

TMDs from double J/ψ production Quarkonia as Tools 2023 workshop (QaT2023+)

Alice COLPANI SERRI

University of Ferrara, University of Paris-Saclay

January 14, 2023

- 1 Introduction
- Q Gluon TMDs
- 3 TMD and LHCb in the collider mode
- Azimuthal modulations
- **6** Numerical results
- **6** Conclusions

- 1 Introduction
- 2 Gluon TMDs
- 3 TMD and LHCb in the collider mode
- 4 Azimuthal modulations
- 5 Numerical results
- 6 Conclusions

Inclusive production of J/ψ pairs in pp collisions (gluon fusion)

Azimuthal modulations of the cross section for inclusive production of quarkonium pairs in hadronic collisions

- understanding the internal structure of nucleons
- → gluon dynamics poorly known

Results → future measurements at LHC fixed-target experiments

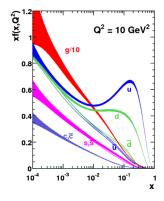
Our knowledge of the internal structure of the proton

PDFs → great precision Collinear QCD phenomenology

- → only 1D information
- $\hookrightarrow x$ dependence

3D structure of the nucleon Beyond collinear factorisation

Transverse dynamics!



Nucleon structure in terms of TMDs → quark TMDs → gluon TMDs

TMDs \rightarrow 3D structure of the nucleon

Correlations between k_T and the polarisation of the nucleon/parton

2 components \triangleright collinear (x)

▶ transversal $(\vec{k_{\perp}})$ → generate q_T (final-state)

Quark TMDs extracted from data

→ SIDIS, DY processes

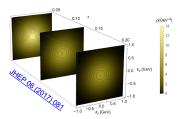
→ Precision era!

Gluon TMDs → lack of data

→ How to measure them?

Inclusive quarkonium production

A. Bacchetta et al. (JHEP 08 (2008) 023)



		Quark			
		U	L	T	
noa	U	f_1		h_1^{\perp}	
nclec	L		g_{1L}	h_{1L}^{\perp}	
ž	T	f_{1T}^{\perp}	g_{1T}	h_1 h_{1T}^{\perp}	

Experimental point of view:

- quarkonium production observed in different experiments
- J/ψ : easy to produce and detect → plenty of experimental data

Theoretical point of view:

- Not clear how to treat quarkonium production
- 3 common models → Colour Singlet Model (CSM)
 - → Colour Octet Mechanism (COM)
 - → Colour Evaporation Model (CEM)
- not complete agreement with experimental data
- however for J/ψ -pair production: **CSM** good description

- Q Gluon TMDs

9 / 29

Study of gluon TMDs \rightarrow TMD factorisation ($q_T \ll Q$)

General factorised cross section

- → partonic scattering amplitude (perturbative)
- $\hookrightarrow k_T$ -dependent correlators (non-perturbative)

$$d\sigma = \int dx_1 dx_2 d^2 \vec{k}_{T1} d^2 \vec{k}_{T2} \delta^{(2)} (\vec{k}_{T1} + \vec{k}_{T2} - \vec{q}_T)$$

$$\times \Phi_g^{\mu\nu}(x_1, \vec{k}_{T1}) \Phi_g^{\rho\sigma}(x_2, \vec{k}_{T2}) \left[\hat{\mathcal{M}}_{\mu\rho} \hat{\mathcal{M}}_{\nu\sigma}^* \right]_{\substack{k_1 = x_1 P_1 \\ k_2 = x_2 P_2}} + \mathcal{O}\left(\frac{q_T^2}{Q^2}\right)$$

• In order to stay in TMD regime: $q_T \leq Q/2$

2 independent collinear partonic distributions:

- $f_1^g(x)$ "unpolarised"
- $g_1^g(x)$ "circular"

Unpolarised protons \rightarrow 2 TMDs:

- f_1^g : unpolarised gluon TMD
- $h_1^{\perp g}$: linearly polarised gluon TMD

			Gluon			
			U C L			
	nc	U	f_1		h_1^{\perp}	
	ucleon	L		g_{1L}	h_{1L}^{\perp}	
l	N	Т	f_{1T}^{\perp}	g_{1T}	h_1 , h_{1T}^{\perp}	

Gluon

TMD correlator parametrisation for an unpolarised proton

□ unpolarised:

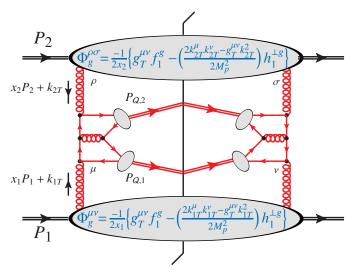
- $f_1^g \longrightarrow h^{\perp g} \longrightarrow$
- ⊳ linearly polarised:

$$\begin{array}{c|cccc} & \mathbf{U} & f_1 & h_1^{\perp} \\ \hline \mathbf{L} & g_{1L} & h_{1L}^{\perp} \\ \hline \mathbf{K}_T^2 & g_{1T} & h_1, h_{1T}^{\perp} \\ \hline \vec{k}_T^2 & h_1^{\perp g}(\mathbf{x}, \vec{k}_T^2) \end{array}$$

$$\Phi_{g}^{\mu\nu}(x,\vec{k}_{T}) = -\frac{1}{2x} \left[g_{T}^{\mu\nu} f_{1}^{g}(x,\vec{k}_{T}^{2}) - \left(\frac{k_{T}^{\mu} k_{T}^{\nu}}{M_{H}^{2}} + g_{T}^{\mu\nu} \frac{\vec{k}_{T}^{2}}{2M_{H}^{2}} \right) h_{1}^{\perp g}(x,\vec{k}_{T}^{2}) \right]$$

- \hookrightarrow Second term goes to 0 if $k_T = 0$
- P.J. Mulders and J. Rodrigues (Phys.Rev.D 63 (2001) 094021)

LO Feynman diagram for $p(P_1) + p(P_2) \rightarrow \mathcal{Q}(P_{Q,1}) + \mathcal{Q}(P_{Q,1}) + X$



The general formula for the cross section of gluon fusion is:

$$\begin{split} d\sigma^{gg} &\propto F_{1} \times \mathcal{C}[f_{1}^{g}f_{1}^{g}] \\ &+ F_{2} \times \mathcal{C}[w_{2}h_{1}^{\perp g}h_{1}^{\perp g}] \\ &+ (F_{3} \times \mathcal{C}[w_{3}f_{1}^{g}h_{1}^{\perp g}] + F_{3}' \times \mathcal{C}[w_{3}'h_{1}^{\perp g}f_{1}^{g}])\cos(2\Phi_{CS}) \\ &+ (F_{4} \times \mathcal{C}[w_{4}h_{1}^{\perp g}h_{1}^{\perp g}])\cos(4\Phi_{CS}) \end{split}$$

Where the convolutions are:

$$C[w f g](x_1, x_2, \vec{q}_T) = \int d^2 \vec{k}_{T1} \int d^2 \vec{k}_{T2} \delta^{(2)}(\vec{k}_{T1} + \vec{k}_{T2} - \vec{q}_T) \times w_{n,m}(\vec{k}_{T1}, \vec{k}_{T2}) f(x_1, \vec{k}_{T1}) g(x_2, \vec{k}_{T2})$$

Why di- J/ψ production?

- Single J/Ψ production: a lot of data at low p_T √ → but gluon in the final state → presence of soft gluons (non-perturbative) between Initial State Interactions (ISIs) and Final State Interactions (FSIs) can be problematic \hookrightarrow no TMD factorisation X
- Single n_c production: no gluon in the final state √ \hookrightarrow but no data at low $p_T X$
- Double J/ψ production:
 - ▶ data at low $p_{\tau}^{\psi\psi}$ ✓
 - ▶ no gluon in the final state ✓
 - → gluon fusion: ISI can be encapsulated in the TMDs

→ Safe TMD factorisation

PhD Thesis F. Scarpa (10.33612/diss.128346301)

- 3 TMD and LHCb in the collider mode

• I/ψ : relatively easy to detect. Already studied by LHCb, CMS, ATLAS & D0; NA3

LHCb PLB 707 (2012) 52; JHEP 1706 (2017) 047; CMS JHEP 1409 (2014) 094; ATLAS EPJC 77 (2017) 76; D0 PRD 90 (2014) 111101; NA3 PLB 158 (1985) 85

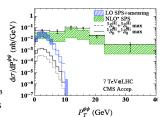
• Negligible qq̄ contributions even at AFTER@LHC $(\sqrt{s} = 115 \text{ GeV})$ energies

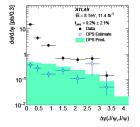
I.P.L., H.S. Shao NPB 900 (2015) 273

- At lower energies (AMBER, SPD), q\u00e4 contributions need to computed
- Negligible CO contributions, in particular at low $P_T^{\psi\psi}$ [black/dashed curves vs. blue; log. plot] JPL, H.S. Shao PLB 751 (2015) 479; P. Ko, C. Yu, and J. Lee, JHEP 01 (2011) 070; Y.-J. Li, G.-Z. Xu, K.-Y. Liu, and Y.-J. Zhang, JHEP
- No final state gluon needed for the Born contribution: pure colourless final state IPL, H.S. Shao PRL 111, 122001 (2013)

07 (2013) 051

• In the CMS & ATLAS acceptances (P_T cut), small DPS effects, but required by the data at large Δv



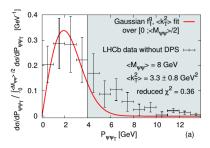


DPS in LHCb data [kinematical distributions a priori under-control: independent scatterings]

TMD modelling: f_1^g and the relevance of the LHCb data

JPL, C. Pisano, F. Scarpa, M. Schlegel, PLB 784(2018)217

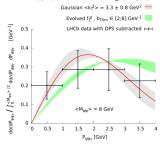
- f_1^g modelled as a Gaussian in \vec{k}_T : $f_1^g(x, \vec{k}_T^2) = \frac{g(x)}{\pi(k_x^2)} \exp\left(\frac{-\vec{k}_T^2}{(k_x^2)}\right)$ where g(x) is the usual collinear PDF
- First experimental determination [with a pure colorless final state] of (k_T^2) by fitting $C[f_1^g f_1^g]$ over the normalised LHCb $d\sigma/dP_{\psi\psi_T}$ spectrum at 13 TeV from which we have subtracted the DPS yield determined by LHCb

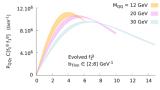


- Integration over $\phi \Rightarrow \cos(n\phi)$ -terms cancel out
- $F_2 \ll F_1 \Rightarrow \text{only } \mathcal{C}[f_1^g f_1^g] \text{ contributes to}$ the cross-section
- No evolution so far: $(k_T^2) \sim 3 \text{ GeV}^2$ accounts both for non-perturbative and perturbative broadenings at a scale close to $M_{\psi\psi} \sim 8 \text{ GeV}$
- Disentangling such (non-)perturbative effects requires data at different scales

F. Scarpa, D. Boer, M.G. Echevarria, JPL, C. Pisano, M. Schlegel, EPJC (2020) 80:87

- With a fit we obtained $\langle k_T^2 \rangle \sim 3 \text{ GeV}^2$
- Let us compare such a value with what a proper NLL evolution up to the scale $M_{\psi\psi} \sim 8 \text{ GeV}$ would give
- Evolution effects are measurable
- So far, no x dependence information





- Azimuthal modulations

The general formula for the cross section of gluon fusion is:

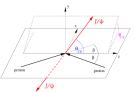
$$\begin{split} d\sigma^{gg} &\propto F_{1} \times \mathcal{C}[f_{1}^{g} f_{1}^{g}] \\ &+ F_{2} \times \mathcal{C}[w_{2} h_{1}^{\perp g} h_{1}^{\perp g}] \\ &+ (F_{3} \times \mathcal{C}[w_{3} f_{1}^{g} h_{1}^{\perp g}] + F_{3}' \times \mathcal{C}[w_{3}' h_{1}^{\perp g} f_{1}^{g}]) \cos(2\Phi_{CS}) \\ &+ (F_{4} \times \mathcal{C}[w_{4} h_{1}^{\perp g} h_{1}^{\perp g}]) \cos(4\Phi_{CS}) \end{split}$$

- first two members: azimuthally independent
- third member: cos (2Φ_{CS})-modulation
- fourth member: $\cos(4\Phi_{CS})$ -modulation

Computation of azimuthal modulations (average)

The corresponding expressions for $\cos(2\Phi_{CS})$ and $\cos(4\Phi_{CS})$:

$$\begin{split} \langle \cos(2\phi_{CS}) \rangle &= \frac{1}{2} \frac{F_3 \mathcal{C}[w_3 f_1^{\mathcal{B}} h_1^{\perp \mathcal{B}}] + F_3' \mathcal{C}[w_3' h_1^{\perp \mathcal{B}} f_1^{\mathcal{B}}]}{F_1 \mathcal{C}[f_1^{\mathcal{B}} f_1^{\mathcal{B}}] + F_2 \mathcal{C}[w_2 h_1^{\perp \mathcal{B}} h_1^{\perp \mathcal{B}}]} \\ \langle \cos(4\phi_{CS}) \rangle &= \frac{1}{2} \frac{F_4 \mathcal{C}[w_4 h_1^{\perp \mathcal{B}} h_1^{\perp \mathcal{B}}]}{F_1 \mathcal{C}[f_1^{\mathcal{B}} f_1^{\mathcal{B}}] + F_2 \mathcal{C}[w_2 h_1^{\perp \mathcal{B}} h_1^{\perp \mathcal{B}}]} \end{split}$$



- The hard-scattering coefficients $(F_1, F_2, F_3, F_4', F_4)$ give the explicit dependence on $M_{\psi\psi}$ and $heta_{CS}$
- Modulations due to $h_1^{\perp g}$
- Set scale $Q^2=M_{\psi\psi}^2$ and consider $M_{\psi\psi}=8$, 16 GeV
- TMD evolution applied within the convolutions

Asymmetric kinematics

Goal: study x dependence \rightarrow general $x_1 \neq x_2$

Implementation: ex-novo code in Python TMD factorisation, TMD convolutions, TMD evolution (use of LHAPDF package for PDF parametrisation)

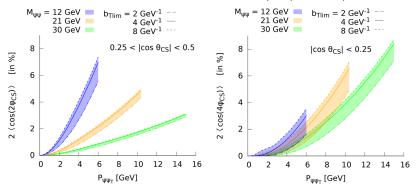
Code validation: reproduced published results (collider mode)

NEW: first studies with $x_1 \neq x_2$ (two sets of x_1 , x_2 but same rapidity $y = \frac{1}{2} \ln \frac{x_1}{x_2}$)

$J/\psi + J/\psi$	$\langle x_2 \rangle \sim \frac{M_{\psi\psi}}{\sqrt{s}} e^{-Y_{\psi\psi}^{c.m.s.}}$	$\sigma_{gg} \times B_{\mu\mu}^2$ [fb]	$\sigma_{q\bar{q}} \times B_{\mu\mu}^2$ [fb]	Counts/year
$4.5 < Y_{\psi\psi}^{\text{lab.}} < 5.0$	0.13	O(5)	O(1)	O(50)
$4.0 < Y_{\psi\psi}^{lab.} < 4.5$	0.29	O(50)	O(10)	O(500)
$3.5 < Y_{\psi\psi}^{\text{lab.}} < 4.0$	0.45	O(50)	O(10)	O(500)
$3.0 < Y_{\psi\psi}^{lab.} < 3.5$	0.60	O(10)	O(10)	O(100)
$2.5 < Y_{\psi\psi}^{lab.} < 3.0$	0.77	O(5)	O(2)	O(70)

- 6 Numerical results

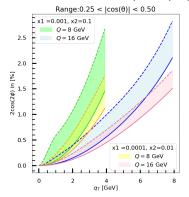
- two ranges of $\cos(\theta_{CS})$: [0; 0.25] and [0.25; 0.50]
- three values for the invariant mass: 12, 21, 30 GeV; x1=x2



Eur. Phys. J. C 80 no. 2, (2020) 87, arXiv:1909.05769 [hep-ph]

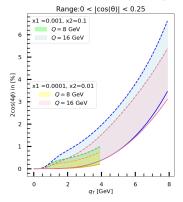
Preliminary: predictions for $\cos(2\Phi_{CS})$

- range of $\cos(\theta_{CS})$: [0.25; 0.50], $Q = M_{\psi\psi}$
- two different sets $(x_1; x_2)$: $(10^{-3}; 10^{-1})$ and $(10^{-4}; 10^{-2})$



- ▶ asymmetry up to 3% (measurable)
- $\triangleright q_T < Q/2$ considered
- ▶ big overlap in the low g_T region, not for large q_T
- ▶ ~ same magnitude for low and high Q (lower for lower $x_{1,2}$)

- range of $\cos(\theta_{CS})$: [0; 0.25], $Q = M_{\psi\psi}$
- two different sets $(x_1; x_2)$: $(10^{-3}; 10^{-1})$ and $(10^{-4}; 10^{-2})$

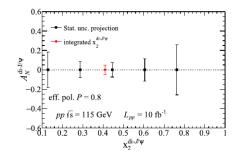


- ▶ max asymmetry 5 6% (measurable)
- $\triangleright q_T < Q/2$ considered
- ▶ overlap ∀q_T (no x dependence)
- ▶ much higher amplitude for high Q (at high q_T)

- **6** Conclusions

- Quarkonium production is a great tool for many purposes → exploration of nucleon structure through gluon TMDs
- Double J/ψ production gives the possibility to investigate gluon TMD induced effects
 - $\hookrightarrow k_T$ dependent effects
 - → azimuthal modulations
 - → spin effects
- NEW Fixed-target mode: lower azimuthal modulations for $\frac{x_1}{x_2} \neq 1$ (x1 \simeq x2 seems to be favoured)

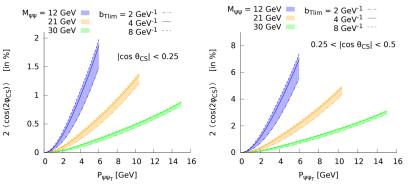
- FUTURE Studies can be made in the (near) future considering polarised protons \rightarrow access to more gluon TMDs
- Di- J/ψ production: most promising \rightarrow gluon Sivers function



Backup slides

Results in collider mode: $\cos(2\Phi_{CS})$

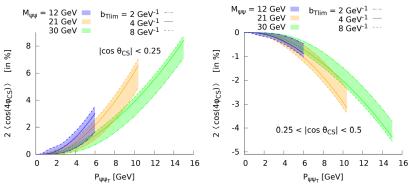
- two ranges of $\cos(\theta_{CS})$: [0; 0.25] and [0.25; 0.50]
- three values for the invariant mass: 12, 21, 30 GeV; x1=x2



Eur.Phys.J.C 80 no.2,(2020) 87, arXiv:1909.05769 [hep-ph]

Results in collider mode: $cos(4\Phi_{CS})$

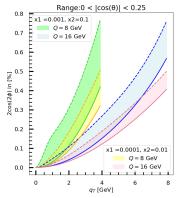
- two ranges of $\cos(\theta_{CS})$: [0; 0.25] and [0.25; 0.50]
- three values for the invariant mass: 12, 21, 30 GeV; x1=x2



Eur.Phys.J.C 80 no.2,(2020) 87, arXiv:1909.05769 [hep-ph]

Preliminary: predictions for $\cos(2\Phi_{CS})$

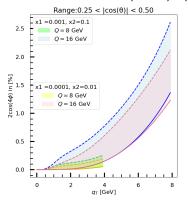
- range of $\cos{(\theta_{CS})}$: [0; 0.25], $Q = M_{\psi\psi}$
- two different sets $(x_1; x_2)$: $(10^{-3}; 10^{-1})$ and $(10^{-4}; 10^{-2})$



- ▶ contribution below 1%
- ▶ q_T < Q/2 considered
- ▶ big overlap in the low q_T region, not for large q_T
- \triangleright ~ same magnitude for low and high Q (lower for lower $x_{1,2}$)

Preliminary: predictions for $\cos(4\Phi_{CS})$

- range of $\cos(\theta_{CS})$: [0.25; 0.50], $Q = M_{\psi\psi}$
- two different sets $(x_1; x_2)$: $(10^{-3}; 10^{-1})$ and $(10^{-4}; 10^{-2})$



- contribution up to 3% (measurable)
- ▶ q_T < Q/2 considered
- ▶ overlap ∀q_T
- ▶ higher amplitude for high
- Q (low Q negligible)

Introduction Evolution (1)

- Beyond tree level, the TMDs and hard factors F become scale dependent J. Collins (ISBN: 9781107645257)
- Implementing evolution is more easily done in impact parameter space (b_T) , where convolutions become simple products:

$$d\sigma_{UU}^{gg} \propto \int d^2 \mathbf{b}_T \, e^{-i\mathbf{b}_T \cdot \mathbf{q}_T} \, \hat{W}(\mathbf{b}_T, Q) + \mathcal{O}(\mathbf{q}_T^2/Q^2)$$
$$\hat{W}(\mathbf{b}_T, Q) = \hat{f}(x_1, \mathbf{b}_T; \zeta_f, \mu) \, \hat{g}(x_2, \mathbf{b}_T; \zeta_g, \mu) \, \mathcal{H}(Q; \mu).$$

• The convolutions are rewritten by Fourier transforming:

$$C[w f g](x_1, x_2, \vec{q}_T) = \int d^2 \vec{k}_{T1} \int d^2 \vec{k}_{T2} \delta^{(2)}(\vec{k}_{T1} + \vec{k}_{T2} - \vec{q}_T)$$

$$\times w_{n,m}(\vec{k}_{T1}, \vec{k}_{T2}) f(x_1, \vec{k}_{T1}) g(x_2, \vec{k}_{T2})$$

$$\Rightarrow \int_0^\infty \frac{db_T}{2\pi} b_T^n J_m(b_T q_T) \hat{f}(x_1, b_T) \hat{g}(x_2, b_T)$$

Introduction Evolution (2)

$$C[w f g](x_1, x_2, \vec{q}_T; Q) = \int_0^\infty \frac{db_T}{2\pi} b_T^n J_m(b_T q_T)$$

$$\times e^{-S_A(b_T; Q^2, Q)} \hat{f}(x_1, b_T; \mu_b^2, \mu_b) \hat{g}(x_2, b_T; \mu_b^2, \mu_b)$$

- S_A contains In Qb_T
- Expressions (based on pQCD) are valid when: $b_0/Q \le b_T \le b_{T,\text{max}}$
- At lower limit $\mu_b = b_0/b_T$ becomes larger than Q, i.e. evolution should stop $(S_A = 0)$
- At upper limit perturbation theory starts to fail, which is not exactly known. Common to take $b_{T,\text{max}} = 0.5 \,\text{GeV}^{-1}$ or $b_{T,\text{max}} = 1.5 \,\text{GeV}^{-1}$.
- This effectively boils down to a different resummation: $\mu_b(b_T)/Q \to \mu_b(b_T^*)/Q$

Introduction Evolution (3)

• We need to add a component that takes over as $b_T > b_{T,max}$:

$$\hat{W}(b_T, Q) \equiv \hat{W}(b_T^*, Q)e^{-S_{NP}(b_T, Q)}$$

• There are different parameterizations for S_{NP} in the literature, but typically it is chosen to be a Gaussian:

$$S_{NP}(b_T; Q) = A \ln \frac{Q}{Q_{NP}} b_T^2$$
 with $Q_{NP} = 1 \text{ GeV}$

We obtain the following expression for the convolutions:

$$C[w f g](x_1, x_2, \vec{q}_T; Q) = \int_0^\infty \frac{db_T}{2\pi} b_T^n J_m(b_T q_T) e^{-S_A(b_T^*; Q^2, Q)} e^{-S_{NP}(b_T; Q)}$$

$$\times \hat{f}(x_1, b_T^*; \mu_b^2, \mu_b) \hat{g}(x_2, b_T^*; \mu_b^2, \mu_b)$$

The Sudakov Factor and Scales

The solution of the evolution equations results in:

$$\begin{split} \hat{f}_1^{\mathcal{B}}(x_1, \mathsf{b}_T; \zeta, \mu) &= \mathrm{e}^{-\frac{1}{2} S_A(b_T; \zeta, \mu)} \hat{f}_1^{\mathcal{B}}(x_1, \mathsf{b}_T; \mu_b^2, \mu_b) \\ \hat{h}_1^{\perp \mathcal{B}}(x_1, \mathsf{b}_T; \zeta, \mu) &= \mathrm{e}^{-\frac{1}{2} S_A(b_T; \zeta, \mu)} \hat{h}_1^{\perp \mathcal{B}}(x_1, \mathsf{b}_T; \mu_b^2, \mu_b) \end{split}$$

- $\mu \sim Q$ avoids large logarithms in ${\cal H}$
- TMDs should be evaluated at their natural scale: $\sqrt{\zeta_0} \sim \mu_0 \ll \sqrt{\zeta} \sim \mu$
- \Rightarrow take $\sqrt{\zeta_0} \sim \mu_0 \sim \mu_b \equiv b_0/b_T$ (with $b_0 = 2e^{-\gamma_E}$), in order to minimize both logarithms of μb_T and ζb_T^2 in S_A , and then evolved up to $\sqrt{\zeta} \sim \mu \sim Q$

Perturbative tails

 The large transverse momentum perturbative tail of the TMDs can be written as:

$$\hat{f}_{1}^{g}(x, b_{T}; \mu_{b}^{2}, \mu_{b}) = f_{g/P}(x; \mu_{b}) + \mathcal{O}(\alpha_{s}) + \mathcal{O}(b_{T} \Lambda_{QCD})$$

$$\hat{h}_{1}^{\perp g}(x, b_{T}; \mu_{b}^{2}, \mu_{b}) = -\frac{\alpha_{s}(\mu_{b})}{\pi} \int_{x}^{1} \frac{dx'}{x'} \left(\frac{x'}{x} - 1\right) \left\{ C_{A} f_{g/P}(x'; \mu_{b}) + C_{F} \sum_{i=q,\bar{q}} f_{i/P}(x'; \mu_{b}) \right\} + \mathcal{O}(\alpha_{s}^{2}) + \mathcal{O}(b_{T} \Lambda_{QCD})$$

P. Sun et al. (Phys.Rev.D 84 (2011) 094005)

b_T -Domains

• To ensure $b_0/Q \le b_T$ we take:

$$b_c(b_T) = \sqrt{b_T^2 + \left(\frac{b_0}{Q}\right)^2}$$

• For $b_T \leq b_{T,\max}$:

$$b_T^*(b_c(b_T)) = \frac{b_c(b_T)}{\sqrt{1 + \left(\frac{b_c(b_T)}{b_{T,\max}}\right)^2}}$$

J. Collins et al. (Phys.Rev.D 94 (2016) 3, 034014)

The Non-perturbative Sudakov Factor

$$S_{NP}(b_T;Q) = A \ln \frac{Q}{Q_{NP}} b_T^2$$
 with $Q_{NP} = 1 \, \text{GeV}$

$b_{T, \text{lim}} (\text{GeV}^{-1})$	$r \text{ (fm } \sim 1/(0.2 \text{ GeV}))$	$A (GeV^2)$
2	0.2	0.64
4	0.4	0.16
8	8.0	0.04

Table 1: Values of the parameter A for $b_{T, \text{lim}}$ and r determined at Q=12 GeV. A is defined at which $\exp(-S_{NP})$ becomes negligible ($\sim 10^{-3}$). To estimate the uncertainty associated with the S_{NP} we vary $b_{T, \text{lim}}$ spanning roughly from $b_{T, \text{max}}=1.5$ GeV $^{-1}$ to the charge radius of the proton. r is the range over which the interactions occur from the centre of the proton.

Hard scattering coefficients

$$F_{1} = \frac{\mathcal{N}}{\mathcal{D}M_{\Psi}^{2}} \sum_{n=0}^{6} f_{1,n} (\cos \theta_{CS})^{2n} \qquad F_{2} = \frac{2^{4}3M_{\Psi}^{2}\mathcal{N}}{\mathcal{D}M_{\Psi\Psi}^{4}} \sum_{n=0}^{4} f_{2,n} (\cos \theta_{CS})^{2n}$$

$$F'_{3} = F_{3} = \frac{-2^{3}(1 - \alpha^{2})\mathcal{N}}{\mathcal{D}M_{\Psi\Psi}^{2}} \sum_{n=0}^{5} f_{3,n} (\cos \theta_{CS})^{2n}$$

$$F_{4} = \frac{(1 - \alpha^{2})^{2}\mathcal{N}}{\mathcal{D}M_{\Psi\Psi}^{2}} \sum_{n=0}^{6} f_{4,n} (\cos \theta_{CS})^{2n}$$

$$(1)$$

with: $\alpha=\frac{2M_{\Psi}}{M_{\Psi\Psi}}$, $\mathcal{N}=2^{11}3^{-4}(N_c^2-1)^{-2}\pi^2\alpha_s^4|R_{\Psi}(0)|^4$, $\mathcal{D}=M_{\Psi\Psi}^4(1-(1-\alpha^2)\cos\theta_{CS}^2)^4$ and $R_{\Psi}(0)$ is the J/Ψ radial wave function at the origin and $N_c=3$.

◆□ ▶ ◆圖 ▶ ◆園 ▶ ◆園 ▶ ●目 めの@