DE LA RECHERCHE À L'INDUSTRIE

QUARKONIA IN HIGH-ENERGY COLLISIONS

SAMUEL TING AND HIS BNL TEAM. CREDIT: BNL, 1974

I. HEAVY-FLAVOUR IN PP II. HEAVY-FLAVOUR IN PA III. HEAVY-FLAVOUR IN AA

Recall from the very first talk

The probes

• Heavy-quark mesons, quarkonia, jets...

Soft probes

• Charged particles, light hadrons, low-mass

Electromagnetic probes

• Drell-Yan, photons, weak bosons

The observables

Production

 Cross-sections, Nuclear modification factor, Relative ratios

Correlations

• Multiplicity dependance, flow measurements...

A QGP physicist should know everything about his/her favorite probs !

Today we do the exercise for Quarkonia!

Quarkonia production and experimental measurements

• <u>qq</u> production mechanism

- cross-section
- Jets
- polarisation
-

- **Cold Nuclear Matter**
 - *qq* production in pA
 - Nuclear modification factor
 - •

AA collisions

QGP physics

- *qq* production in AA
- Nuclear modification factor
- Jets
- Elliptic flow
- •

UPC collisions

- - $q\bar{q}$ cross-section

General strategy with hard probes studies

- * How QGP affects your probe
- * Study the production mechanism in the QCD « vacuum ».
- * Study cold nuclear matter effect.
- Build up observables :
 - Nuclear Modification Factor RAA
 - Correlation observables (v_{2} , jet quenching ...)
- * The more precise measurements we have, the more we can constraint models !

General strategy with hard probes studies

- * How QGP affects your probe
- * Study the production mechanism in the QCD « vacuum ».
- * Study cold nuclear matter effect.
- Build up observables :
 - Nuclear Modification Factor RAA
 - Correlation observables (v_{2} , jet quenching ...)
- * The more precise measurements we have, the more we can constraint models !

QUARKONIA IN PP

Quarkonia in pp collisions

* Quarkonia: bound state of charm and bottom quarks

cross-section in pp.

* Physics motivation in pp:

- Test pQCD production models ...
 - * color singlet, color octet, NRQCD, GPDs, CGC
- ... and all the ingredients that come with it !

* PDFs, LDME

Leading production diagram of QQ pair at LHC

* Three main approaches to J/ψ pp production :

- * Three main approaches to J/ψ pp production :
 - <u>Color Evaporation Model (CEM)</u>
 - Simple integral
 - Color neutralized by induced gluon
 - * Proportionality factor independent of $y / p_T / \sqrt{s}$

$$\sigma_{\mathcal{Q}} = F_{\mathcal{Q}} \int_{2m_{\mathrm{Q}}}^{2m_{H}} \frac{d\sigma_{\mathrm{Q}\bar{\mathrm{Q}}}}{dm_{\mathrm{Q}\bar{\mathrm{Q}}}} m_{\mathrm{Q}\bar{\mathrm{Q}}}$$

- * Three main approaches to J/ψ pp production :
 - <u>Color Evaporation Model (CEM)</u>
 - Simple integral
 - Color neutralized by induced gluon
 - * Proportionality factor independent of $y / p_T / \sqrt{s}$

Color Singlet Model (CSM)

- * pQCD based model
- Direct colorless (singlet) production
- * Hadronization probability from data and/or IQCD

$$\sigma_{\mathcal{Q}} = F_{\mathcal{Q}} \int_{2m_{\mathrm{Q}}}^{2m_{H}} \frac{d\sigma_{\mathrm{Q}\bar{\mathrm{Q}}}}{dm_{\mathrm{Q}\bar{\mathrm{Q}}}} m_{\mathrm{Q}\bar{\mathrm{Q}}}$$

$$d\sigma_{Q+X} = \sum_{i,j} f_i f_j \otimes d\hat{\sigma}_{i+j \to Q\bar{Q}+X} \otimes |\psi_Q(0)|^2$$

- * Three main approaches to J/ψ pp production :
 - **Color Evaporation Model (CEM)**
 - * Simple integral
 - Color neutralized by induced gluon
 - * Proportionality factor independent of $y / p_T / \sqrt{s}$

Color Singlet Model (CSM)

- * pQCD based model
- Direct colorless (singlet) production
- * Hadronization probability from data and/or IQCD

Non-Relativistic QCD (NRQCD)

- * pQCD based model
- * Both singlet and octet state are considered
- Relative state contribution of the states are parametrized (LDME)

$$\sigma_{\mathcal{Q}} = F_{\mathcal{Q}} \int_{2m_{\mathrm{Q}}}^{2m_{H}} \frac{d\sigma_{\mathrm{Q}\bar{\mathrm{Q}}}}{dm_{\mathrm{Q}\bar{\mathrm{Q}}}} m_{\mathrm{Q}\bar{\mathrm{Q}}}$$

$$d\sigma_{Q+X} = \sum_{i,j} f_i f_j \otimes d\hat{\sigma}_{i+j \to Q\bar{Q}+X} \otimes |\psi_Q(0)|^2$$

$$d\sigma_{Q+X} = \sum_{i,j} f_i f_j \otimes d\hat{\sigma}_{i+j \to Q\bar{Q}+X} \otimes \langle \mathcal{O}_Q^n \rangle$$

J/W production in pp

J. PHYS. G40 (2013) 045001

 $(2\pi p_T)^{-1}$ BR d² σ /dydp_T [nb/(GeV/c)²) 10^{-2} PHENIX 10^{-3} $J/\psi \rightarrow \mu\mu$ **10⁻⁴**

- RHIC and LHC.

Large number of precise measurements done by many different experiments, covering different colliding energies and rapidity ranges.

Good descriptions by NRQCD-based formalisms at both

Quarkonia versus multiplicity

* Production versus multiplicity prob correlations with:

- Jets
- Multi-parton interaction produced by the underlying event, QGP or not.
- * Caveat: importance of the multiplicity estimator.

Quarkonia versus multiplicity

* Production versus multiplicity prob correlations with:

- Jets
- Multi-parton interaction produced by the underlying event, QGP or not.
- * Caveat: importance of the multiplicity estimator.

Quarkonia versus multiplicity

- Not the case at mid-rapidity.
- * Caveat: keep in mind the multiplicity estimator.

* Linear increase of quarkonia production with relative multiplicity at forward rapidity.

Quarkonia in jets

- * Quarkonia in jets:
 - prob fragmentation parametrisation.
 - Generally algorithm dependent measurement.
- Results at LHC show that prompt J/Ψ is less isolated than expected by LO NRQCD in PYTHIA

Quarkonia polarisation

* Polarization is defined as the spin alignment with respect to a chosen direction.

$$W(\theta,\phi) \propto \frac{1}{3+\lambda_{\theta}} \Big(1 + \lambda_{\theta} \cos^2 \theta + \lambda_{\phi} \sin^2 \theta \cos 2\phi + \lambda_{\theta\phi} \sin 2\theta \cos \phi \Big)$$

- - Helicity (HX): quarkonium pT direction.
 - Collins-Soper (CS): bisector of angle between beams.
 - Gottfried-Jackson (GJ): direction of one beam.
- * Useful To constrain models:
 - LO NRQCD: transverse polarization ($\lambda_{\theta} > 0$).
 - NLO CSM: longitudinal polarization ($\lambda_{\theta} < 0$).
 - Medium-induced polarisation ?

Measured as anisotropies in the angular distributions of decay products in the quarkonia CM

Quarkonia polarisation

* No significant polarization up to $p_T \sim 60$ GeV for the J/ψ and the $\psi(2S)$.

* NRQCD and CSM also fail to describe $\Psi(nS)$ polarization @ 8 TeV.

QUARKONIA IN PA

Quarkonia in pA collisions

- * Same motivations as for pp collisions, but now with a nucleus!
- * Allow to test/constrains the so-called 'Cold Nuclear Matter effects.'

Nuclear PDFs

Coherent energy loss

nPDFs - Eur. Phys. J. C 82, 413 (2022)

- **Interaction with co-moving medium**

arxiv:1212.0434

30000

Quarkonia in pA collisions

- * Same motivations as for pp collisions, but now with a nucleus!
- * Allow to test/constrains the so-called 'Cold Nuclear Matter effects.'

- **Interaction with co-moving medium**

arxiv:1212.0434

30000

An important plot

- * $\psi(nS)$ measured at the LHC by many experiments.
- * J/ψ production described by theory models (energy loss, nPDFs ...)
- * Relative $\psi(2S)/J/\Psi$ suppression better described by comovers model.

JHEP 07 (2020) 237

Y(nS) production

- * $\Upsilon(nS)$ production measured by all the LHC's experiment.
- * Difficult to have strong conclusions with the large uncertainties, but a relative suppression of higher $\Upsilon(nS)/\Upsilon(1S)$ seems to be observed.
- * This trend is reproduced by comovers+ nPDFs predictions.

A last puzzle : $\psi(2s)$ versus J/ψ

* $\psi(2S)$ more suppressed than J/ ψ in pPb: the two have different binding energy.

Not explained by coherent energy loss or nPDFs alone.

Sign of comovers effect ? QGP ?

Latte results by ALICE

* Puzzle not understood ... but it seems that no comovers effet in pp collisions... or ?

arXiv:2204.10253

$X(3872)/\psi(2S)$ in pp/PbPb collisions

- * X(3872) : exotic state still not understood.
 - Tetraquark / hadronic molecule / something else ?
- * Production yield in QCD medium strongly reflects internal structure.

Compact tetraquark/pentaquark

Diquark-diquark PRD 71, 014028 (2005) PLB 662 424 (2008)

Hadronic Molecules

Ū

PLB 590 209 (2004) PRD 77 014029 (2008) PRD 100 0115029(R) (2019)

 π

Hadrocharmonium/ adjoint charmonium

PLB 666 344 (2008) PLB 671 82 (2009)

Benjamin Audurier - <u>benjamin.audurier@cern.ch</u>

$X(3872)/\psi(2S)$ in pp PbPb collisions

- * Different trend measured by LHCb and CMS in pp and PbPb.
- * pp results favour tetraquark nature of the $\chi_{c1}(3872)$, while PbPb enhancement favours molecular nature due to coalescence mechanisms.
- * To be understood.

Benjamin Audurier - <u>benjamin.audurier@cern.ch</u>

arXiv:2102.13048

QUARKONIA IN HIC

Quarkonia in AA collisions

Hadronic quarkonia:

• High mass \rightarrow short formation time \rightarrow ideal prob for the QGP.

Color screening mechanism *Physics Letters B vol.*178 n.4

(re)combination

Production mechanism at the LHC

* Leading Feynman diagrams :

Expected number of Heavy-Quarks pairs in central AA collisions :

	SPS	RHIC	LHC
Charm	0.2	10	130
Beauty		0.05	5

Possible (re)combination mechanism

- * Possible (re)combination mechanism
- * Charmonia from (re)combination = *thermalized* !
 - Produced at low-p_T / central collisions.

J/ψ production in AA collisions at RHIC and LHC

- * Relative J/ψ suppression measured at RHIC and the LHC, increasing with centrality.
- * LHC > RHIC R_{AA} at low p_T -> interpreted as recombination mechanism.
- * LHC < RHIC R_{AA} at low p_T -> interpreted as larger suppression due to colour screening.
- * Data reproduced by theory models which include recombination mechanisms. 28

Y(nS) production

- * Interpreted as a consequence of the sequential suppression (?)

* Relative $\Upsilon(2S)/\Upsilon(1S)$ suppression measured by CMS in 2012 also measured by ALICE.

* LHC data described by transport models which includes hydrodynamics and regeneration.

Quarkonia: LHC@5.02 TeV

What about the elliptic flow?

- * Flow : measure azimuthal dependence of particle production
 - Initial spatial anisotropy -> momentum-space anisotropy
 - Second order v_2 = elliptic flow

 $\frac{\mathrm{dN}}{\mathrm{d}\phi} \sim 1 + 2\sum_{n} v_n \cos[n(\phi - \Psi_n)]$

What about the elliptic flow ?

- * Flow : measure azimuthal dependence of particle production
 - Initial spatial anisotropy -> momentum-space anisotropy
 - Second order v_2 = elliptic flow
- * Positive v_2 measured for the J/ψ up to hight p_T Data not reproduced but the models. * Zero v_2 measured for the $\Upsilon(1S)$.

Quarkonium polarization in PbPb

PLB 815 (2021) 136146

- ALICE has measured J/Ψ polarization in PbPb
- * Tensions (3 σ) between ALICE (PbPb) and LHCb (pp) in the helicity frame.
 - Medium-induced effects on polarization in Pb-Pb?

QUARKONIA IN UPC

Ultra-peripheral collision

Experimental characteristics :

- clean signal with low activity in the detector
- very low $p_T \propto 1/r_{target}$

J/ψ production in ultra-peripheral collisions

J/ψ production in ultra-peripheral collisions

* Very-low p_T excess measured by ALICE at LHC

Mostly likely photo-production \rightarrow good p_T resolution

- - Mostly likely photo-production \rightarrow good p_T resolution

★ Very-low p⊤ excess measured by ALICE at LHC

* Prob for the photon flux and the geometry of the collisions

Phys. Rev. D 96, 056014 (2017) FIG. 1: The b-dependence photon flux distribution for the different form factors of the lead nuclei.

- - Mostly likely photo-production \rightarrow good p_T resolution
- * Prob for the photon flux and the geometry of the collisions

★ Very-low p⊤ excess measured by ALICE at LHC

* Open-question : Could it be useful for QGP studies ?

ALI-PREL-367215

ALI-PREL-367215

