma^{ ext{SPS}}_{ ext{NN} ightarrow a}, \sigma^{ ext{SPS}}_{ ext{NN} ightarrow b}$	25 $\mu \mathrm{b}~(\times 2)$	$25~\mu\mathrm{b},1.7~\mu\mathrm{b}$	25 $\mu \mathrm{b},30~\mathrm{nb}$	25 $\mu \mathrm{b},20~\mathrm{nb}$
$\sigma^{ ext{dPS}}_{ ext{PbPb}}$	$210 \mathrm{mb}$	$28 \mathrm{~mb}$	$500~\mu{ m b}$	$330~\mu{ m b}$
${ m N_{PbPb}^{ m DPS}}$ (1 nb ⁻¹)	~ 250	~ 340	~ 65	~14
	$\Upsilon+\Upsilon$	$\Upsilon + W$	$\Upsilon + Z$	$\mathrm{ss}\mathrm{WW}$
$\sigma^{ ext{SPS}}_{ ext{NN} ightarrow a},\sigma^{ ext{SPS}}_{ ext{NN} ightarrow b}$	1.7 μb (×2)	$1.7~\mu\mathrm{b},30~\mathrm{nb}$	$1.7~\mu\mathrm{b},20~\mathrm{nb}$	30 nb (×2)
$\sigma^{ ext{DPS}}_{ ext{PbPb}}$	960 μb	$34~\mu{ m b}$	$23~\mu{ m b}$	630 nb
1010				

Leptonic final states: BR(J/ ψ ,Y,W,Z) = 6%, 2.5%, 11%, 3.4% Accept.*effic.= 1% (J/ ψ , |y|=0,2), 20% (Y, |y|<2.5), 50% (W,Z |y|<2.4)

Visible rates for many double hard scatterings processes in Pb-Pb! (Note: J/ψ values are per unit-|y|).

Example: Pb-Pb $\rightarrow J/\psi J/\psi$ at 5.5 TeV


■ FONLL+CEM (R.Vogt): Single-parton J/ ψ



- NLO accuracy.
- Scales: $\mu_{\rm B} = \mu_{\rm B} = 1.5 \cdot m_{\rm c}$
- Good agreement with **Tevatron&LHC** data

- EPS09 Pb nPDF

20–35% shadowing x-section reduction ■ At 5.5 TeV: $\sigma^{DPS}(Pb-Pb \rightarrow J/\psi J/\psi X) = 200 \pm 50 \text{ mb}$

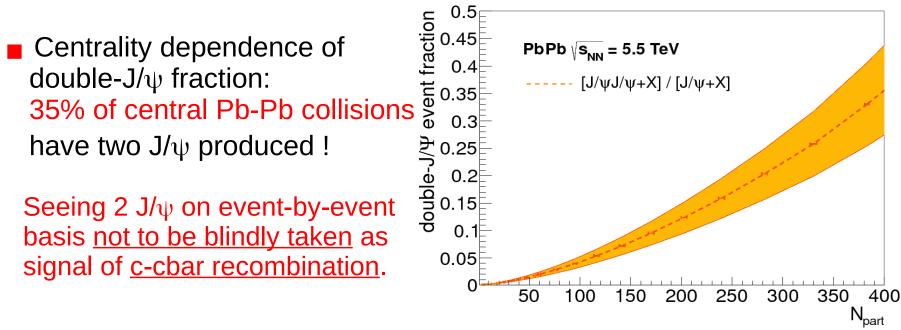
20% of min.bias Pb-Pb collisions have two J/ ψ produced !

QaT2023+, Aussois, Jan'23

David d'Enterria (CERN)

Example: Pb-Pb $\rightarrow J/\psi J/\psi$ at 5.5 TeV

[DdE, Snigirev, PLB727 (2013)157]


David d'Enterria (CERN)

Visible rates:

- Fiducial x-section per unit-y: $d\sigma_{J/\psi}/dy \approx \sigma_{J/\psi}/8$
- ► BR(J/ ψ → I⁺I⁻) ≈ 6%
- ► Typical ALICE/CMS acceptance & efficiencies: $\epsilon \approx 1/12$

Expected dimuon rates including yield all loses & 1 nb⁻¹ integ. luminosity:

 $\mathcal{N} = \sigma_{_{Pb-Pb} \rightarrow J/\psi J/\psi'}^{DPS} / (\varepsilon \cdot \mathcal{L}_{_{int}}) \approx 250 \text{ double-J/}\psi \text{ per year (per unit-|y|)}$ (x2 less including final-state suppression)

Triple Parton Scatterings

Triple parton scattering x-sections (p-p)

Assuming that the probabilities for 3 hard collisions to be independent of each other, one can again write a pocket-formula for TPS x-section:

$$\sigma_{hh' \to a_1 a_2 a_3}^{\text{TPS}} = \left(\frac{\textit{m}}{3!}\right) \, \frac{\sigma_{hh' \to a_1}^{\text{SPS}} \cdot \sigma_{hh' \to a_2}^{\text{SPS}} \cdot \sigma_{hh' \to a_3}^{\text{SPS}}}{\sigma_{\text{eff},\text{TPS}}^2}$$

normalized by the square of an eff. x-section ($\sigma^2_{eff,TPS}$) plus a trivial combinatorial factor (m/3!) to avoid triple-counting in case of same particles produced: m = 1 if $a_1 = a_2 = a_3$; m = 3 if $a_1 = a_2$, or $a_1 = a_3$, or $a_2 = a_3$; and m = 6 if $a_1 \neq a_2 \neq a_3$.

How to interpret σ_{eff,TPS}? Relationship with σ_{eff}? What values to expect?
 Most generic expression for TPS cross section:

$$\sigma_{hh' \to a_{1}a_{2}a_{3}}^{\text{TPS}} = \left(\frac{m}{3!}\right) \sum_{i,j,k,l,m,n} \int \Gamma_{h}^{ijk} x_{1}, x_{2}, x_{3}; \mathbf{b_{1}}, \mathbf{b_{2}}, \mathbf{b_{3}}; Q_{1}^{2}, Q_{2}^{2}, Q_{3}^{2}) \\ \times \hat{\sigma}_{a_{1}}^{il} (x_{1}, x_{1}', Q_{1}^{2}) \cdot \hat{\sigma}_{a_{2}}^{jm} (x_{2}, x_{2}', Q_{2}^{2}) \cdot \hat{\sigma}_{a_{3}}^{kn} (x_{3}, x_{3}', Q_{3}^{2}) \\ \times \Gamma_{h'}^{lmn} (x_{1}', x_{2}', x_{3}'; \mathbf{b_{1}} - \mathbf{b}, \mathbf{b_{2}} - \mathbf{b}, \mathbf{b_{3}} - \mathbf{b}; Q_{1}^{2}, Q_{2}^{2}, Q_{3}^{2}) \\ \times dx_{1} dx_{2} dx_{3} dx_{1}' dx_{2}' dx_{3}' d^{2} b_{1} d^{2} b_{2} d^{2} b_{3} d^{2} b.$$
Generalized PDEs = f(x, Q^{2}, \mathbf{b})

Triple parton scattering x-sections (p-p)

Assumption 1: Factorize generalized Triple-PDF into longitudinal & transverse components: $\Gamma_h^{ijk}(x_1, x_2, x_3; \mathbf{b_1}, \mathbf{b_2}, \mathbf{b_3}; Q_1^2, Q_2^2, Q_3^2)$

 $= D_h^{ijk} x_1, x_2, x_3; Q_1^2, Q_2^2, Q_3^2) f(\mathbf{b_1}) f(\mathbf{b_2}) f(\mathbf{b_3}),$

p-p transv. overlap function (mb⁻¹): $T(\mathbf{b}) = \int f(\mathbf{b_1}) f(\mathbf{b_1} - \mathbf{b}) d^2 b_1$, with $\int d^2 b T(\mathbf{b}) = 1$.

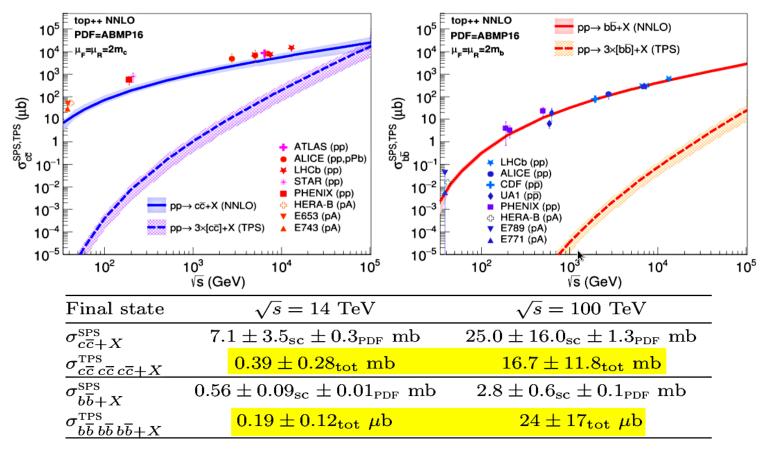
<u>Assumption 2</u>: Longitudinal triple-PDF is the product of 3 single PDFs (i.e. no parton correlations in colour, momentum, flavour, spin,...)

$$D_h^{ijk}(x_1, x_2, x_3; Q_1^2, Q_2^2, Q_3^2) = D_h^i(x_1; Q_1^2) D_h^j(x_2; Q_2^2) D_h^k(x_3; Q_3^2)$$

Then, $\sigma^2_{eff,TPS}$ is simply the inverse of the cube of the transv. pp overlap:

$$\sigma_{\rm eff, TPS}^2 = \left[\int d^2 b \, T^3(\mathbf{b})\right]^{-1}$$

By testing many proton overlaps/profiles (hard sphere, Gaussian, expo, dipole fit), we find a close relationship between $\sigma_{eff,TPS} \& \sigma_{eff}$:

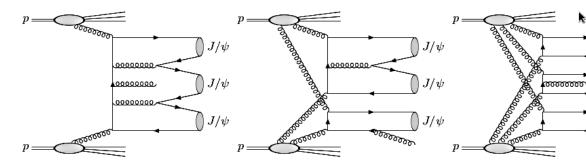

$$\sigma_{\rm eff,TPS} = k \times \sigma_{\rm eff,DPS}$$
, with $k = 0.82 \pm 0.11$

Measuring TPS provides independent info on σ_{eff} and p transv. profile.

QaT2023+, Aussois, Jan'23

Triple charm & beauty production (p-p)

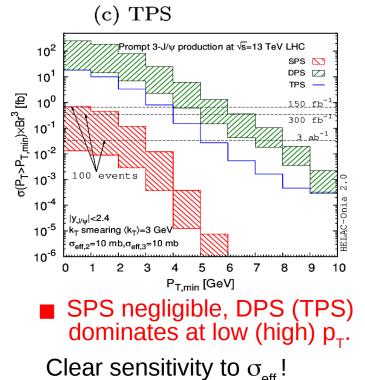
- TPS x-sections are small: σ (SPS)³/ σ (eff)² ≈ 1 fb for σ (SPS) ≈ 1 µb, but rise fast (cube of SPS) with c.m. energy.
- **Charm & beauty** have large enough σ (SPS) to attempt TPS observation:



Triple charm amounts to ~15% (50%) of inclusive charm x-sections at LHC (FCC). Contribution from triple-SPS, double-SPS processes?

QaT2023+, Aussois, Jan'23

Triple-J/ψ from SPS production (p-p)


H.-S. Shao et al. [arXiv:1902.04949, PRL 122(2019)192002] computed all triple-J/Ψ x-sections with SPS HELAC-ONIA plus TPS pocket formula:

(a) SPS

		inclusive	$2.0 < y_{J/\psi} < 4.5$	$ y_{J/\psi} < 2.4$
	SPS	$0.41^{+2.4}_{-0.34}\pm0.0083$	$(1.8^{+11}_{-1.5} \pm 0.18) \times 10^{-2}$	$(8.7^{+56}_{-7.5}\pm0.098)\times10^{-2}$
$13 { m TeV}$	DPS	$(190^{+501}_{-140}) \times \frac{10 \text{ mb}}{\sigma_{\text{eff}_{2}^{2}}}$	$(7.0^{+18}_{-5.1}) \times \frac{10 \text{ mb}}{\sigma_{\text{eff},2}}$	$(50^{+140}_{-37}) imes rac{10 \text{ mb}}{\sigma_{\mathrm{eff}_{2}2}}$
	TPS	$130 imes \left(rac{10 \text{ mb}}{\sigma_{\mathrm{eff},3}} ight)^2$	$1.3 imes \left(rac{10 \text{ mb}}{\sigma_{\mathrm{eff},3}} ight)^2$	$18 \times \left(\frac{10 \text{ mb}}{\sigma_{\text{eff},3}}\right)^2$
	SPS	$0.46^{+2.9}_{-0.39}\pm0.022$	$(3.2^{+22}_{-2.8} \pm 0.21) \times 10^{-2}$	$(5.8^{+39}_{-5.1} \pm 0.29) \times 10^{-2}$
27 TeV	DPS	$(560^{+2900}_{-480}) \times \frac{10 \text{ mb}}{\sigma_{\text{eff},2}}$	$(19^{+97}_{-16}) \times \frac{10 \text{ mb}}{\sigma_{\text{eff},2}}$	$(120^{+630}_{-100}) \times \frac{10 \text{ mb}}{\sigma_{\text{eff},2}}$
	TPS	$(\ldots)^2$	$5.0 \times \left(\frac{10 \text{ mb}}{\sigma_{\text{eff},3}}\right)^2$	$57 imes \left(rac{10 \text{ mb}}{\sigma_{\mathrm{eff},3}} ight)^2$
	\mathbf{SPS}	$0.59^{+4.4}_{-0.52}\pm0.016$	$(3.0^{+25}_{-2.7}\pm0.23)\times10^{-2}$	$(7.2^{+63}_{-6.5} \pm 0.38) \times 10^{-2}$
$75 { m TeV}$	DPS	$(1900^{+11000}_{-1600}) \times \frac{10 \text{ mb}}{\sigma_{\text{eff},2}}$	$(57^{+340}_{-50}) imes rac{10 \text{ mb}}{\sigma_{ m eff,2}}$	$(310^{+2000}_{-270}) \times \frac{10 \text{ mb}}{\sigma_{\text{eff},2}}$
	TPS	$3900 \times \left(\frac{10 \text{ mb}}{\sigma_{\text{eff},3}}\right)^2$	$27 \times \left(\frac{10 \text{ mb}}{\sigma_{\text{eff},3}}\right)^2$	$260 imes \left(rac{10 \text{ mb}}{\sigma_{\mathrm{eff},3}} ight)^2$
	SPS	$1.1^{+8.4}_{-1.0} \pm 0.044$	$(4.5^{+33}_{-4.0} \pm 0.72) \times 10^{-2}$	$(36^{+290}_{-32} \pm 1.8) \times 10^{-2}$
$100 { m TeV}$	DPS	$(3400^{+19000}_{-2900}) \times \frac{10 \text{ mb}}{\sigma_{\text{eff},2}}$	$(100^{+550}_{-86}) \times \frac{10 \text{ mb}}{\sigma_{\rm eff,2}}$	$(490^{+3000}_{-430}) \times \frac{10 \text{ mb}}{\sigma_{\text{eff},2}}$
	TPS	$6500 \times \left(\frac{10 \text{ mb}}{\sigma_{\text{eff},3}}\right)^2$	$45 \times \left(\frac{10 \text{ mb}}{\sigma_{\text{eff},3}}\right)^2$	$380 imes \left(rac{10 \text{ mb}}{\sigma_{\mathrm{eff},3}} ight)^2$

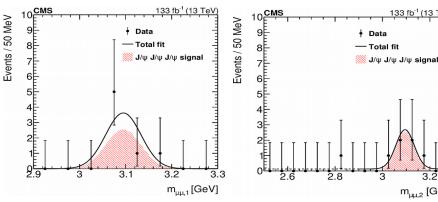
1000000

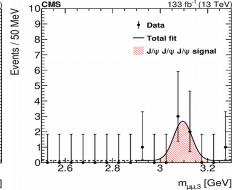
0000000

 J/ψ

 J/ψ

 J/ψ

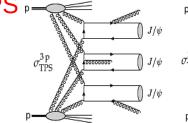

TPS in p-p collisions (13 TeV, CMS)

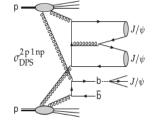

Triple parton scatterings x-sections in p-p: alternative extraction of $\sigma_{eff,DPS}$

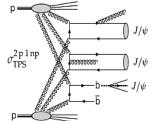
$$\sigma_{hh' \to a_1 a_2 a_3}^{\text{TPS}} = \left(\frac{m}{3!}\right) \frac{\sigma_{hh' \to a_1}^{\text{SPS}} \cdot \sigma_{hh' \to a_2}^{\text{SPS}} \cdot \sigma_{hh' \to a_3}^{\text{SPS}}}{\sigma_{\text{eff},\text{TPS}}^2}$$

$$\sigma_{\rm eff,TPS}$$
 = (0.82 ± 0.11) $\sigma_{\rm eff,DPS}$

First observation of triple-J/ψ production (CMS):

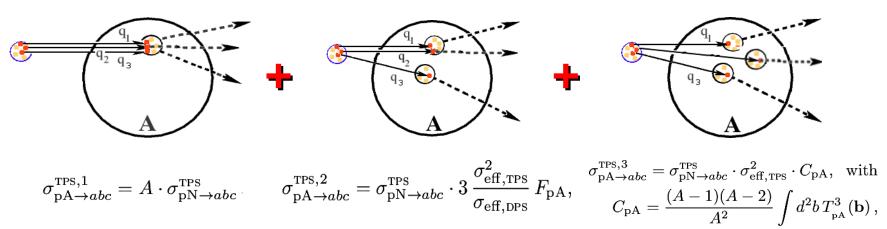



 $\sigma_{\rm DPS}^{1\,{\rm p}\,2\,{\rm np}}$


[arXiv:2111.05370 Nat. Phys. to appear]

[DdE, Snigirev, PRL 118(2017)122001]

- Measurement of fiducial cross section $\sigma(pp \rightarrow 3J/\psi) = 272^{+141}_{-104}$ (stat) ± 17 (syst) fb
 - Pocket formula with (N)NLO for single-,double-, triple-J/ψ SPS x-sections:
 - Triple-J/ψ fractions: ~6% SPS, ~74% DPS, ~20% TPS
 - $\sigma_{\text{eff,DPS}} = 2.7 + 1.4 + 1.4 + 1.5 + 1.5 + 1.0 + 1.5 + 1.0$
 - q/g x-dependent transverse profile & correlations



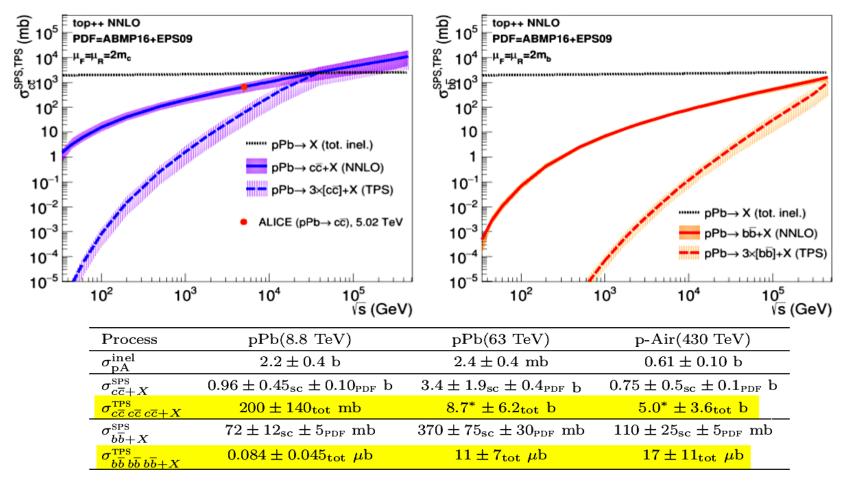
David d'Enterria (CERN)

Triple Parton Scattering x-sections in p-A

Three contributions to TPS x-section in p-A:

[DdE, Snigirev, EPJC 78 (2018)359]

Relative weight of TPS terms: $\sigma_{pA \rightarrow abc}^{TPS,1} : \sigma_{pA \rightarrow abc}^{TPS,2} : \sigma_{pA \rightarrow abc}^{TPS,3} = 1 : 4.54 : 3.56$ (TPS yields in pPb: 10% "genuine", 50% involve 2 nucleons, 40% involve 3 different Pb nucleons) "Pocket" formula for TPS p-A x-section:


$$\sigma_{\mathrm{pA}\to abc}^{\mathrm{TPS}} = \left(\frac{m}{6}\right) \frac{\sigma_{\mathrm{pN}\to a}^{\mathrm{SPS}} \cdot \sigma_{\mathrm{pN}\to b}^{\mathrm{SPS}} \cdot \sigma_{\mathrm{pN}\to c}^{\mathrm{SPS}}}{\sigma_{\mathrm{eff},\mathrm{TPS},\mathrm{pA}}^2} \qquad \sigma_{\mathrm{eff},\mathrm{TPS},\mathrm{pA}} = \left[\frac{A}{\sigma_{\mathrm{eff},\mathrm{TPS}}^2} + \frac{3 F_{\mathrm{pA}}[\mathrm{mb}^{-1}]}{\sigma_{\mathrm{eff},\mathrm{DPS}}} + C_{\mathrm{pA}}[\mathrm{mb}^{-2}]\right]^{-1/2}$$

• $\sigma_{\text{eff,TPS,pPb}} = 0.29 \pm 0.04 \text{ mb}$ (×45 times the p-p case with $\sigma_{\text{eff,TPS}} = 12.5 \text{ mb}$)

TPS x-sections are large in p-A: a factor \times 45 for p-Pb compared to p-p Pb transv. density (F_{pA} , C_{pA}) well-known: Alternative extraction of $\sigma_{eff,pp}$ David d'Enterria (CERN)

Example: Triple charm & beauty in p-Pb colls.

Charm & beauty have very large TPS x-sections at the LHC & above:

Triple charm amounts to ~20% (~100%!) of inclusive charm x-sections at LHC (FCC). Large triple J/Ψ production at FCC: σ(J/ψJ/ψJ/ψ+X) ≈ 1 mb
 Triple beauty amounts to ~3% of inclusive beauty x-sections at FCC.

QaT2023+, Aussois, Jan'23

David d'Enterria (CERN)

Summary: DPS studies

- What's the parton transverse density of a proton? Its energy evolution? How do partons correlate (kinemat., quantum numbers) transversely?
 - Double hard parton scatterings in p-p collisions:

$$\sigma^{\rm DPS}_{(hh'\to ab)} = \left(\frac{m}{2}\right) \frac{\sigma^{\rm SPS}_{(hh'\to a)} \cdot \sigma^{\rm SPS}_{(hh'\to b)}}{\sigma_{\rm eff}}$$

In absence of parton correlations:

$$\sigma_{\rm eff} = \left[\int d^2 b t^2(\mathbf{b})\right]^{-1}$$

geom. overlap area of 2 proton transv. profiles

• $\sigma_{eff}(exp) \approx 2-20$ mb at Tevatron/LHC. Can HI colls. help to clarify this?

Available DPS x-sections "pocket formula" for p-A and A-A:

$$\sigma_{\rm eff,pA} = \frac{\sigma_{\rm eff,pp}}{A + \sigma_{\rm eff,pp} \, \rm F_{pA}} = 21.5 \pm 1.1 \, \mu \rm b \qquad \sigma_{\rm eff,AA} = \frac{1}{A^2 [\sigma_{\rm eff,pp}^{-1} + \frac{2}{A} T_{\rm AA}(0) + \frac{1}{2} T_{\rm AA}(0)]} = 1.5 \, \rm nb$$

Huge enhancements! $\sigma_{\rm eff,DPS}/\sigma_{\rm eff,DPS,pA} \approx 600$, $\sigma_{\rm eff,pp}/\sigma_{\rm eff,AA} \propto A^{3.3}/5 \simeq 9 \cdot 10^6$

- **p-Pb: Large DPS yields in p-A (in particular with quarkonia) provide many** useful independent extractions of $\sigma_{eff,pp}$. 1st-ever measurement by LHCb.
- **Pb-Pb**: Large DPS but dominated by scatts. from different nucleons. (~16% sensitivity on $\sigma_{eff.pp}$ from DPS with lighter ions such as Ar-Ar).

QaT2023+, Aussois, Jan'23

Summary: TPS studies

What's the parton transverse density of a proton? Its energy evolution? How do partons correlate (kinemat., quantum numbers) transversely?

Derived a generic expression for NPS x-sections in p-p collisions:

And used it to derive pocket formula for triple parton scatterings in p-p...

Summary: TPS studies

What's the parton transverse density of a proton? Its energy evolution? How do partons correlate (kinemat., quantum numbers) transversely?

Triple hard parton scatterings in p-p collisions:

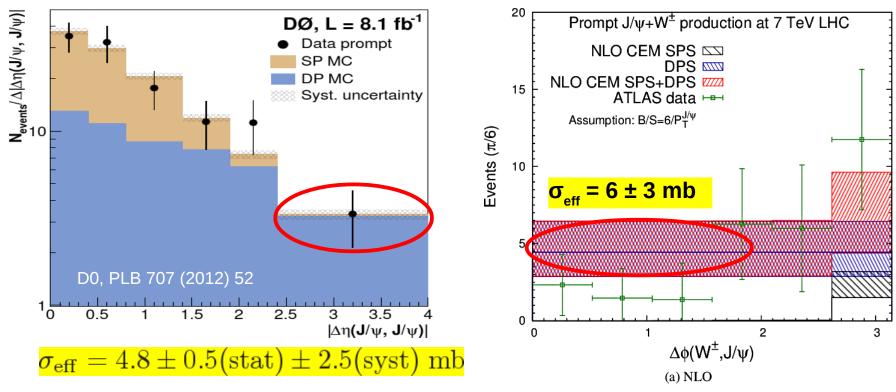
$$\sigma_{hh' \to a_1 a_2 a_3}^{\text{TPS}} = \left(\frac{m}{3!}\right) \frac{\sigma_{hh' \to a_1}^{\text{SPS}} \cdot \sigma_{hh' \to a_2}^{\text{SPS}} \cdot \sigma_{hh' \to a_3}^{\text{SPS}}}{\sigma_{\text{eff},\text{TPS}}^2}$$

(closely related to DPS in the absence of parton correlations):

$$\sigma_{\rm eff,TPS}$$
 = (0.82 ± 0.11) $\sigma_{\rm eff,DPS}$

Triple charm amounts to ~15% of inclusive charm x-sections in p-p collisions at the LHC. Triple-J/ Ψ fully dominated by DPS/TPS: "golden channel" to extract $\sigma_{eff,pp}$: 1st-ever observation by CMS.

Derived TPS x-sections "pocket formula" for p-A:


$$\sigma_{\mathrm{pA}\to abc}^{\mathrm{TPS}} = \left(\frac{m}{6}\right) \frac{\sigma_{\mathrm{pN}\to a}^{\mathrm{SPS}} \cdot \sigma_{\mathrm{pN}\to b}^{\mathrm{SPS}} \cdot \sigma_{\mathrm{pN}\to c}^{\mathrm{SPS}}}{\sigma_{\mathrm{eff},\mathrm{TPS},\mathrm{pA}}^2} \qquad \sigma_{\mathrm{eff},\mathrm{TPS},\mathrm{pA}} = \left[\frac{A}{\sigma_{\mathrm{eff},\mathrm{TPS}}^2} + \frac{3F_{\mathrm{pA}}[\mathrm{mb}^{-1}]}{\sigma_{\mathrm{eff},\mathrm{DPS}}} + C_{\mathrm{pA}}[\mathrm{mb}^{-2}]\right]^{-1/2}$$

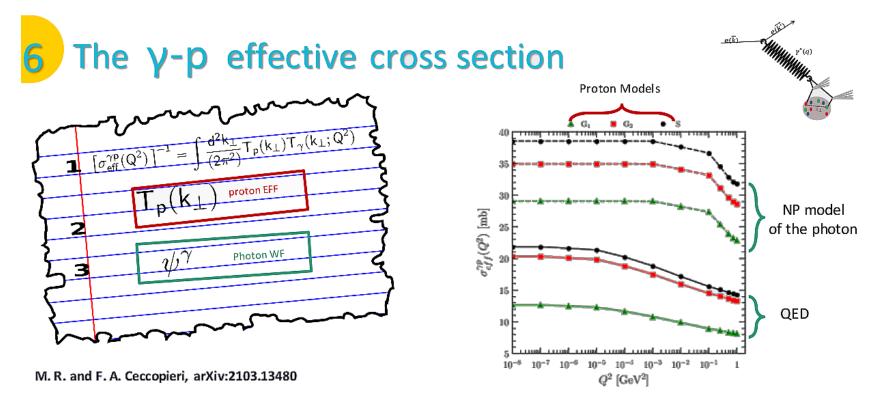
Large TPS yields in p-Pb, e.g. σ_{TPS} (triple-ccbar)=200 mb (~20% of incl. ccbar x-section): provide useful independent extractions of $\sigma_{eff,pp}$. [Don't be shy to attempt a 1st-ever measurement in p-Pb...].

Backup slides

DPS studies with $Q\overline{Q}$: p-p \rightarrow W⁺+J/ Ψ , J/ Ψ J/ Ψ

Uncorrelated J/Ψ+J/Ψ rapidity production in ppbar at 1.96 TeV: ■ Uncorrelated W+J/Ψ azimuthal production in pp at 7 TeV:

Extracted σ_{eff} values differ at 1.96 TeV & 7 TeV:


Lansberg&Shao&Yamanaka, PLB781 (2018) 485

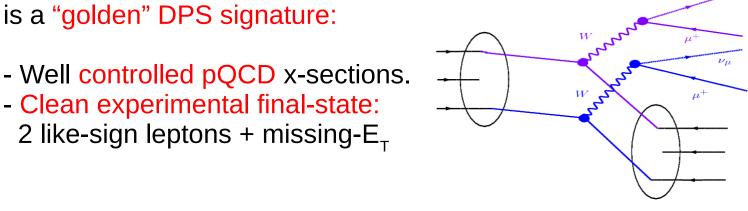
- (Higher-order) SPS contributions under control?
- Energy-dependent parton transverse profile? (Quark vs. gluon?)

DPS in Ultraperipheral p-Pb collisions?

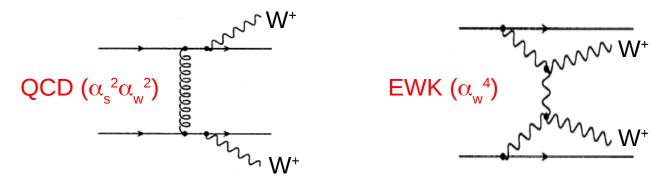
[M.Rinaldi, et al.]

Rinaldi&Ceccopieri (also Blok & Strikman) have proposed to study DPS from photon-proton collisions (where photon = vector meson):

Such studies (based on HERA data so far) could be tested with UPCs in p-Pb with the photon emitted from the Pb ion (we should go beyond searching for 'ridges' in UPCs, and extract some quantitative x-sections...)


DPS "golden channel": Same-sign WW

Same-sign W-W production from 2 independent hard scatterings is a "golden" DPS signature:


- Clean experimental final-state:

2 like-sign leptons + missing- E_{τ}

[Kulesza, Stirling, Gaunt, Treleani, Del Fabbro, ...]

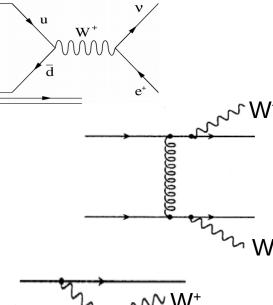
Backgrounds: Same-sign W-W production in single parton scatterings (SPS) is higher-order and occurs only with 2 extra jets:

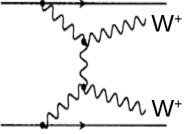
 σ (WW,DPS)~1/3· σ (WWjj,SPS), but SPS background reducible by more than x20 applying jet cuts.

QaT2023+, Aussois, Jan'23

Case study: p-Pb → W⁺W⁺,W⁻W⁻ at 8.8 TeV

p


[DdE,Snigirev, PLB718 (2013)1395]

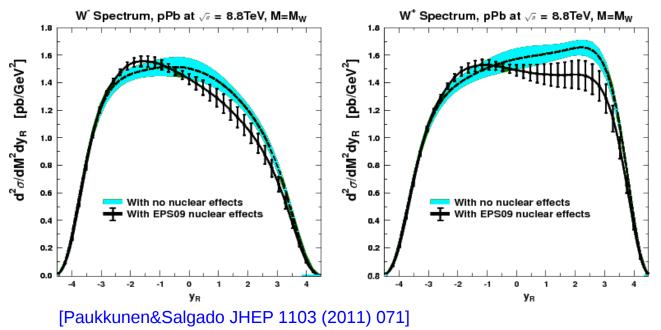

Theoretical setup:

- MCFM 6.2: Single-parton W⁺,W⁻ W⁺W⁺jj (QCD) background
 - NLO accuracy.
 - Scales: $\mu(W) = m_w, \ \mu(WW) = 150 \text{ GeV}$
 - CT10 proton PDF, EPS09 Pb nuclear PDF
 - Uncertainties: ~10%
- VBFNLO 2.6.0: W⁺W⁺jj (EWK) background
 - NLO accuracy
 - Scales: $\mu^2 = t_{w,z}$
 - CT10 PDF
 - Uncertainties: <10%

Cross sections in pb (signal & background):

p-Pb final-state:	W^+	W^-	W^+W^-	W ⁺ W ⁺ jj (QCD)	W ⁺ W ⁺ jj (VBF)	$W^{\pm}W^{\pm}$ (DPS)
Code (process #):	MCFM (1)	MCFM (6)	MCFM (61)	MCFM (251)	VBFNLO (250)	Eq. (15)
Order (σ units):	NLO (µb)	NLO (µb)	NLO (nb)	'NLO' (pb)	NLO (pb)	(pb)
$\sqrt{s_{\rm NN}} = 5.0 {\rm TeV}$	6.85 ± 0.68	5.88 ± 0.59	5.48 ± 0.56	12.1 ± 1.2	12.4 ± 0.6	44. ± 8.
$\sqrt{s_{\rm NN}} = 8.8 { m TeV}$	12.6 ± 1.3	11.1 ± 1.1	13.0 ± 1.3	40.4 ± 4.0	51.8 ± 2.0	$152. \pm 27.$

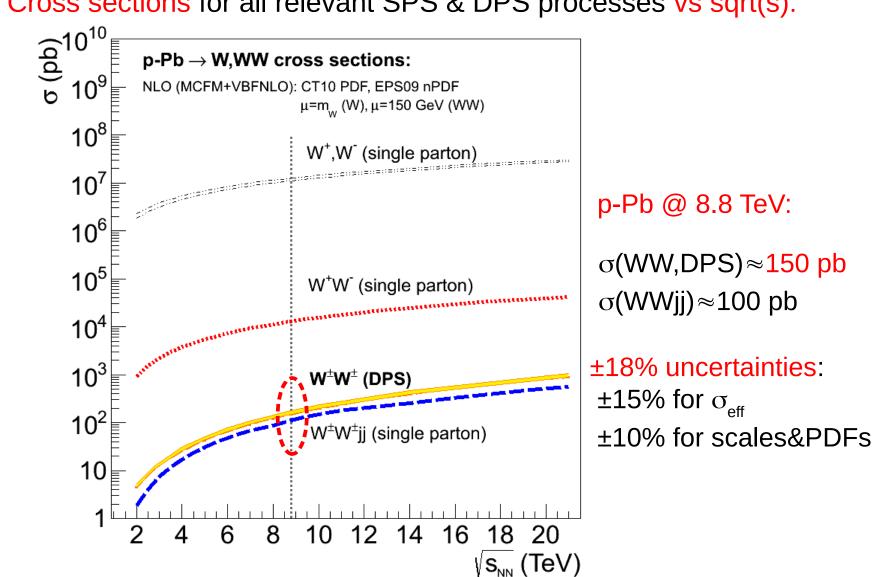
Case study: p-Pb → W⁺W⁺,W⁻W⁻ at 8.8 TeV


[DdE,Snigirev, PLB718 (2013)1395]

 \mathbf{W}^+

Theoretical setup:

- MCFM 6.2: Single-parton W⁺,W⁻ W⁺W⁺jj (QCD) background
 - NLO accuracy.
 - Scales: $\mu(W) = m_w$, $\mu(WW) = 150 \text{ GeV}$
 - CT10 proton PDF, EPS09 Pb nuclear PDF:


Isospin+shadow. effects on total inclusive x-sections: W⁻ : +7% W⁺ : -15% compared to p-p

لين M+

Results: p-Pb \rightarrow W⁺W⁺,W⁻W⁻ at 8.8 TeV

[DdE,Snigirev, PLB718 (2013)1395]

Cross sections for all relevant SPS & DPS processes vs sqrt(s):

Results: p-Pb → W⁺W⁺,W⁻W⁻ at 8.8 TeV

[DdE,Snigirev, PLB718 (2013)1395]

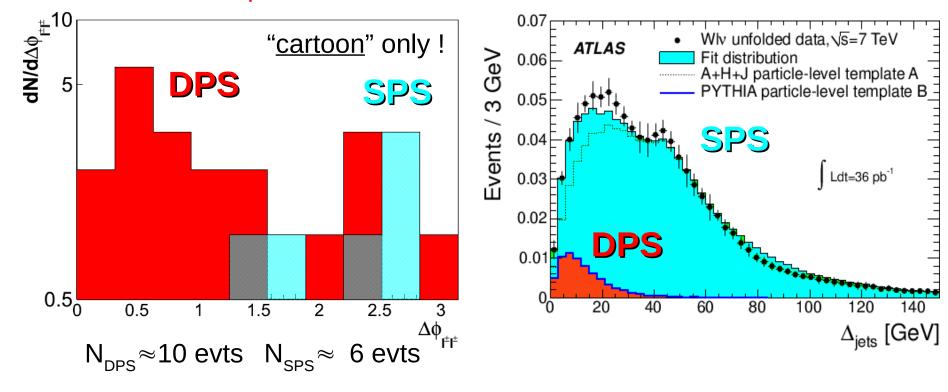
Measurable final-states:

- ► W's branching ratios:
 - BR(W \rightarrow Iv) \approx 3 \times 1/9, BR(W \rightarrow qq') \approx 2/3
 - Both leptonic: 4 final-states ($\mu\mu$,ee,e μ , μ e): 4×(1/9)² ≈ 1/20, 1/16 (+ τ) [1 leptonic + 1 hadronic (jet-charge): 2/9 ×4/3 ≈ 0.3]
- ► Typical ATLAS/CMS acceptances & efficiencies
 - Leptons: |y| < 2.5, $p_T > 15 \text{ GeV} \Rightarrow \epsilon_{WW} \approx 40\%$

LHC p-Pb luminosities (note: very small pileup):

► \mathcal{L}_{int} = 0.2–2 pb⁻¹ (increase to nominal p intensity, reduce beam size)

Expected (purely leptonic) rates including yield loses & luminosity:


 $N_{\rm DPS} = \sigma_{pPb \to WW}^{\rm DPS} / (\varepsilon \cdot \mathcal{L}_{\rm int}) \approx 1-10$ same-sign WW pairs/year

(factor \times 6 more in 1 lepton + 1-jet channel)

Results: p-Pb → W⁺W⁺,W⁻W⁻ at 8.8 TeV

Typical DPS-sensitive kinematical distributions for signal & background:

p-Pb @ 8.8 TeV (2 pb⁻¹): Same-sign leptons azimuthal separation: Compare to: $p-p \rightarrow W+2j @ 7 \text{ TeV} (36 \text{ pb}^{-1}):$ dijet azimuthal separation

(Other reducible bckgds: WZ,Z^(*)Z^(*),B⁰B⁰)

Example: Pb-Pb $\rightarrow J/\psi J/\psi$ at 5.5 TeV

10⁸

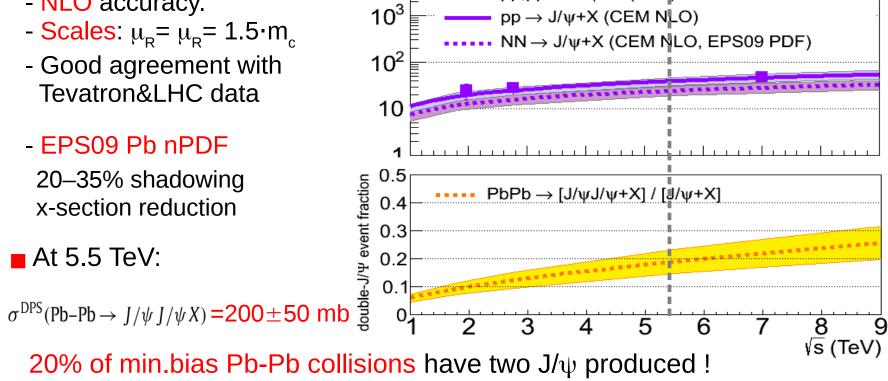
 10^{7}

10⁶

10⁵

 10^{4}


σ (μb)


■ FONLL+CEM (R.Vogt): Single-parton J/ ψ

- NLO accuracy.
- Scales: $\mu_{\rm B} = \mu_{\rm B} = 1.5 \cdot m_{\rm c}$
- Good agreement with **Tevatron&LHC** data

- EPS09 Pb nPDF

 $PbPb \rightarrow J/\psi + X$

 $PbPb \rightarrow J/\psi J/\psi + X$

 $pp,p\overline{p} \rightarrow J/\psi + X \text{ (data)}$

 $pp \rightarrow J/\psi + X (CEM NLO)$

[DdE,Snigirev, PLB727 (2013)157]

Triple parton scattering x-sections (p-p)

Assuming that the probabilities for 3 hard collisions to be independent of each other, one can again write a pocket-formula for TPS x-section:

$$\sigma_{hh' \to a_1 a_2 a_3}^{\text{TPS}} = \left(\frac{m}{3!}\right) \frac{\sigma_{hh' \to a_1}^{\text{SPS}} \cdot \sigma_{hh' \to a_2}^{\text{SPS}} \cdot \sigma_{hh' \to a_3}^{\text{SPS}}}{\sigma_{\text{eff},\text{TPS}}^2}$$

normalized by the square of an eff. x-section ($\sigma^2_{eff,TPS}$) plus a trivial combinatorial factor (m/3!) to avoid triple-counting in case of same particles produced: m = 1 if $a_1 = a_2 = a_3$; m = 3 if $a_1 = a_2$, or $a_1 = a_3$, or $a_2 = a_3$; and m = 6 if $a_1 \neq a_2 \neq a_3$.

How to interpret o_{eff,TPS}? What values one naively expects for it?
 Most generic expression for TPS cross section:

$$\sigma_{hh'\to a_{1}a_{2}a_{3}}^{\text{TPS}} = \left(\frac{m}{3!}\right) \sum_{i,j,k,l,m,n} \int \Gamma_{h}^{ijk} x_{1}, x_{2}, x_{3}; \mathbf{b_{1}}, \mathbf{b_{2}}, \mathbf{b_{3}}; Q_{1}^{2}, Q_{2}^{2}, Q_{3}^{2}) \\ \times \hat{\sigma}_{a_{1}}^{il} (x_{1}, x_{1}', Q_{1}^{2}) \cdot \hat{\sigma}_{a_{2}}^{jm} (x_{2}, x_{2}', Q_{2}^{2}) \cdot \hat{\sigma}_{a_{3}}^{kn} (x_{3}, x_{3}', Q_{3}^{2}) \\ \times \Gamma_{h'}^{lmn} (x_{1}', x_{2}', x_{3}'; \mathbf{b_{1}} - \mathbf{b}, \mathbf{b_{2}} - \mathbf{b}, \mathbf{b_{3}} - \mathbf{b}; Q_{1}^{2}, Q_{2}^{2}, Q_{3}^{2}) \\ \times dx_{1} dx_{2} dx_{3} dx_{1}' dx_{2}' dx_{3}' d^{2} b_{1} d^{2} b_{2} d^{2} b_{3} d^{2} b.$$

QaT2023+, Aussois, Jan'23

Triple parton scattering x-sections (p-p)

Assumption 1: Factorize generalized Triple-PDF into longitudinal & transverse components: $\Gamma_h^{ijk}(x_1, x_2, x_3; \mathbf{b_1}, \mathbf{b_2}, \mathbf{b_3}; Q_1^2, Q_2^2, Q_3^2)$

 $= D_h^{ijk} x_1, x_2, x_3; Q_1^2, Q_2^2, Q_3^2) f(\mathbf{b_1}) f(\mathbf{b_2}) f(\mathbf{b_3}),$

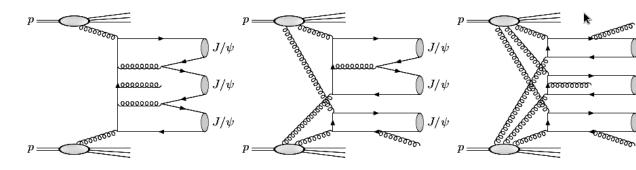
p-p transv. overlap function (mb⁻¹): $T(\mathbf{b}) = \int f(\mathbf{b_1}) f(\mathbf{b_1} - \mathbf{b}) d^2 b_1$, with $\int d^2 b T(\mathbf{b}) = 1$.

<u>Assumption 2</u>: Longitudinal triple-PDF is the product of 3 single PDFs (i.e. no parton correlations in colour, momentum, flavour, spin,...)

$$D_h^{ijk}(x_1, x_2, x_3; Q_1^2, Q_2^2, Q_3^2) = D_h^i(x_1; Q_1^2) D_h^j(x_2; Q_2^2) D_h^k(x_3; Q_3^2)$$

Then, $\sigma^2_{eff,TPS}$ is simply the inverse of the cube of the transv. pp overlap:

$$\sigma_{\rm eff, TPS}^2 = \left[\int d^2 b \, T^3(\mathbf{b})\right]^{-1}$$


By testing many proton overlaps/profiles (hard sphere, Gaussian, expo, dipole fit), we find a close relationship between $\sigma_{eff,TPS} \& \sigma_{eff}$:

$$\sigma_{\rm eff,TPS} = k \times \sigma_{\rm eff,DPS}$$
, with $k = 0.82 \pm 0.11$

Measuring TPS provides independent info on σ_{eff} and p transv. profile.

Triple-J/ψ from SPS production (p-p)

■ H.-S. Shao et al. [arXiv:1902.04949, PRL 122(2019)192002] computed all triple-J/Ψ x-sections with SPS HELAC-ONIA plus our pocket formulas:

(a) SPS

		inclusive	$2.0 < y_{J/\psi} < 4.5$	$ y_{J/\psi} < 2.4$
	SPS	$0.41^{+2.4}_{-0.34}\pm0.0083$	$(1.8^{+11}_{-1.5} \pm 0.18) \times 10^{-2}$	$(8.7^{+56}_{-7.5} \pm 0.098) \times 10^{-2}$
$13 { m TeV}$	DPS	$(190^{+501}_{-140}) \times \frac{10 \text{ mb}}{\sigma_{\text{eff},2}}$	$(7.0^{+18}_{-5.1}) \times \frac{10 \text{ mb}}{\sigma_{\text{eff},2}}$	$(50^{+140}_{-37}) \times \frac{10 \text{ mb}}{\sigma_{\text{eff},2}}$
	TPS	$130 \times \left(\frac{10 \text{ mb}}{\sigma_{\text{eff},3}}\right)^2$	$1.3 imes \left(rac{10 \text{ mb}}{\sigma_{\mathrm{eff},3}} ight)^2$	$18 \times \left(\frac{10 \text{ mb}}{\sigma_{\text{eff},3}}\right)^2$
	SPS	$0.46^{+2.9}_{-0.39}\pm0.022$	$(3.2^{+22}_{-2.8} \pm 0.21) \times 10^{-2}$	$(5.8^{+39}_{-5.1} \pm 0.29) \times 10^{-2}$
$27 { m TeV}$	DPS	$(560^{+2900}_{-480}) \times \frac{10 \text{ mb}}{\sigma_{\text{eff},2}}$	$(19^{+97}_{-16}) \times \frac{10 \text{ mb}}{\sigma_{\text{eff},2}}$	$(120^{+630}_{-100}) \times \frac{10 \text{ mb}}{\sigma_{\text{eff},2}}$
	TPS	$570 \times \left(\frac{10 \text{ mb}}{\sigma_{\text{eff},3}}\right)^2$	$5.0 imes \left(rac{10 \text{ mb}}{\sigma_{ m eff,3}} ight)^2$	$57 imes \left(rac{10 \text{ mb}}{\sigma_{\mathrm{eff},3}} ight)^2$
	SPS	$0.59^{+4.4}_{-0.52}\pm0.016$	$(3.0^{+25}_{-2.7}\pm 0.23) \times 10^{-2}$	$(7.2^{+63}_{-6.5} \pm 0.38) \times 10^{-2}$
$75 { m TeV}$	DPS	$(1900^{+11000}_{-1600}) \times \frac{10 \text{ mb}}{\sigma_{\text{eff},2}}$	$(57^{+340}_{-50}) imes rac{10 \text{ mb}}{\sigma_{ m eff,2}}$	$(310^{+2000}_{-270}) \times \frac{10 \text{ mb}}{\sigma_{\text{eff},2}}$
	TPS	$3900 imes \left(\frac{10 \text{ mb}}{\sigma_{\text{eff},3}}\right)^2$	$27 \times \left(\frac{10 \text{ mb}}{\sigma_{\text{eff},3}}\right)^2$	$260 imes \left(\frac{10 \text{ mb}}{\sigma_{\text{eff},3}}\right)^2$
	SPS	$1.1^{+8.4}_{-1.0} \pm 0.044$	$(4.5^{+33}_{-4.0} \pm 0.72) \times 10^{-2}$	$(36^{+290}_{-32} \pm 1.8) \times 10^{-2}$
$100 { m TeV}$	DPS	$(3400^{+19000}_{-2900}) \times \frac{10 \text{ mb}}{\sigma_{\text{eff},2}}$	$(100^{+550}_{-86}) \times \frac{10 \text{ mb}}{\sigma_{\rm eff,2}}$	$(490^{+3000}_{-430}) \times \frac{10 \text{ mb}}{\sigma_{\text{eff},2}}$
	TPS	$6500 \times \left(\frac{10 \text{ mb}}{\sigma_{\text{eff},3}}\right)^2$	$45 \times \left(\frac{10 \text{ mb}}{\sigma_{\text{eff},3}}\right)^2$	$380 \times \left(\frac{10 \text{ mb}}{\sigma_{\text{eff},3}}\right)^2$

 J/ψ

 J/ψ

 J/ψ