WP6, Results and Outcomes from Latest WP6 Test Campaigns in Radiation Facilities

André M. P. Mattos (IES/University of Montpellier) Almudena Lindoso (UC3M) RADNEXT 2nd Annual Meeting – 9-10 May 2023 <u>https://indico.cern.ch/e/radnext-2023</u>

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No **101008126**

RADNEXT 2nd Annual Meeting – 9-10 May 2023

Outline

• IES/UM: Test Campaigns

- CHARM: RISC-V/SoC
 - Power and logging challenges
- ChipIr: RISC-V/SoC/FPGA
- PSI: SRAM
 - Setup, capabilities, and results
- Conclusions

- CHARM: SoC
- ChipIr:
 - Microprocessors/SoC

uc3m

- FPGAs
- GPUs
- UltraScale+
- Publications
- Conclusions

IES/UM: Test Campaigns

IES/UM: Test Campaigns

	Source	Facility	Date	Experiment
1 st year	Protons	PSI	12/21*	SDRAM/HyperRAM
	Heavy lons	RADEF	02/22	SRAM
	Neutrons	Chiplr	05/22*	RISC-V/SoC/NoC
	Protons	PARTREC	06/22*	RISC-V/SoC
2 nd year	Mixed-Field	CHARM	10/22	RISC-V/SoC
	Neutrons	Chiplr	11/22*	RISC-V/SoC
	Protons	PSI	12/22	SRAM
	Laser	ESTEC	05/23	SRAM

*Test campaigns through TA calls

CHARM Irradiation room

CHARM Control room

> CHARM: RISC-V/SoC

- Characterization of a fault-tolerant RISC-V systemon-chip in flash-based FPGAs
 - Two different board designs with same FPGA family, but different power regulators
 - Both boards with external SEL protection and current monitoring
 - External robust communication fixtures were used to extend the logging interfaces
 - Similar setups and conditions, but two very distinct experimental characteristics
 - Despite that, there is good correlation between results considering the useful operation time

[1] [Under review] Douglas A. Santos, André M. P. Mattos, et. al., "Enhancing Fault Awareness and Reliability of a Fault-Tolerant RISC-V System-on-Chip", Electronics, 2023.

[2] [Accepted] André M. P. Mattos, Douglas A. Santos, et. al., "Using HARV-SoC for Reliable Sensing Applications in Radiation Harsh Environments", IWASI, 2023.

> CHARM: RISC-V/SoC >> Power regulators

	TLV62565	EP53A7HQI	LM317
Device type	Switching regulator	Switching regulator	Linear regulator
Board critical TID	~ 19 krad	> 36 krad	> 36 krad
# SELs	1	1	1
# Transients	1	7	6
Observations	After critical TID, it was not operational, but current limited. After 29 krad, it had unlimited consumption	Steady current increase (voltage decrease) ~ 6.5%	Steady current decrease (voltage increase) ~ 8.5%

> CHARM: RISC-V/SoC >> Logging interface

PARTREC

- Robust interface: UART ↔ RS-485
 - UART with flow control •
 - RS-485 transceiver ٠
 - IO buffer •

High-level failures

Observation

Flexible and easy to use (transparent) •

Chiplr

[Neutrons]

None¹

Cable: 125m (with patch

panel connections)

Baud Rate: 3Mbauds

- RJ45 connector/cable for physical connection •
 - Robust and often available in patch panels

¹Functional testing only (loopback) with direct irradiation, ²Only usage (no specific testing)

> ChipIr: RISC-V/SoC

- Characterization of a fault-tolerant RISC-V system-on-chip in a SRAM-based FPGA
 - Adaptation from the flash-based port
 - External bitstream memory required
 - Sensitive configuration memory
 - Custom scrubbing and correction (alternative to the SEM IP) with integration to the SoC

	SoC in Flash-based FPGA [Microchip] [M2S010]	SoC in SRAM-based FPGA [Xilinx] [Zynq-7010]
Total Fluence [n/cm ²]	1.80x10 ¹²	5.83x10 ¹⁰
Mean Fluence to Failure [n/cm ²]	2.06x10 ¹⁰	3.60x10 ⁸
Cross Section [cm ²]	4.98x10 ⁻¹¹	2.78x10 [⊸]
	L	·

~ 200x difference in robustness

Zybo:

- Zynq-7000 family
- Flash
- SDRAM

[3] [Under review] Douglas A. Santos, Pablo M. Aviles, André M. P. Mattos, et. al., "Hybrid Hardening Approach for a Fault-Tolerant RISC-V System-on-Chip", RADECS, 2023.

> PSI: SRAM

- Investigation on radiation-induced single-event latch-ups in SRAM memories on-board PROBA-V mission
 - Understanding the flight behavior and error rates
- Utilization of an experimental approach attending the target environment
 - RADEF: Heavy lons
 - PSI: Protons
 - ESTEC: Laser (further investigation of the observed phenomena)
- Development of an experimental setup for enhanced observability

[4] [Under review] André M. P. Mattos, Douglas A. Santos, et. al., "Investigation on Radiation-Induced Single-Event Latch-up in SRAM Memories on-Board PROBA-V", RADECS, 2023.

[5] [Under review] André M. P. Mattos, Douglas A. Santos, et. al., "Instrumentation and Methodology for In-Depth Analysis of Single-Event Latch-up on Memory Devices", Journal of Instrumentation, 2023.

> PSI: SRAM >> Test Setup

- Enhanced experimental setup
 - Precise **timing** and current measurements
 - Coherent monitoring
 between memory errors and
 current measurements
 - Many test modes with
 realistic stimuli
 - Robust and flexible test setup

> PSI: SRAM >> Results

- Error accumulation during SEL events
 - Example within a dynamic test
 - 50ms "hold time" and 200ms "cut time"

- Event cross sections
 - Good correlation between lots
 - Weibull fitting

- Tests at CHARM presented many setup challenges to be addressed before the campaign
- Tests at ChipIr provided more insights on the capabilities of Flash- and SRAMbased FPGAs for radiation testing
- Tests at PSI allowed the elaboration of an enhanced setup and provided practical insights
- We are currently working in the **first WP6 milestone**, which will summarize the setup preparation experience obtained in these **first 2 years of the project**
- We intend to elaborate **more publications** using the acquired data and experience

UC3M: Test Campaigns

UC3M: Test Campaigns TA RADNEXT

	Source	Facility	Date	Experiment	
1 st year	Protons	PSI	12/21	µp/FPGA/SoC	
	Neutrons	Chiplr (1/3)	05/22	µp/FPGA/SoC/GPUs	
	Neutrons	Chiplr (2/3)	09/22	µp/FPGA/SoC/GPUs	
2 nd year	Mixed field	CHARM	10/22	µp/SoC	
	Neutrons	Chiplr (3/3)	11/22	µp/FPGA/SoC/GPUs <mark>√ Co</mark>	mpleted
2rd	Protons	PARTREC	09/23	µp/FPGA/SoC	
3 ^{re} year	X-ray (microbeam)	ESREF	Under review	µp/FPGA/SoC/Memories	

CHARM

CHARM

- 2 commercial boards (zybo)
- Microprocessor hardening techniques
- Complex setup
- After 6.31krad (~20 hours), board non responsive

> ChipIr: Experimental setup

- Experiments UC3M, complex COTS systems:
 - 8x SoC Xilinx Zynq-7000 (28 nm): Microprocessors, FPGA, SoC
 - 6x Jetson Nano (20 nm): Quad-core A57 & NVIDIA Maxwell GPU
 - 1x SoC Xilinx UltraScale+ (16 nm FinFET)

✓ Several experiments per board type

> ChipIr: Experimental setup

- Experiments UC3M, complex COTS systems :
 - 8x SoC Xilinx Zynq-7000 (28 nm): Microprocessors, FPGA, SoC
 - 6x Jetson Nano (20 nm): Quad-core A57 & NVIDIA Maxwell GPU
 - 1x SoC Xilinx UltraScale+ (16 nm FinFET)

Experimental Setup (November)

ChipIr RADNEXT 2nd Annual Meeting – 9-10 May 2023

> ChipIr: Experimental setup

- Zynq & UltraScale+: serial communication
- GPU: Ethernet connection
- External host (Raspberry Pi) to control the experiments & Power cycles
- UltraScale+: SEL detector

> ChipIr: Evaluation of events vs board location

- Zynq 7000
- 3 Different hardening techniques
 - PL
 - SoC (PL+PS)

Experiment	∆ Errors (%)
dCR_RRR (PL)	- 13.37 (+3 positions)
NIR_RRR_noSEM (SoC)	- 47.50 (+5 positions)
NIR_RRR_SEM (SoC)	+4.21

Position in the stack

- NIR_RRR_SEM behaves differently
 - Includes Xilinx SEM IP: Detects & corrects PL errors

Board position	SEM corrections	PL+PS events
 5	978	205
6	1119	214

> ChipIr: Cross-section

Comparison different particles/ different complex systems

> ChipIr: Cross-section

Comparison CHARM/ChipIr complex system microprocessor-based hardening technique

• Based in: P. M. Aviles, A. Lindoso, J. A. Belloch, M. Garcia-Valderas, Y. Morilla and L. Entrena, "Radiation Testing of a Multiprocessor Macrosynchronized Lockstep Architecture With FreeRTOS," in IEEE Transactions on Nuclear Science, vol. 69, no. 3, pp. 462-469, March 2022 doi: 10.1109/TNS.2021.3129164.

		CHARM	Chiplr	
	Fluence [particles/m ²]	5.67x10 ¹¹	2.57x10 ¹¹	
Microprocessor	Cross-section [cm ²] (Total events)	2.35x10 ⁻⁹	9.64x10 ⁻⁹	✓ Up to 2 orders
technique	Cross-section [cm ²] (Undetected errors)	1.23x10 ⁻¹¹	5.84x10 ⁻¹¹ 🧲	improvement
	Error rate [errors/hour]	114.12	105.13	
	Time [hours]	11.66	23.56	

> ChipIr: SoC UltraScale+

- Small number of events
- Microlatchup (under SEL stablished limit=500 mA)
- The same test was performed at CNA (15 MeV protons)
 - Small number of events
 - Flux was increased: TID effects observed (persistent current degradation)
 - No SEL observed
- Additional tests will be performed in the next TA campaigns (PARTREC)

CNA

Publications UC3m

- 1. **RADECS 2022 Data Workshop:** P. M. Aviles, L. A García-Astudillo, J.A. Belloch, L. Entrena, A. Lindoso, "Comparative of proton radiation data for 28 nm Zynq-7000 SoC"
- IEEE TNS (Special issue RADECS 2022) : L. A. García-Astudillo, A. Lindoso, et al., "Evaluating Reduced Resolution Redundancy for Radiation Hardening in FPGA designs" doi: 10.1109/TNS.2023.3268825

Under Review:

- RADECS 2023
 - 1. D. A. Santos, P.M. Aviles, A.M.P. Mattos, M. Garcia-Valderas, L. Entrena, A. Lindoso, L. DiLillo, "Hybrid Hardening Approach for a Fault-Tolerant RISC-V System-on-Chip"
 - 2. G. Leon, J.M. Badia, J.A. Belloch, M. Garcia-Valderas, A. Lindoso, L. Entrena, "Analysing the influence of memory and workload on the reliability of GPUs under radiation"

Journal publications & conference communications in progress

Conclusions UC3m

- Successful test of complex systems in different facilities
 - SoC, hard-core & soft-core microprocessors, FPGA and GPUs
- Combine different experiments/different boards & sensitivities for a radiation campaign
- Challenges in testing complex devices:
 - SoC
 - GPUs
- Comparison of irradiation campaigns results for different facilities/particles
- Developing guidelines for non-expert end users

Image Source: IES/UM

Thanks for your attention!

André M. P. Mattos (IES/UM): andre.martins-pio-de-mattos@etu.umontpellier.fr

Almudena Lindoso (UC3M): alindoso@ing.uc3m.es

