

Status and Outlook of WP04 "Roadmap and Pre-design of Future Irradiation Facilities"

P. Pelissou (CERN), F. Ravotti (CERN), S. Danzeca (CERN), R. Versaci (ELI BEAMLINES),I. Zymak (ELI BEAMLINES)

RADNEXT 2nd Annual Meeting – 9th - 10th of May

https://indico.cern.ch/event/1213492/

Contact: pierre.pelissou@cern.ch

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No **101008126**

WP04-NA3 RADNEXT

Agenda

1.	WP04 structure and members
•	Tools 1.1

- 2. Task 4.1
- 3. Task 4.2
- 4. Task 4.3
- 5. Task 4.4
- 6. WP04-NA3 Conclusion

1. WP04 structure and members

Main objective: Define long term scientific and industrial needs for irradiation facilities based on key parameters, considering inputs from relevant research groups and industrial community

Key tasks' description:

- Task 4.1: WP Coordination and Communication

- <u>Task 4.2</u>: Identify limiting factors of current irradiation facilities and propose solutions for the upgrade of existing infrastructures and the development of future ones (D4.1 and D4.2, M20)

- Task 4.3: Investigate innovative solutions for current irradiation facilities (D4.3, M30)

- Task 4.4: Design study of new irradiation facilities (D4.4, M40)

2. WP04-NA3 Task 4.1 : WP Coordination and Communication

Indico category available "WP4-NA3" WP4 RADNEXT Team Meeting on a weekly basis E-group created (radnext-na3) with the following email address: radnext-na3@cern.ch

→ <u>Report D4.2</u>: Updated international irradiation facility compendium

- > Strong synergies with WP3 in order to retrieve facilities information and feedback:
 - · Consolidation of the radiation test facilities database
 - Updates of important parameters and features

A unified entry point for CERN and worldwide irradiation facilities with an essential collection of information <u>https://www.cern.ch/irradiation-facilities/</u>

- → A database platform dedicated to list essential features of irradiation facilities:
 - Open source developed at CERN (EP dept.)
 - List of infrastructures across application domains
 - Information displayed under the responsibility of the facility
 coordinators
 World distribution of irradiation facilities in the CERN database

Visitor countries

cou	INTRY	▼ VISITS
	Switzerland	2,830
	United States	1,680
	France	1,032
	Italy	557
	United Kingdom	450
۴	China	387
	Germany	380
5	Spain	252
	Russia	128
	Netherlands	125

→ <u>Today:</u>

- Maintained through RADNEXT WP4
- 234 valid facility entries (updated from November 2022 onwards)
- ~ 9500 visits since launch

A dedicated window for each facility entry:

- Contact information
- Facility data, irradiation conditions, safety and accessibility

Search functionalities:

- Country, source type and radiation field/type

Editing functionalities:

- Protected by CERN authentication system
- External "lightweight" accounts are supported

• USER MANUAL:

- AIDA-2020-NOTE-2017-002

	Facility coordinator contact information		Institute/Organization Details				
Namer	Salvatore Danzeca	Namei	CERN				
E-mail*:	Salvatore Danzeca@cern.ch	Address:	Route de Meyrin 385, 1217 Meyrin				
Alternative e-mail:	Salvatore Danzeca@cern.ch	Cityr	Meyrin				
Phone:	+41 75 411 7579	Country:	Switzerland				
Lest Update at:	2021-06-07 18:23:53	Websiter	www.cem.ch				
Publish Entry in DB?:	1						
	Facility Data		Irradiation Conditions				
Name:	CHARM	FORM FIELD		YES NO N/A	Se Core		
Source:	Synchrotron	Is an Active Readou	t of the sample possible during irradiation?	. 0 0			
Radiation Field/Type:	Moved Field	Is there any Sample	Is there any Sample Dosimetry available?				
Energy	Thermal - GeV	Will the sample be co	Will the sample be considered Radioactive after irradiation?				
Activity		Can the humidity be	Can the humidity be controlled during irradiation?				
Power:		Is there any sample	Is there any sample positioning system?				
Min Dose Rate:	< 10 mGyh	Min Temperature:	Min Temperature: RT				
Max Dose Rate:	-100 Gyrh	Max Temperature:	RT				
Min Flux	< le8 HEH/cm2h	Dosimetry Type:	RadMon: HEH Fluence, Dose, I MeV Neutron				
Max Flux:	Sel1 pipil	Irrediction Volumer	1620x6600x900 cm3				
Pulsed or Continuous:		*	RadMon installed on the equipment				
	500 ms	Intellection					
Pulse Width:		in derection in					

- <u>Report D4.1</u>: Determine Key Performance Indicators (KPI) and limiting factors for current facilities in view of future technological bottlenecks
 - → <u>STEP 1:</u> a <u>questionnaire</u> dedicated to RADNEXT users and beyond
 - Identify the **current** and **future** needs of users performing tests in worldwide irradiation facilities
 - STEP 2: a <u>questionnaire</u> dedicated to RADNEXT facility coordinators
 Assess the performance of RADNEXT irradiation facilities by means of 9 KPI
 - → STEP 3: Identify new facilities currently not adapted for radiation testing but that can be used for components qualification and system-level testing
- Summary for RADECS 2023: "Bridge the gap between future users' needs and radiation-test facilities performances", P. Pelissou, I. Zymak, R. Versaci, F. Ravotti, S. Danzeca

STEP 1: Identify technological limiting factors for available irradiation test facilities based on current industrial and scientific requests

→ RADNEXT user's questionnaire focused on 4 use cases :

- Sensors and Detectors
- Electronic components
- Electronic System and Tests
- Materials
- → As well as 5 radiation fields:
 - Heavy ions, protons, neutrons, mixed-field and photons

٠

- > Needs for radiation fields according to the use cases
 - Sensors and Detectors (11 replies)

Electronics System Tests (12 replies)

Electronics Components (**33 replies**)

• Materials (5 replies)

- > Needs for radiation fields according to the work place of users
- University/Research Institute (**32 replies**)

Industry (20 replies)

• Space Agency/Aerospace (9 replies)

- > Average number of days required to perform radiation tests per year
- Electronic Components (33 replies)

								Partic	les_modified / T	oday / Future
	Mixed-field		Protons		Heavy ions		Neutrons		Photons	
Applications	Today	Future	Today	Future	Today	Future	Today	Future	Today	Future
Electronics Components	81	118	31	47	14	21	14	16	5	5

- Demand's increase:
 - Heavy ions: +32%
 - Mixed-field: +31%
 - Protons: +24%

• Electronic System Tests (12 replies)

							Particles_modifie	ed / Today / Future	
		Protons		Mixed-field		Neutrons	Heavy ions		
Applications	Today	Future	Today	Future	Today	Future	Today	Future	
Electronics System tests	81	97	81	118	18	18	15	23	

- Demand's increase:
 - Mixed-field: +68%
 - Heavy ions: +35%
 - Protons: +16%

- > Average number of days required to perform radiation tests per year
- Sensors and Detectors (11 replies)

								Partic	cles_modified / T	oday / Future
	Protons Neutrons		Neutrons	Mixed-field			Heavy ions		Photons	
Applications	Today	Future	Today	Future	Today	Future	Today	Future	Today	Future
Sensors & Detectors Irradiations	38	54	10	10	10	10	8	10	5	5

- Demand's increase:
 - Protons: +30%
 - Heavy ions: +20%

• Materials (5 replies)

					Particles_	modified / Today / Future
		Protons		Photons		Heavy ions
Applications	Today	Future	Today	Future	Today	Future
Materials	103	103	65	115	1	10

- Demand's increase:Heavy ions: +90%
 - Photons: +43%

> Most important criteria to select a facility for users

• Beam characteristics and availability prevailed in users' selection of a given facility

- Penetration depth required by users of heavy ions facility
 - Electronics Components (16 replies)

 Electronics System and tests /Sensors and Detectors/Materials (5 replies)

- LET range (MeVcm²/mg) required by users of heavy ions facility
 - Electronics Components (16 replies)

 Electronics System and tests /Sensors and Detectors/Materials (5 replies)

> Takeaways:

- Access to **heavy ions** and **protons facilities** should rise within the five coming years according to the needs expressed by the research and industrial sectors.
- The demand for **mixed-field facilities** follows a similar tendency among users.
- Among the use cases of interests for RADNEXT (electronics system tests and electronics components), the essential criteria are **the beam characteristics**, **the accessibility** of irradiation facilities and **the local services** provided by the personnel.

> Focus on heavy ions' beam:

- Penetration depth's outlooks tend to point towards lower values (**up to 200 μm**).
- LET range usually varies from up to 60 or to 80 MeVcm²/mg.

- Future needs of users
- Development of the space market (New Space)
- Emergence of new components with higher sensitivity and complexity
- Mismatch between beam time availability and market's needs

- Limited range of beams energy/penetration depth
- Accessibility in a reasonable geographical perimeter

- STEP 2: Identify operational issues and challenges for radiation testing coping with different applications and environments
- → RADNEXT facility coordinators questionnaire focused 9 KPI :
 - High dose rate and flux
 - Large volumes and surfaces
 - High Energy/mixed-field energy
 - Intermediate energy field
 - High availability
 - Services & environmental control
 - Penetration in matter
 - Low cost per irradiation unit
 - Post irradiation services
- → The facility coordinators have to assess each KPI according to the following scale :
 - Routinely = 3, with little effort = 2, with great effort = 1, impossible = 0

17

- Clear takeaway from our evaluation protocol: lack of high-energy beam or mixed-field energy that can be provided by a single facility (CHARM)
- 1. Deliver high dose rate/flux

2. Provide intermediate energy field 3. Propose lower cost offers per irradiation units

- Apply for facility/external grants
- Choose a fix cost per exposure unit/time

- STEP 3: Identify new facilities currently not adapted for radiation testing but that can be used for components qualification and system-level testing
- → LPA facilities can offer unique beam characteristics, but some trade-offs mitigation is required:
 - Provides a radiation beam with ultra-short particle duration
 - Radiation is delivered with ultra-high particle flux (e.g. kA range electron currents) and ultra-high dose rates
 - The energy spread, beam pointing, divergence and pulse-to-pulse variation are relatively high compared to conventional sources
- →LPA facility coordinators questionnaire focused to determine the current facilities suitability:
 - Requests are sent to more that 20 facilities/beamlines
 - Limited feedback so far, still collecting replies

- STEP 3: Identify new facilities currently not adapted for radiation testing but that can be used for components qualification and system-level testing
- → Laser Plasma-based Accelerators (LPA) have reached a reasonable technology readiness level
- → Several LPA facilities declare their readiness to radiation experiments and tests:
 - HZDR, Dresden DARCO laser driven electron, proton/ions accelerators
 - ELI Beamlines ALFA (electron) and ELIMAIA (proton)

4. WP04-NA3 Task 4.3 : Future solutions for current irradiation facilities

- Task Leader: Federico Ravotti (CERN) and Roberto Versaci (ELI)
- → Study solutions for increasing the usability of the existing facilities:
 - Standardized mechanical supports,
 - Cabled and wireless solutions to have multi-users patch panel connectivity
 - Virtual access/3D views of the installations
- ➔ Propose techniques and methods to overcome technological bottlenecks in the short term:
 - Ion energies modulation and particle flux tuning in a wide dynamic range
 - Beam steering techniques
- → Guide research groups and facilities coordinators in their efforts to fulfill the longterm requirements

5. WP04-NA3 Task 4.4 : Design study of new irradiation facilities

Task Leader: Federico Ravotti (CERN) and Roberto Versaci (ELI)

➔ Propose new primary beam and mixed-field facilities

- Study the beam parameters of such facilities due to a growing interest in operational parameters and beam availability:
 - Study the tools and dosimetry methods to assess the performances of LPA facilities
 - Select a pool of infrastructures to lead test campaigns
 - Evaluate the suitability to radiation tests according to the users' needs

6. WP04-NA3 Conclusion

Task 4.2

- → A complete update of the international irradiation facility compendium:
 - 234 valid facility entries entry all around the world ensure the durability of the available information
 - > **<u>Objective</u>**: Make this database a worldwide reference **your support matters**
- → In-depth investigation of the current and future needs of irradiation facilities' users:
 - Collect relevant experiences on 4 use cases and 5 radiation fields
 - Determine their future demand in the scope of radiation tests
- ➔ Assessment of a pool of RADNEXT facilities:
 - Identify the technological and logistics bottlenecks that must be tackled

Tasks 4.3 and 4.4: Ongoing

Implement a process based on set-ups and dosimetry tools to perform beam diagnosis and <u>characterization of LPA facilities</u>

Thank you for your attention!

Image Source: CERN – CHARM facility

