WP07-JRA3, Cumulative radiation effects on electronics - Results of task 7.2: TID

Vincent GIRONES (University of Montpellier) RADNEXT 2nd Annual Meeting – 9-10 May 2023 https://indico.cern.ch/e/radnext-2023

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No **101008126**

RADNEXT 2nd Annual Meeting – 9-10 May 2023

Brief reminder of the objective

- Demonstrate the feasibility of using high-energy X-ray generators for TID testing of electronic devices (in comparison to cobalt60) and Determine the useful parameters (energy, filters...)
- Pros X-ray:
 - easier radiation safety issues
 - cheaper
 - easy to collimate
 - higher dose rate offering reduced testing time
- Cons X-ray:
 - lower energies
 - → But can be filtered !

X-ray spectrum simulation

- 2 mm Al Filter:
- -Al is commonly use with X-ray in TID [ASTM F1892]
- -Easier dosimetry without <20keV energies
- 2mm Al + 1 mm Pb Filter:

-The lead filter reduces low energies well below 100keV while only slightly altering high energies

Simulation performed with TASMICS

Facilities and irradiation conditions

XRAD320	Facility
---------	----------

Beam **Devices under**

Filter holder

Collimator

Mobile plate

3 Cobalt 60 conditions to investigate there is no dose rate effect.

2 X-ray conditions to study the effect of filtering • on the dose deposit in the components.

	Irradiation conditions				
	Туре	Filter	Dose Rate	Length source-target	
test	Cobalt-60	Nothing	5,57Gy(Air)/h	310 mm	
	Cobalt-60	Nothing	0,62Gy(Air)/h	1000 mm	
	Cobalt-60	Nothing	0,15Gy(Air)/h	2000 mm	
	X-ray	2 mm Al	15Gy(Air)/h	400 mm	
	X-ray	2 mm Al + 1 mm Pb	15Gy(Air)/h	400 mm	

•

Generic SOT23 NMOS (DMN601K) & PMOS (DMP2004)

WP7 Task 7.2: first obtained results

RADNEXT 2nd Annual Meeting – 9-10 May 2023

WP7 Task 7.2: main obtained results

We can get closer to the degradation obtained with cobalt by using an X-ray generator: we have to use (left) a high voltage for the generator, and (right) filters to cut low energy photons. Results presented at RADECS2022 and submitted to IEEE TNS.

The Use of High Energy X-Ray Generators for TID Testing of Electronic Devices

Vincent Girones, Jérôme Boch, Alain Carapelle, Arnaud Chapon, Tadec Maraine, Labau Timothee, Frédéric Saign

MOS Capacitor parameters

Mos Capacitor Parameters

MOS Capacitor results

- C/V characterization Mos capacitor:
- 3 modes : accumulation, depletion, and inversion
- 3 extracted parameters: Cox, Cfb, Vfb

PMOS Capacitor (400 nm Oxyde 1 mm² area)

- Dose effect on Mos capacitor:
- Flatband voltage drift : Oxyde trapped charges
- → Change of gradient: Interface trapped charges

PMOS Capacitor (100 nm Oxyde 1 mm² area)

RADNEXT 2nd Annual Meeting – 9-10 May 2023

WP7 Task 7.2: plans for the next months

- Validate the obtained results on more components:
 - dedicated MOS capacitors from LAAS to extract physical information,
 - ✓ more complex devices (in link with WP6),
 - \checkmark dosimeters (in link with WP5), ...),
- Irradiation with higher energy photons up to 3.5MeV (ATRON accelerator),
- Geant4 and/or Fluka simulation (in link with WP8) to study the low energy photons attenuation in packages or upper layers of a devices.
- Writing the first milestone "X-ray ATRON Facility modelling"

Thanks for your attention!

Cobalt 60 Irradiator Source: UM

3.5 MeV e-beam Accelerator Source: ATRON

