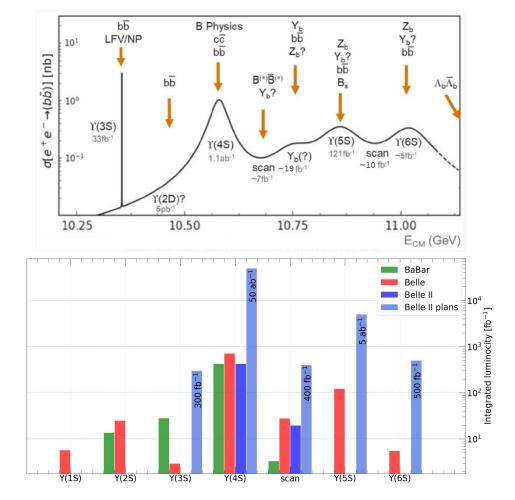
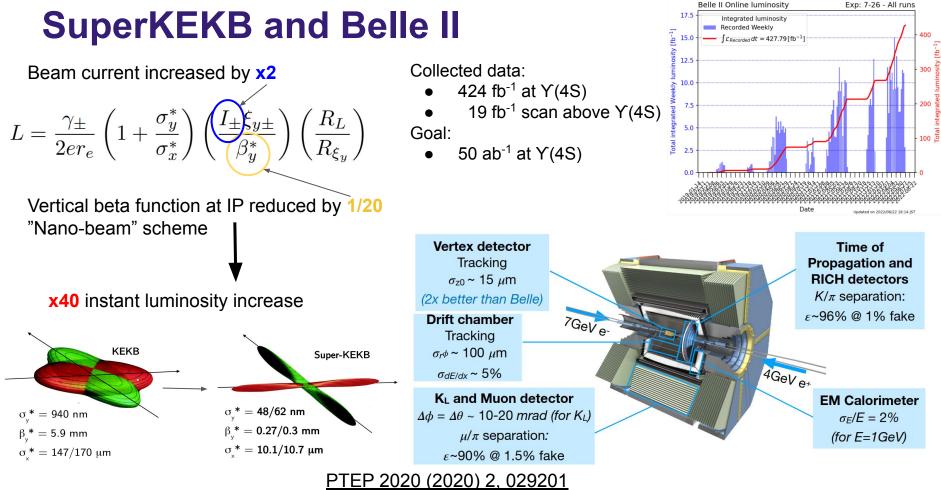


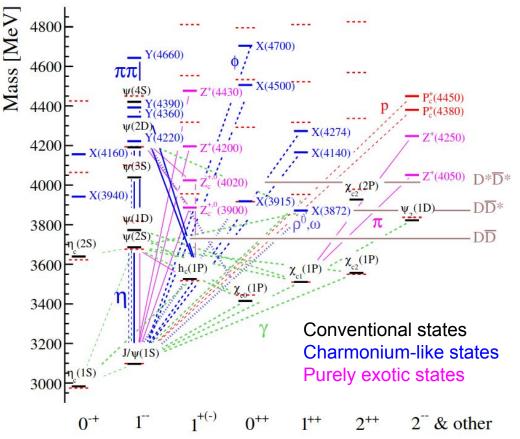
Quarkonium measurements at Belle-II


Quarkonia as Tools 2023 (QaT2023+)

Pavel Oskin (IJCLab)



Collected data from 1999 to 2010:


- 121 fb⁻¹ at Y(5S) ~7.11 × 10⁶ B_gB_g
- 711 fb⁻¹ at $\Upsilon(4S) \sim 771 \times 10^6 \text{ BB}$
- 3 fb⁻¹ at Y(3S)
- 24 fb⁻¹ at Y(2S)
- 6 fb⁻¹ at Y(1S)
- 26 fb⁻¹ scan above Y(4S)

Quarkonium measurements at Belle-II / Pavel Oskin / QaT 2023

Charmonium nomenclature

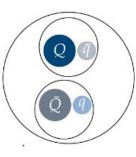
Below $D\overline{D}$ threshold: well described by potential models

Above $D\overline{D}$ threshold:

X states such as X(3872)

 neutral non-vector non-conventional states

Y states such as Y(4260) and Y(4660)

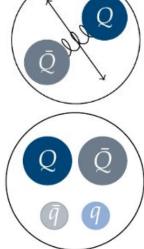

- neutral vector non-conventional states
 J^{PC} = 1⁻⁻ states.
- Z states such as $Z_c^+(3900)$ and $Z_b^+(10650)$
 - charged states, can not be pure quarkonium
 - similar for b- and c- onium

Theoretical models

PhysRep, 873, 1-154

Hadronic molecule

Compound state of two hadrons. The most promising model. The charmonium-like states can be described as a mixture of pure charmonium and a molecular component:

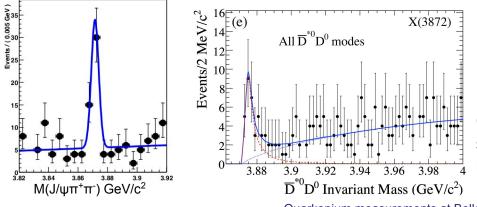


Hybrid

Conventional guark-antiguark mesons with excited gluon degrees of freedom.

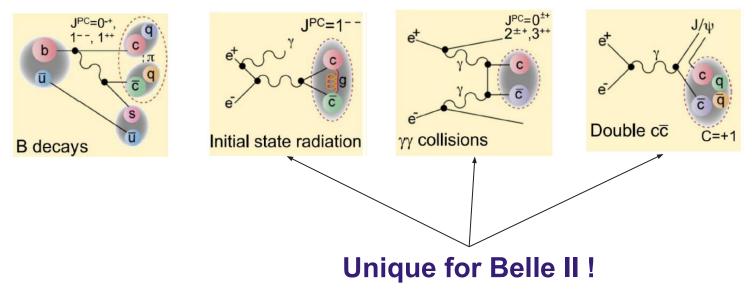
Compact tetraquark

States containing four constituent quarks irrespective of their clustering.

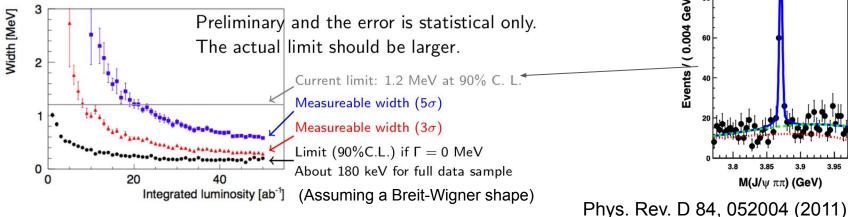

Hadroquarkonium

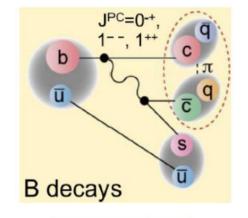
Compact quarkonium core surrounded by an excited light-quark cloud.

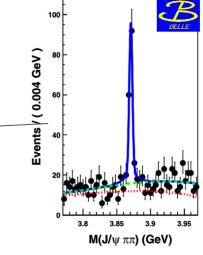
Quarkonium measurements at Belle-II / Pavel Oskin / QaT 2023

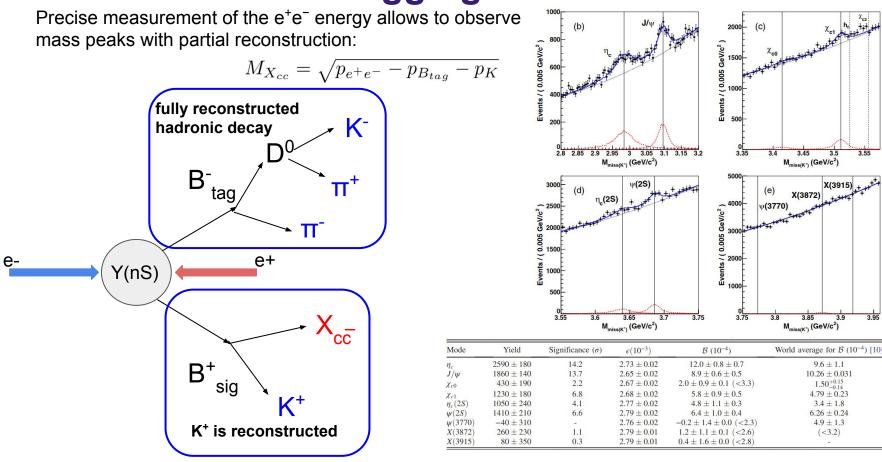

$X(3872) = C1 \cdot |c\bar{c} > + C2 \cdot |D^0 \overline{D}^{0*} >$

Charmonium production at Belle II


At Belle / Belle II charmonium events comes "for free":


- We don't need to develop special triggers.
- We don't need to tune accelerator.
- Uniquely clean environment compare to pp production.

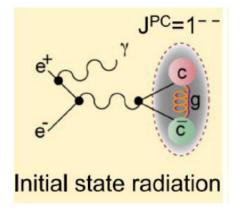


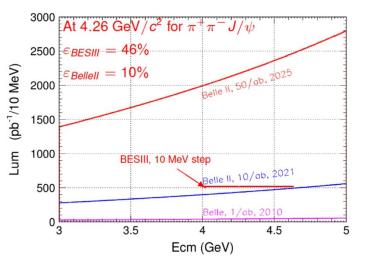

B decays

- B →KX_{cc} is CKM favoured process with large branching fractions ~ 10^{-3} 10^{-4} .
- Due to the known number of B pairs, it is possible to measure • absolute BF[B $\rightarrow X_{cc} K$].
- Access to X(3872) lineshape with $D^0\overline{D}^0\pi^0$ channel.
- Access to unknown / hardly reconstructable modes with the B-tagging technique.

Charmonium + B-tagging

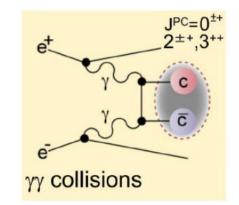
Quarkonium measurements at Belle-II / Pavel Oskin / QaT 2023

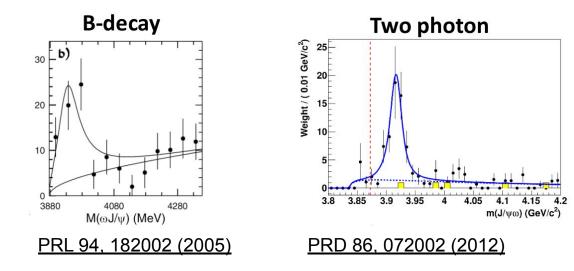

PRD 97, 012005 (2018)


Initial state radiation

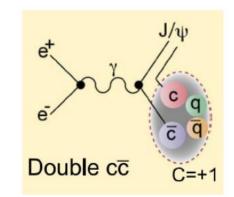
- 50 ab⁻¹ data corresponds to 2000-2800 pb⁻¹ /10 MeV at 4-5 GeV, which is compatible with BES III (500 pb⁻¹ /10 MeV, but higher efficiency).
- Access to 1⁻⁻ states with masses > 4.6 GeV.
- Effective luminosity and detection efficiency are relatively low.
- c-baryons ($\Lambda_c^+ \Sigma_c^-$, $\Sigma_c^+ \Sigma_c^-$) and cs-mesons pairs production ($D_s D_{s2}$ (2573), $D_s D_{s0}^*$ (2317)).

Golden Channels	$E_{c.m.}$ (GeV)	Statistical error (%)	Related XYZ states
$\pi^+\pi^- J/\psi$	4.23	7.5(3.0)	$Y(4008), Y(4260), Z_c(3900)$
$\pi^+\pi^-\psi(2S)$	4.36	12 (5.0)	$Y(4260), Y(4360), Y(4660), Z_c(4050)$
K^+K^-J/ψ	4.53	15 (6.5)	Z_{cs}
$\pi^+\pi^-h_c$	4.23	15 (6.5)	$Y(4220), Y(4390), Z_c(4020), Z_c(4025)$
$\omega\chi_{c0}$	4.23	35 (15)	Y(4220)
		10 ab ⁻¹ 50 ab ⁻¹	

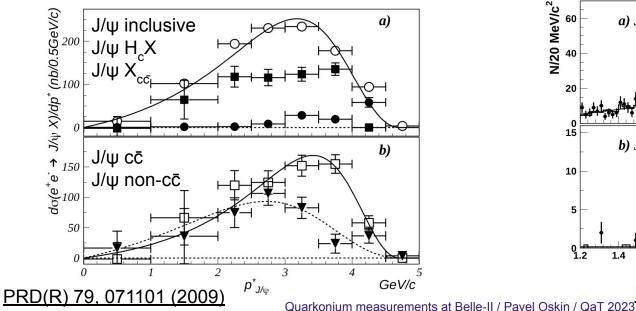


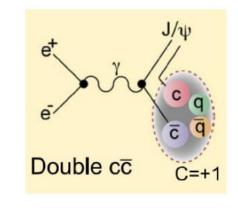


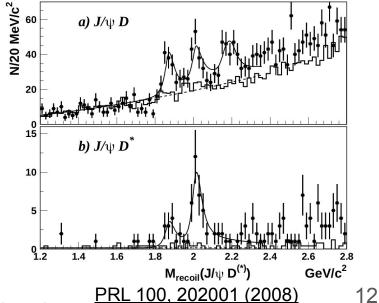
Two-photon production


- Access to a wide range of quantum numbers. J/ψω and J/ψφ in particular.
- Provides a better S/B ratio compare to B-decays.
- Allows to measure the Q² dependence of cc̄ production.

Double charmonium production

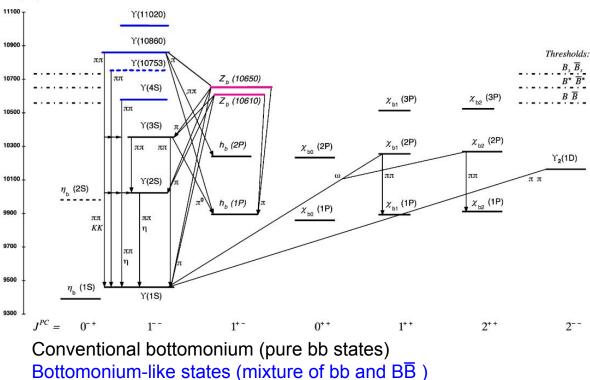

- All observed processes are of the type $e^+e^- \rightarrow c\bar{c}$ (J=1) $c\bar{c}$ (J=0). Belle II will allow to study $e^+e^- \rightarrow \eta_c X_{(c\bar{c}\,)}$ and $e^+e^- \rightarrow \chi_{c0} X_{(c\bar{c}\,)}$ processes.
- $e^+e^- \rightarrow \psi(2S)X_{(cc)}$ can be studied at Belle II with larger statistics.
- Large cross section revealed importance of the next order corrections in NRQCD.





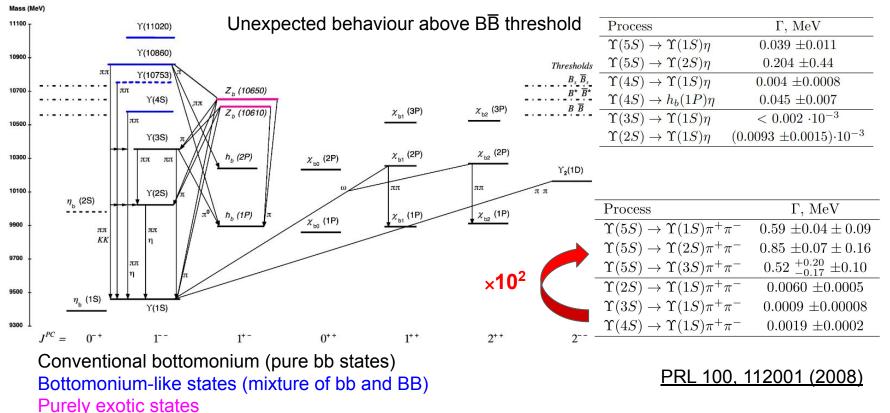
Double charmonium production

- All observed processes are of the type $e^+e^- \rightarrow c\bar{c}$ (J=1) $c\bar{c}$ (J=0). Belle II will allow to study $e^+e^- \rightarrow \eta_c X_{(c\bar{c}\,)}$ and $e^+e^- \rightarrow \chi_{c0} X_{(c\bar{c}\,)}$ processes.
- $e^+e^- \rightarrow \psi(2S)X_{(c\bar{c}\,)}$ can be studied at Belle II with larger statistics.
- Large cross section revealed importance of the next order corrections in NRQCD.

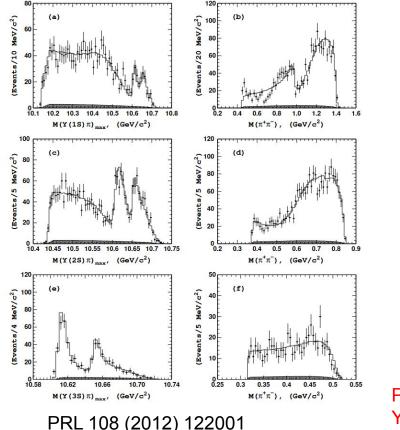


Bottomonium

Purely exotic states


We have two type of states:

- Below BB threshold
- Above BB threshold


The states below $B\overline{B}$ mesons threshold are well described by the potential models.

Bottomonium

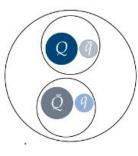
Mod. Phys. Lett. A 32, №04, 1750025

Bottomonium

Mod. Phys. Lett. A 32, №04, 1750025

Process	$\Gamma, { m MeV}$
$\Upsilon(5S) \to \Upsilon(1S)\eta$	0.039 ± 0.011
$\Upsilon(5S)\to\Upsilon(2S)\eta$	0.204 ± 0.44
$\Upsilon(4S) \to \Upsilon(1S)\eta$	0.004 ± 0.0008
$\Upsilon(4S) \to h_b(1P)\eta$	$0.045\ {\pm}0.007$
$\Upsilon(3S)\to\Upsilon(1S)\eta$	$< 0.002 \cdot 10^{-3}$
$\Upsilon(2S)\to\Upsilon(1S)\eta$	$(0.0093 \pm 0.0015) \cdot 10^{-3}$

	Process	$\Gamma, {\rm MeV}$
	$\Upsilon(5S) \to \Upsilon(1S) \pi^+ \pi^-$	$0.59\pm\!0.04\pm0.09$
	$\Upsilon(5S)\to\Upsilon(2S)\pi^+\pi^-$	$0.85\ {\pm}0.07\pm 0.16$
102	$\Upsilon(5S) \to \Upsilon(3S) \pi^+ \pi^-$	$0.52 \ ^{+0.20}_{-0.17} \ \pm 0.10$
×10 ²	$\Upsilon(2S) \to \Upsilon(1S)\pi^+\pi^-$	$0.0060\ {\pm}0.0005$
	$\Upsilon(3S) \to \Upsilon(1S) \pi^+ \pi^-$	$0.0009\ {\pm}0.00008$
	$\Upsilon(4S) \to \Upsilon(1S)\pi^+\pi^-$	$0.0019\ {\pm}0.0002$
\backslash		
$\langle \rangle$		12001 (2000)
$\langle \rangle$	<u>PRL 100, 1</u>	<u>12001 (2008)</u>
	10 A A A A A	

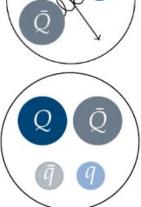

Proceed via intermediate exotic state Y(5S) \rightarrow [Z_b⁺ \rightarrow Y(nS) π^{+}] π^{-}

Theoretical models

PhysRep, 873, 1-154

Hadronic molecule

Compound state of two hadrons. The most promising model. The bottomonium-like states can be described as a mixture of pure bottomonium and a molecular component:

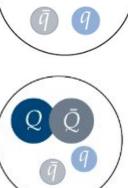


Hybrid

Conventional quark-antiquark mesons with excited gluon degrees of freedom.

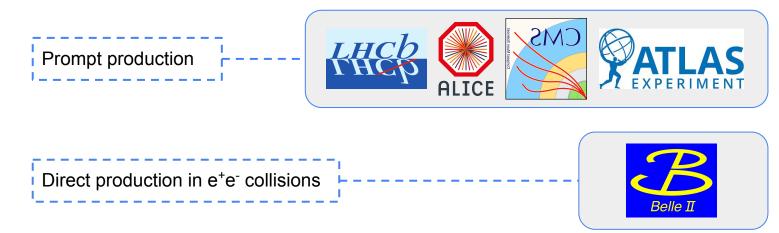
Compact tetraquark

States containing four constituent quarks irrespective of their clustering.

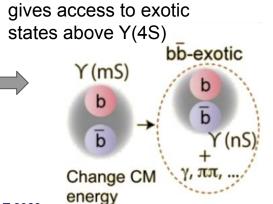


$Y(10860) = C_1 \cdot |bb > + C_2 \cdot |B_{(s)}^{((s)*)} B_{(s)}^{((s)*)} >$

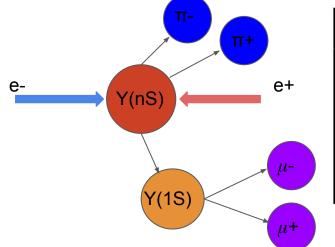
Z_b decay mode	Branching fraction
$Z_b^+(10610) \to \Upsilon(nS)/h_b(mP)\pi^+$	$14.4^{+2.5}_{-1.9}\%$
$Z_b^+(10610) \to B^+ \bar{B}^{*0} / B^+ \bar{B}^0$	$85.6^{+2.1}_{-2.9}\%$
$Z_b^+(10650) \to \Upsilon(nS)/h_b(mP)\pi^+$	$26.6^{+5.0}_{-4.7}\%$
$Z_b^+(10650) \to B^{*+}\bar{B}^{*0}$	$74^{+4}_{-6}\%$

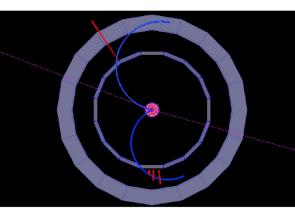

Hadroquarkonium

Compact quarkonium core surrounded by an excited light-quark cloud.

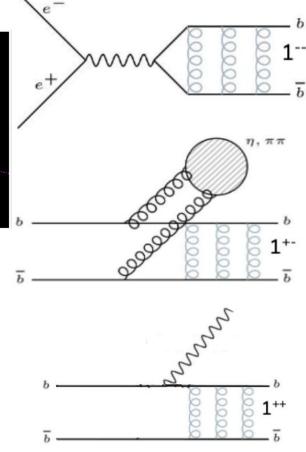


<u>PRL, 108, 122001 (2012)</u>

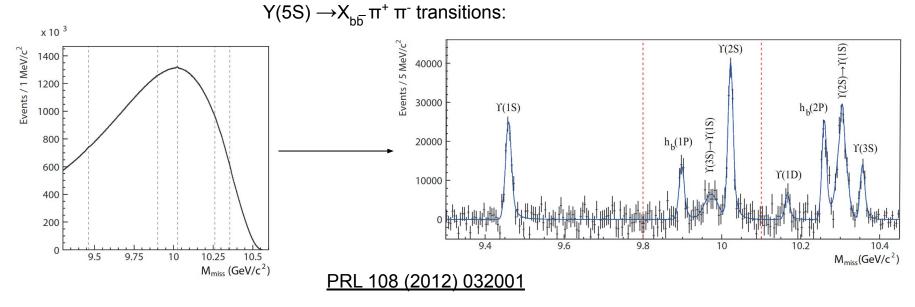

Bottomonium production

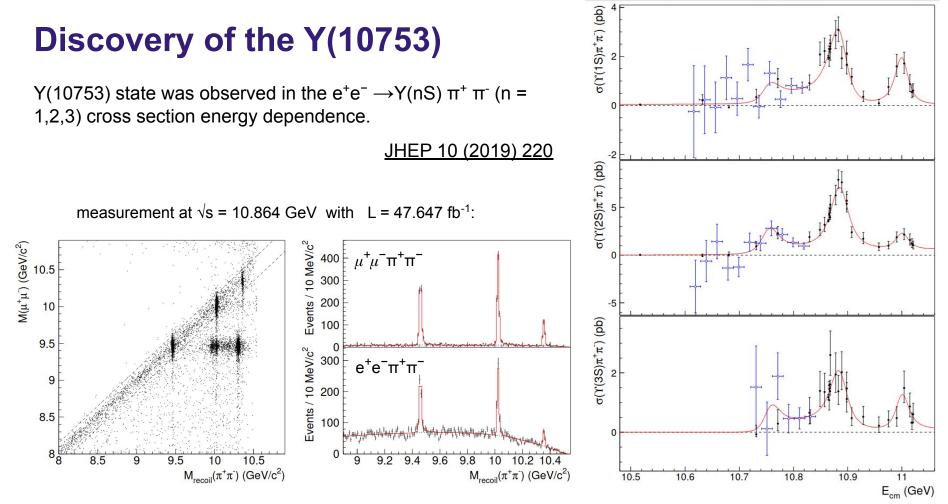


- Provides a unique clean environment (we have only bottomonium in the event);
- Precise measurement of the beam energy gives access to "unreconstructable" particles and decay modes;
- Allows tuning CM energy
- Only Y(nS) states can be produced with quantum numbers of the photon 1⁻⁻
- Other quantum numbers can be obtained via hadronic or radiative transitions from 1⁻⁻ states;



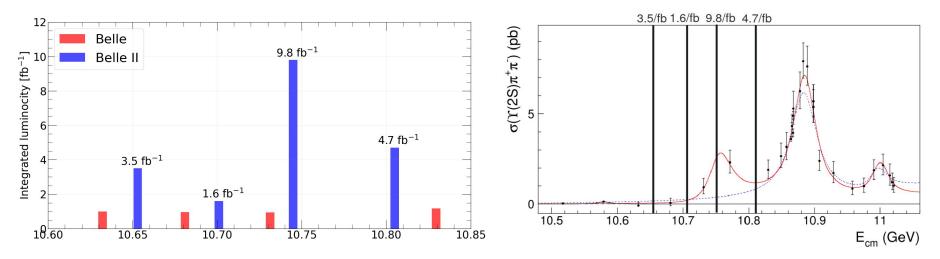
Bottomonium production


- Provides a unique clean environment (we have only bottomonium in the event);
- Precise measurement of the beam energy gives access to "unreconstructable" particles and decay modes;
- Allows tuning CM energy
- Only Y(nS) states can be produced with quantum numbers of the photon 1⁻⁻
- Other quantum numbers can be obtained via hadronic or radiative transitions from 1⁻⁻ states;

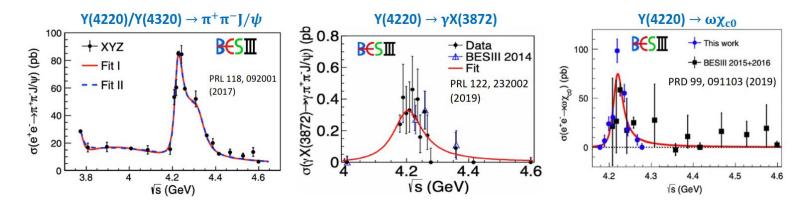

Missing mass technique for bottomonium

Precise measurement of the e⁺e⁻ energy allows to observe mass peaks with partial reconstruction:

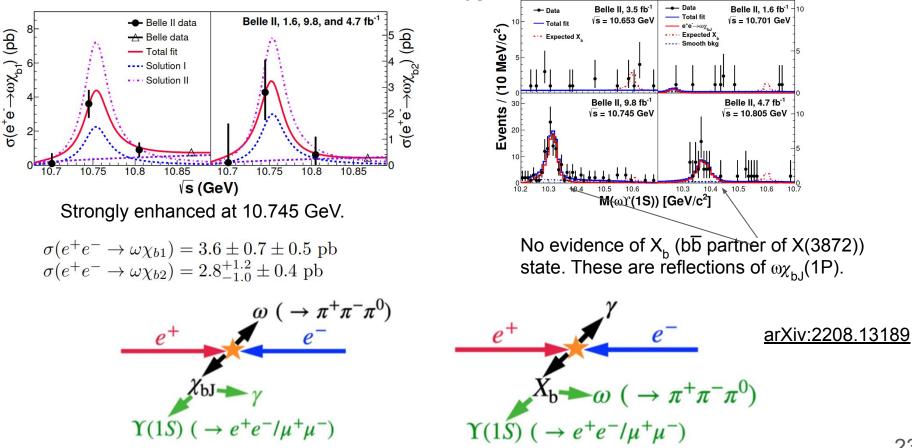
 $\pi^+ \pi^-$ missing mass has better resolution than M($\mu^+\mu^-$) $M_{\rm miss}(\pi\pi) = \sqrt{(E_{\rm c.m.} - E_{\pi\pi}^*)^2 - p_{\pi\pi}^{*2}}$


Very important for unreconstructable bottomonium states $\eta_{h}(nS)$, $h_{h}(nP)$

Quarkonium measurements at Belle-II / Pavel Oskin / QaT 2023

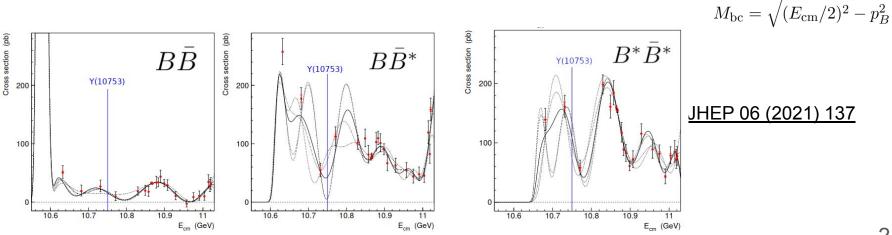

Belle II energy scan above Y(4S)

- Unique data provide an opportunity to study Y(10753) in different final states and understand its nature.
- Scan above Y(4S) has a good potential for early physics impact by Belle II even with small statistics.


Observation of e+e $\rightarrow \omega \chi_{bJ}$ (1P) at \sqrt{s} = 10.745 GeV

- Similar to Y(10753) structure named Y(4220) was observed in e⁺e⁻ → J/Ψ π⁺ π⁻ cross section dependence by BES III (<u>PRL 118, 092001 (2017)</u>).
- BES III also observed the Y(4220) peak in γX(3872) and ωχ_{c0} final states (<u>PRL, 122, 232002 (2019)</u>, <u>PRD 99, 091103(R) (2019)</u>).
- $\omega \chi_{b1,2}$ production was found to be enhanced near Y(5S) (<u>PRL 113, 142001 (2014)</u>).
- We expect Y(10753) to decay into $\gamma[X_b \rightarrow \omega Y(1S)]$ and $\omega \chi_{b,l}$ final states.

Quarkonium measurements at Belle-II / Pavel Oskin / QaT 2023


Observation of e+e $\rightarrow \omega \chi_{bJ}$ (1P) at \sqrt{s} = 10.745 GeV

BB decomposition with B-tagging

Study the energy dependence of the BB pairs production.

- B-tagging can be used to measure the $B_{(s)}^{((*)*)} \overline{B}_{(s)}^{((*)*)}$ cross section energy dependence.
- Yet another unique way to study bottomonium at Belle / Belle II.
- A good probe for bottomonium models (especially the molecular model).

Events / 2 MeV/c² 0007

1000

500

400

200

5.15

52

5 25

53

5 35

5.4 5. M_{bc} (GeV/c²

Quarkonium measurements at Belle-II / Pavel Oskin / QaT 2023

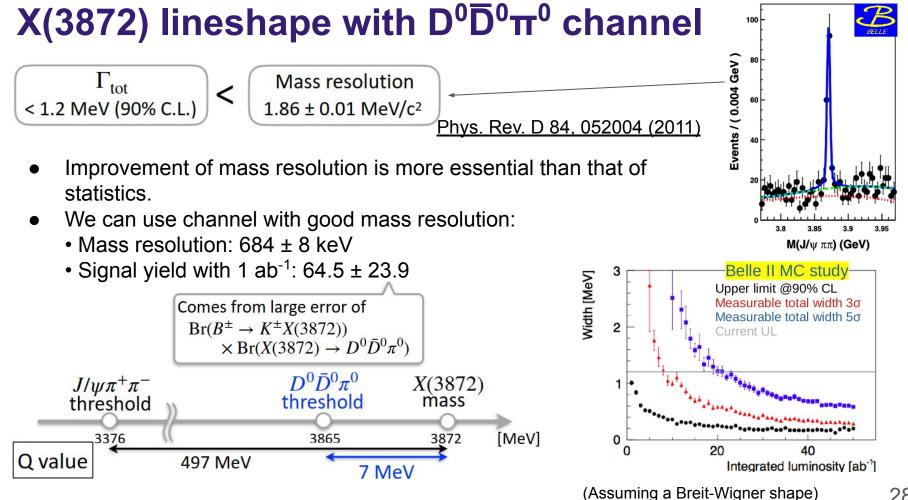
Belle II potential charmonium

The main source of improvements and new results is the increase in statistics.

- Measure double charmonium production cross sections with $e^+e^- \rightarrow \psi(2S)X_{(c\bar{c}\,)}$ and search for $e^+e^- \rightarrow \eta_c X_{(c\bar{c}\,)}$ and $e^+e^- \rightarrow \chi_{c0} X_{(c\bar{c}\,)}$.
- Measure X(3872) lineshape with $D^0 \overline{D^0} \pi^0$ channel.
- Study high energy region (E > 4.6 GeV) unapproachable for BES III with ISR production.
- Search for new charmonium-like states or new decay modes. Confirm the states and transitions obtained with low statistics. Measure quantum numbers of observed charmonium-like states.
- Search for new charmonium state with improved B-tagging method.
- Larger statistics will allow to measure p^*_{cc} , Q^2 production dependence.

Belle II potential bottomonium

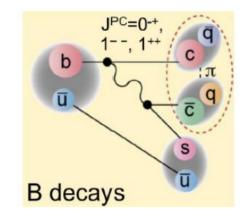
Scan above Y(4S) gives an opportunity for a lot of unique studies:


- Y(10753) decays to different exclusive and inclusive final states. Study of its properties;
- Energy dependence of the various final state cross sections;
- BB decomposition and its cross section dependence on CM energy;

Wide range of long-term non-Y(4S) possibilities:

- Increase the above-Y(4S) scan statistics;
- Y(6S) region study with high statistics after accelerator upgrade;

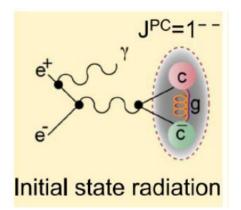
Golden Modes $e^+e^- \to \pi^+\pi^-\Upsilon(pS)(\to \ell^+\ell^-)$ $B\overline{B}$ decomposition $\pi^+\pi^-$ Dalitz $Y_b \to \omega \eta_b(1S)$ $Y_b \to \omega \chi_{b,I}(1P)$ Silver Modes $Y_b \to \pi^+ \pi^- X$ (inclusive) $Y_b \to \eta X$ (inclusive) $Y_b \to \eta \Upsilon(1S, 2S) (\to \ell^+ \ell^-)$ $Y_b \to \eta' \Upsilon(1S) (\to \ell^+ \ell^-)$ $Y_b \to \Upsilon(1S)$ (inclusive) Bronze Modes $Y_b \to \gamma X_b$ $Y_b \to \pi^0 \pi^0 \Upsilon(pS) (\to \ell^+ \ell^-)$ $Y_b \to KK(\phi)\Upsilon(pS)(\to \ell^+\ell^-)$ $Y_b \to \pi^0 \pi^0 X$ (inclusive) $Y_b \to \pi^0 X$ (incl. or excl.) ...



Quarkonium measurements at Belle-II / Pavel Oskin / QaT 2023

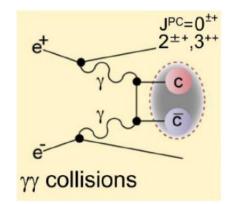
B decays

S - seen (observed)
NS - not seen or excluded
N - not performed (in a given mass range)
MF - missing fit (fit have not been extended to this mass range)


- no search has been performed in this mode

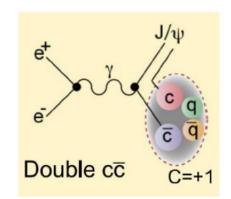
State	J^{PC}	$\psi\pi\pi$	$\psi \omega$	$\psi\gamma$	$\psi\phi$	$\psi\eta$	$\psi'\pi\pi$	$\psi'\omega$	$\psi'\gamma$	$\chi_c\gamma$	$p\overline{p}$	$\Lambda\overline{\Lambda}$	$\Lambda_c \overline{\Lambda}_c$	$D\overline{D}$	$D\overline{D}^*$	$2D^*$	$2D_{s}^{(*)}$	$\gamma \gamma \gamma$
X(3872)	1^{++}	S	S	S	10000	NS	s 10		S	NS	\mathbf{MF}	MF	s i - 53		S			NS
Y(3940)	J^{P+}	MF	S	NS				_	MF	<u></u>	MF	MF		MF	NS		Ν	Ν
Z(3930)	2^{++}	MF	MF	NS	·		(i):	· · · · ·	\mathbf{MF}		\mathbf{MF}	MF	<u> </u>	\mathbf{MF}	MF		Ν	Ν
Y(4140)	J^{P+}	MF	\mathbf{MF}	Ν	S	1	Ν	· — ·	Ν		\mathbf{MF}	\mathbf{MF}	10	\mathbf{MF}	Ν	Ν	Ν	Ν
X(4160)	0^{P+}	MF	MF	Ν	\mathbf{MF}		Ν	—	Ν	—	MF	\mathbf{MF}	—	\mathbf{MF}	Ν	Ν	Ν	N
Y(4260)	$1^{}$	NS				MF	Ν	_		Ν	\mathbf{MF}	MF		Ν	Ν	Ν	Ν	
X(4350)	J^{P+}	MF	MF	Ν	MF		Ν	Ν	Ν		\mathbf{MF}	\mathbf{MF}	_	Ν	Ν	Ν	Ν	Ν
Y(4350)	1	MF		10 - 10	(1	MF	Ν			N	MF	MF	s i	Ν	Ν	N	Ν	
Y(4660)	1	Ν		<u>1</u>		MF	Ν	6 <u></u> 2		Ν	\mathbf{MF}	MF	MF	Ν	Ν	Ν	Ν	<u></u>

Initial state radiation


S - seen (observed)
NS - not seen or excluded
N - not performed (in a given mass range)
MIF - missing fit (fit have not been extended to this mass range)
– no search has been performed in this mode

State	J^{PC}	$\psi\pi\pi$	$\psi'\pi\pi$	$\psi\eta$	$\chi_c\gamma$	$p\overline{p}$	$\Lambda \overline{\Lambda}$	$\Lambda_c \overline{\Lambda}_c$	$D\overline{D}$	$D\overline{D}^*$	$2D^*$	$2D_{s}^{(*)}$
Y(4260)	1	S	NS	NS	NS	NS	MF	_	NS	NS	NS	NS
Y(4350)	1	NS	S	\mathbf{MF}	MF	MF	MF		\mathbf{MF}	\mathbf{MF}	\mathbf{MF}	\mathbf{MF}
Y(4660)	$1^{}$	NS	S	\mathbf{MF}	MF	MF	MF	S	\mathbf{MF}	\mathbf{MF}	\mathbf{MF}	\mathbf{MF}

Two-photon production


S - seen (observed)
NS - not seen or excluded
N - not performed (in a given mass range)
MF - missing fit (fit have not been extended to this mass range)
– no search has been performed in this mode

State	J^{PC}	$\psi\pi\pi$	$\psi \omega$	$\psi\gamma$	$\psi\phi$	$\psi'\pi\pi$	$\psi'\omega$	$\psi'\gamma$	$p\overline{p}$	$\Lambda\overline{\Lambda}$	$\Lambda_c \overline{\Lambda}_c$	$D\overline{D}$	$D\overline{D}^*$	$2D^*$	$2D_{s}^{(*)}$
X(3872)	1^{++}	Ν	hard	hard	-			hard	MF	MF		MF	Ν		
Y(3915)	0^{++}	Ν	S	hard				hard	MF	\mathbf{MF}		MF	Ν		Ν
Z(3930)	2^{++}	Ν	\mathbf{MF}	hard		_		hard	\mathbf{MF}	\mathbf{MF}		\mathbf{S}	Ν		Ν
Y(4140)	J^{P+}	Ν	MF	hard	\mathbf{NS}	Ν	<u>.</u>	hard	Ν	Ν		\mathbf{MF}	Ν	Ν	Ν
X(4160)	0^{P+}	Ν	MF	hard	NS	Ν		hard	Ν	Ν		MF	N	Ν	Ν
X(4350)	J^{P+}	Ν	Ν	hard	S	Ν	Ν	hard	Ν	Ν	Ν	Ν	Ν	Ν	Ν

Double charmonium production

S - seen (observed)
NS - not seen or excluded
N - not performed (in a given mass range)
MF - missing fit (fit have not been extended to this mass range)
– no search has been performed in this mode

State	J^{PC}	$\psi\pi\pi$	$\psi \omega$	$\psi\gamma$	$\psi\phi$	$\psi'\pi\pi$ v	$\psi'\omega$	$\psi'\gamma$	$\chi_c\gamma$	$p\overline{p}$	$\Lambda\overline{\Lambda}$	$\Lambda_c \overline{\Lambda}_c$	$D\overline{D}$	$D\overline{D}^*$	$2D^*$
X(3872)	1^{++}	hard	Ν	hard	(<u> </u>	hard	<u> </u>	hard	hard	hard	hard		MF	\mathbf{MF}	
X(3940)	0^{-+}	hard	Ν	hard	—	hard	—	hard	hard	hard	hard		NS	S	
Z(3930)	2^{++}	hard	Ν	hard		hard		hard	hard	hard	hard		MF	MF	0 - 9
Y(4140)	J^{P+}	hard	Ν	hard	Ν	hard	<u></u>	hard	hard	hard	hard		\mathbf{MF}	\mathbf{MF}	MF
X(4160)	0^{P+}	hard	Ν	hard	Ν	hard		hard	hard	hard	hard		\mathbf{MF}	S	\mathbf{MF}
X(4350)	J^{P+}	hard	Ν	hard	Ν	hard	N	hard	hard	hard	hard	hard	MF	\mathbf{MF}	MF