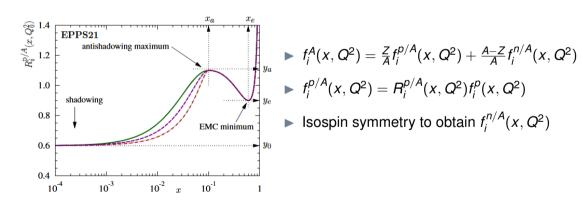
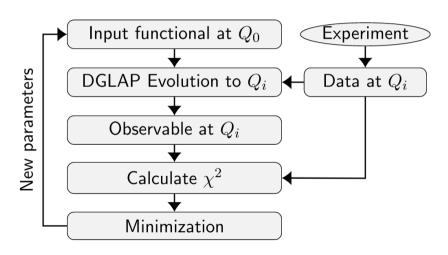

Incorporating quarkonium data into nuclear PDF fits

Stéphane Delorme (under grant no. 2019/34/E/ST2/00186) Quarkonia as Tools 2023

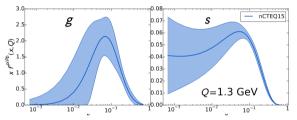
PDFs


Probability densities to find a parton with a momentum fraction x inside of a hadron of momentum p


- ▶ Enter calculations involving hadrons in the initial state
- Non-perturbative, Universal objects
- Fitted on experimental data
- Only focus on collinear PDFs

Nuclear PDFs

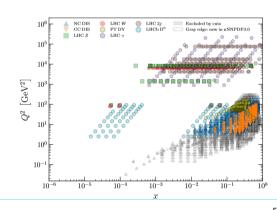
- PDFs are modified when nuclei are involved
- ► The nuclear PDF is not just Z times the proton PDF + N times the neutron PDF



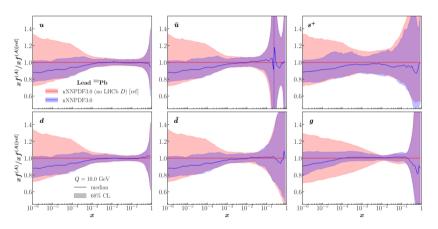
"Standard" fitting procedure

Current status of nPDFs

More precise (n)PDFs → more precise predictions for observables measured at colliders (notably the future EIC)

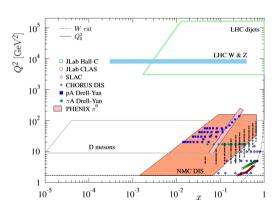


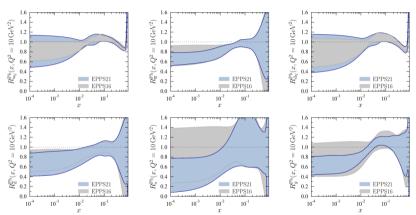
- Very large gluon uncertainties, especially at low x
 - \rightarrow large uncertainties on other flavors via DGLAP evolution


Won't be an exhaustive overview, for a more detailled one see I. Schienbein talk at QCD@LHC 2022

nNNPDF3.0 (2201.12363)

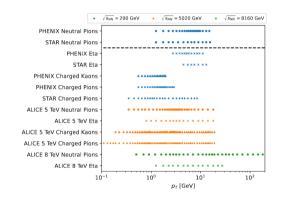
- Parametrization of the bound proton PDFs $f_i^{p/A}$ using neural networks at scale $Q_0 = 1$ GeV (see Valerio's lecture on collinear PDFs)
- ▶ 256 parameters
- ► 2188 data points (1467 old, 721 new)
- Processes:
 - (ν)DIS (411 new points)
 - DY (146 new points)
 - WZ
 - γ prompt production from ATLAS 8 TeV
 - Dijet (New data from CMS 5 TeV)
 - D meson data from LHCb 5 TeV Included via Bayesian reweighting (not fitted)

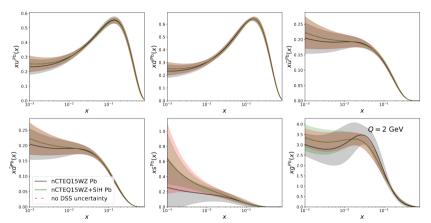

nNNPDF3.0 (2201.12363)


▶ Large reduction of gluon uncertainties thanks to LHCb D meson data.

EPPS21 (Eur. Phys. J. C 82, 413 (2022))

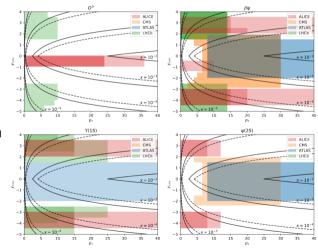
- ▶ Parametrization of the nuclear modification factor $R_i^{p/A}$ at $Q_0 = 1.3$ GeV
- ▶ 24 free parameters (from 20 in EPPS16)
- ► 2077 data points (1742 old, 335 new)
- Processes:
 - (ν)DIS (New data from JLAB)
 - DY
 - SIH
 - WZ (New W[±] data from CMS 8 TeV)
 - Dijet (New data from CMS 5 TeV)
 - D meson data from LHCb 5 TeV


EPPS21 (Eur. Phys. J. C 82, 413 (2022))


▶ Important reduction of gluon and strange quark uncertainties. Due to D meson data for the gluon and due to W data and gluon uncertainty reduction for the strange quark

nCTEQ15WZSIH (Phys. Rev. D 104, 094005)

- ▶ Parametrization of the bound proton PDFs $f_i^{p/A}$ at $Q_0 = 1.3$ GeV
- ▶ 19 parameters
- 936 data points (860 old, 76 new)
- Processes:
 - DIS
 - DY
 - WZ
 - SIH $(\pi^0, \pi^{\pm}, K^{\pm})$ from RHIC/LHC


nCTEQ15WZSIH (Phys. Rev. D 104, 094005)

► Flattening of the gluon nPDF around x = 0.05 and reduction of uncertainties thanks to SIH meson data

Why quarkonia? (And open heavy flavors)

- Large data sets from LHC experiments
- Sensitivity to gluon nPDFs down to very low x ($\approx 10^{-4.5}$)

nCTEQ15HQ (Phys. Rev. D 105, 114043)

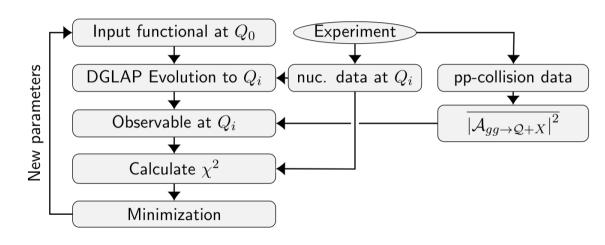
- ▶ Data-driven approach to include D/quarkonium data (implemented from Phys. Rev. Lett. 121, 052004, Phys. Rev. D 104, 014010)
- ▶ Parametrization of the nPDFs at $Q_0 = 1.3$ GeV
- 19 parameters (same as nCTEQ15WZSIH)
- 1484 data points (936 old, 548 new)
- ▶ Processes:
 - DIS
 - DY
 - WZ
 - SIH
 - D meson data from LHCb
 - Quarkonium data from LHC

$$xf_i^{p/A}(x,Q_0)=c_0x^{c_1}(1-x)^{c_2}e^{c_3x}(1+e^{c_4}x)^{c_5}$$

$$c_k \Rightarrow c_k(A) \equiv p_k + a_k(1 - A^{-b_k})$$

Heavy flavor fitting procedure

Cross-section parametrized as:

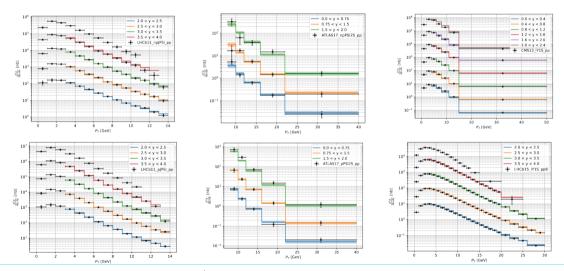

$$\sigma(AB o \Phi + X) = \int dx_1 dx_2 f_{1,g}(x_1,\mu) f_{2,g}(x_2,\mu) \frac{1}{2\hat{s}} \overline{|A(gg o \Phi + X)|^2} dPS$$

$$\frac{1}{\left|\mathcal{A}(gg \to \Phi + X)\right|^{2}} = \frac{\lambda^{2} \kappa \hat{\mathbf{S}}}{M_{Q}^{2}} e^{2|\mathbf{y}|} \times \left\{ \begin{array}{ll} e^{-\kappa \frac{p_{T}^{2}}{M_{Q}^{2}}} & p_{T} \leq \langle \mathbf{p}_{T} \rangle \\ e^{-\kappa \frac{p_{T}^{2}}{M_{Q}^{2}}} \left(1 + \frac{\kappa}{n} \frac{p_{T}^{2} - \langle \mathbf{p}_{T} \rangle^{2}}{M_{Q}^{2}}\right)^{-n} & p_{T} > \langle \mathbf{p}_{T} \rangle \end{array} \right.$$

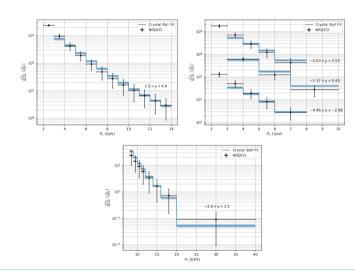
- ▶ 2 assumptions:
 - gg-channel dominant
 - Only consider 2→2 kinematics

- 5 additionnal parameters
- a parameter added to include rapidity dependence

Heavy flavor fitting procedure



Proton-proton baseline

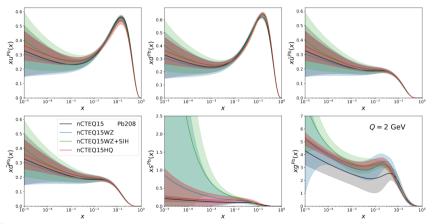

- Cuts imposed on data
 - p_T < 3 GeV
 - Data outside $-4 \le y_{cms} \le 4$

	D^0	J/ψ	$B \to J/\psi$	$\Upsilon(1S)$	$\psi(2S)$	$B \to \psi(2S)$
κ	0.33457	0.47892	0.15488	0.94524	0.21589	0.45273
λ	1.82596	0.30379	0.12137	0.06562	0.07528	0.13852
$\langle p_T \rangle$	2.40097	5.29310	-7.65026	8.63780	8.98819	7.80526
n	2.00076	2.17366	1.55538	1.93239	1.07203	1.64797
a	-0.03295	0.02816	-0.08083	0.22389	-0.10614	0.06179
$N_{ m points}$	34	501		375	55	
χ^2/N_{dof}	0.25	0.88		0.92	0.77	

Proton-proton baseline

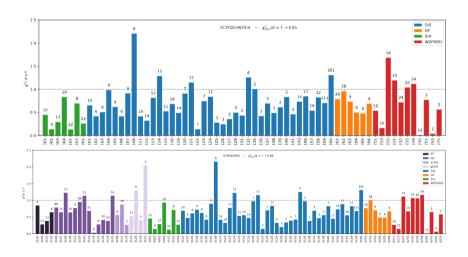
Comparison with NRQCD calculations (J/Ψ)

▶ NRQCD from M. Butenschön and B. Kniehl

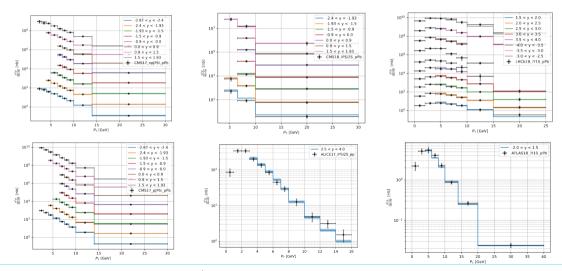

Phys. Rev. Lett. 106 (2011) 022003

- NRQCD uncertainties due to scale variation from $\frac{\mu_{\rm NRQCD,0}}{2}$ to 2 $\mu_{\rm NRQCD,0}$.
- $\blacktriangleright \mu_{NRQCD,0} = \sqrt{p_{\rm T}^2 + 4m_c^2}$
- Very good agreement, smaller uncertainties for the Crystal ball fit

nPDFs data sets and cuts


- ▶ Includes data sets from nCTEQ15WZSIH
- Same 19 parameters as nCTEQ15WZSIH
- ▶ 499 additionnal data points for $pPb \rightarrow D^0 + X$, $pPb \rightarrow J/\Psi + X$, $pPb \rightarrow \Psi(2S) + X$ and $pPb \rightarrow \Upsilon(1S) + X$
- Same cuts as the proton-proton baseline with additionnal cuts:
 - D^0 data with $p_T > 15$ GeV is excluded (no baseline data)
 - 2 points from the 2018 LHCb $\Upsilon(1S)$ dataset are excluded (high χ^2 , may be explained by their presence at the high- p_T edge of the experiment)

nPDFs fit



► Gluon uncertainties greatly reduced, especially at very low x

nPDFS fit χ^2

Data comparison

Conclusions

- ▶ Global effort towards the determination of more precise (n)PDFs
- Data-driven approach reducing the uncertainties on the low x gluon nPDF
- Compatible with other data sets
- Fast calculation, compared against rigorous pQCD calculations
- ► However, does the collinear factorization still holds? (effect of saturation at low x and moderately hard scales)
- What about effects like fully coherent energy loss?