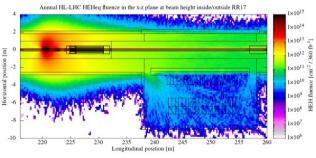
WP8: Development of SEE simulation capabilities with Monte Carlo particle transport codes

Dávid Lucsányi (CERN, University of Montpellier)

RADNEXT 2nd Annual Meeting – 9-10 May 2023 https://indico.cern.ch/e/radnext-2023

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No **101008126**

Outline

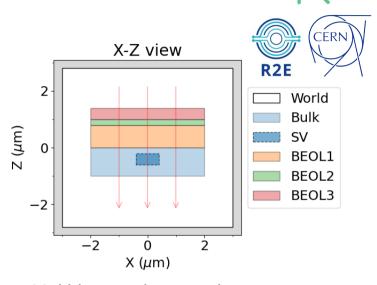

- FLUKA.CERN Introduction
- Geant4 Introduction
- The G4SEE toolkit Introduction
 - Capabilities & Architecture
 - Validation with neutrons
 - SEU cross-section estimation
 - User support & community
- Next step: Integration of G4SEE into FLUKA
- Validation of FLUKA SEE module / G4SEE

FLUKA.CERN

- Multi-purpose Monte Carlo particle transport simulation code developed by the FLUKA collaboration based at CERN [1]
- **Primarily for radiation environments**, heavily used for CERN accelerator incl. (HL-)LHC environments, but also for medical (hadrontherapy) applications
- Mostly FORTRAN code, migration to C++
- Closed source, academic single user and commercial licenses
- SEE scoring capabilities are limited, e.g. biased (non-analog MC) single events can only be simulated using a custom-made user routine [2], which is not part of FLUKA ⇒ RADNEXT WP8 Task 8.6 (Integration of SEE event-by-event scoring in FLUKA)
- Users are limited to set/change the physics, validation is the responsibility of developers
- Flair, an advanced general GUI for FLUKA
 - [1] C. Ahdida et al.: New Capabilities of the FLUKA Multi-Purpose Code, [link]
 [2] R. García Alía: Radiation Fields in High Energy Accelerators and their impact on Single Event Effects, PhD thesis, [link]

More info on https://cern.ch/geant4

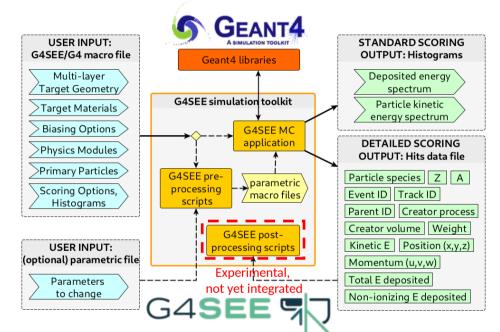
- Multi-purpose Monte Carlo particle transport simulation framework developed by the Geant4 collaboration world-wide based at CERN
- Both for detector response and radiation environments, heavily used by CERN experiments (ATLAS, CMS, etc.), but also for space and medical applications
- It is a **C++ library**, enabling the development of Gean4-based applications
- Free and fully open-source
- Various SEE scoring capabilities: biased (non-analog MC) single events can be simulated, all the secondaries particle data can be obtained
- Users and app. developers are free to set/change the physics, validation is the responsibility of both the Gean4 and application developers, as well as the users
- No general GUI, only macro (text) files as input



5

G4SEE toolkit for SEE simulations G4SEE 5

- G4SEE is a Geant4-based Monte Carlo Single Event Effect (SEE) simulation toolkit is being developed since 2020 by CERN R2E project [3]
- Direct and indirect energy deposition scoring in a micro-metric, user-defined sensitive volume ⇒ SEE cross-section estimation
- Focusing primarily on SEEs, while remaining as general as possible ⇒ user friendly I/O interfaces
- Free and open-source ⇒ available for the whole radiation effects community for a wide variety of use cases


[3] Dávid Lucsányi *et al.*, "G4SEE: A Geant4-Based Single Event Effect Simulation Toolkit and Its Validation Through Monoenergetic Neutron Measurements", in *IEEE TNS*, [link]

Multi-layer, micro-metric geometry used in a G4SEE simulation to obtain energy deposition in Sensitive Volume (SV) inside Bulk and below Back End Of Line (BEOL) layers

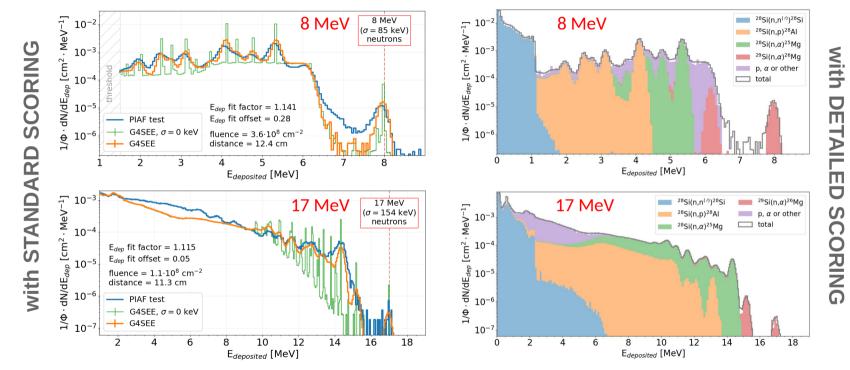
G4SEE Capabilities & Architecture

- Not just a tool, but a toolkit: Core Geant4 application, with pre- and postprocessing Python scripts
- Extracting low-level information and quantities relevant for SEEs, eventby-event and particle-by-particle, based on the needs of users
- Primary motivation and use cases so far were neutron and proton induced SEEs (most relevant at CERN mixedfield accelerator environments)

High-level architecture of the G4SSE toolkit with user inputs and outputs (ASCII files), and the two types of scoring mechanisms

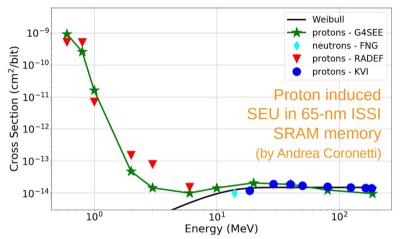
G4SEE Validation with neutrons – Raw output data

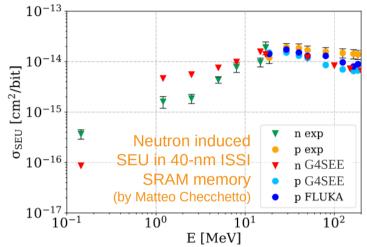
event	particle	weight	Z	А	track	parent	E_kin	process	volume	E_dep	counts
377	alpha	1.055e-03	2	4	2	1	3.8826e+00	b(neutronInelastic)	Sensitive	2.5712e-02	1
377	Mg25	1.055e-03	12	25	3	1	1.5530e+00	b(neutronInelastic)	Sensitive	2.4899e-02	1
377	g(e-)	nan	0	0	-1	nan	nan	ionIoni	Sensitive	5.4009e-03	5
490	neutron		~				5.9415e+00	b(neutronInelastic)	Sensitive	0	r ·
490	Si28	D L 280		2514		Eo-	3.4732e-01	b(neutronInelastic)	Sensitive	1.2955e-01	1
490	gamma	II T - ,	⊃ I ⇒		+ α +	Je	1.7778e+00	b(neutronInelastic)	Sensitive	0	1
732	016	1.005e 05	0	10	4	+	1.0890e+00	b(hadElastic)	Oxide	1.3268e-01	1
914	gamma	1.057e-03	0	Θ	4	1	4.8919e+00	b(neutronInelastic)	Bulk	Θ	1
914	gamma	1.057e-03	0	Θ	5	1	1.7790e+00	b(neutronInelastic)	Bulk	Θ	1
1212	neutron	1.077e-03	0	1	2	1	5.2899e+00	b(neutronInelastic)	Bulk	Θ	1
1257	016	1.048e-03	8	16	3	1	1.2290e-01	b(neutronInelastic)	Oxide	9.4224e-02	1
1342	neutron	1.072e-03	0	1	2	1	3.9277e-01	b(neutronInelastic)	Sensitive	Θ	1
1342	gamma	1.072e-03	0	Θ	3	1	5.1945e+00	b(neutronInelastic)	Sensitive	Θ	1
1342	gamma	1.072e-03	0	Θ	4	1	1.4963e+00	b(neutronInelastic)	Sensitive	Θ	1
1342	gamma	1.072e-03	0	Θ	5	1	4.7253e-01	b(neutronInelastic)	Sensitive	Θ	1
1342	Si30	1.072e-03	14	30	6	1	3.3550e-01	b(neutronInelastic)	Sensitive	1.3925e-01	1
1428	016	1.050e-03	8	16	3	1	5.6249e-02	b(neutronInelastic)	Oxide	4.4397e-02	1
1536	Si28	1.066e-03	14	28	2	1	4.7965e-02	b(hadElastic)	Sensitive	4.7965e-02	1
1565	Al28	1.067e-03	13	28	3	1	4.7900e-01	b(neutronInelastic)	Bulk	1.6775e-01	1
1605	neutron	1.053e-03	0	1	2	1	6.0902e+00	b(neutronInelastic)	Sensitive	0	1
1605	Si28	1.053e-03	14	28	3	1	2.3035e-01	b(neutronInelastic)	Sensitive	1.2189e-01	1
1605	gamma	1.053e-03	0	0	4	1	1.7730e+00	b(neutronInelastic)	Sensitive	Θ	1
1984	neutron	1.055e-03	0	1	2	1	6.0284e+00	b(neutronInelastic)	Sensitive	0	1 1
1984	Si28	1.055e-03	14	28	3	1	2.0772e-01	b(neutronInelastic)	Sensitive	1.6477e-01	1
1984	gamma	1.055e-03	0	0	4	1	1.7703e+00	b(neutronInelastic)	Sensitive	0	1
1993	Si28	1.054e-03	14	28	3	1	3.6548e-01	b(neutronInelastic)	Bulk	1.9489e-01	1
1993	gamma	1.054e-03	6	0	Л	1	3.2000e+00	b(neutronInelastic)	Bulk	Θ	1
1993	gamma	1.054e-03		280:	28 A I		1.7790e+00	b(neutronInelastic)	Bulk	Θ	1
1993	g(gamma)	nan	n +	2°51	\Rightarrow ²⁸ A	+ p	nan	b(neutronInelastic)	Bulk	Θ	1
2044	Si28	1.072e-03					7.3092e-02	b(hadElastic)	<u>Bulk</u>	0	
2176	proton	1.066e-03	1	1	2	1	3.3008e+00	b(neutronInelastic)	Sensitive	4.8202e-03	1
2176	Al28	1.066e-03	13	28	3	1	7.5380e-01	b(neutronInelastic)		4.1540e-02	1
2176	g(gamma)	nan	0	0	-1	nan	nan	b(neutronInelastic)	Sensitive	Θ	1
2559	proton	1.063e-03	1	1	2		2.6926e+00	b(neutronInelastic)	Sensitive	2.4314e-03	- I ;
2559	Al28	1.063e-03	13	28	3	1	3.8967e-01	b(neutronInelastic)	Sensitive	8.7722e-02	1
2559	gamma	1.063e-03	0	0	4	1	9.8268e-01	b(neutronInelastic)	Sensitive	Θ	1.
2559	g(e-)	nan	0	0	-1	nan	nan	hIoni	Sensitive	3.9645e-03	3
2559	g(gamma)	nan	0	0	-2	nan	nan	b(neutronInelastic)	Sensitive	0	1 .


Mono-energetic fast neutrons impacting a Si component producing various secondary particle species.

The **detailed scoring** output file containing information of **individual particles** (or optionally groups of e⁻, e⁺ and y particles) **scored inside the sensitive volume**.

Further post-processing and analysis needed (for this a script will be added to a future release of the toolkit).


G4SEE Validation with neutrons – Some results


Left: Comparison of energy deposition distributions by mono-energetic neutrons in Si diode detector [3]; Right: Contribution of the most frequent nuclear reactions to the E_{dep} distributions [3]

RAD

SEU cross-section estimation with G4SEE

Simulated and experimental cross-sections of **proton induced SEUs** in 65-nm ISSI SRAM as function of beam energy [4]

Simulated and experimental cross-sections of **neutron and proton induced SEUs** in 40-nm ISSI SRAM as function of beam energy [5]

[4] Andrea Coronetti *et al.*, "Proton direct ionization upsets at tens of MeV", in *IEEE TNS*, 2022, [link]
[5] Matteo Cecchetto *et al.*, "0.1–10 MeV Neutron Soft Error Rate in Accelerator and Atmospheric Environments", in *IEEE TNS*, vol. 68, no. 5, May 2021, [link]

G4SEE User support & community

Website: g4see.web.cern.ch

Feature Requests

Report issues, propose fixes and find hel

News & Announcements

Uncategorized

lecuoe

Suggestions and discussions regarding potential new features

Topics that don't need a category, or don't fit into any other

Online docs: <u>a4see-docs.web.cern.ch</u>

🛞 🖌 Sign in TO CHEFT HARD TO GASEE MARK te Group informatio Gitl ab G4SEE toolkit @ Group ID: 37388 pt. D lamas A Monte Carlo Single Event Effect simulation toolkit developed by CERN Radiation to Hert 11 Merce requests A Packages and reg Subsystems and periants Shared registring Archived registric In Analytics 0 💎 645EE @ 1 100-1 G4SEE Scripts @

Source code (GitLab): gitlab.cern.ch/g4see

G4SEE: A Geant4-Based Single Event Effect Simulation Toolkit and Its Validation Through Monoenergetic Neutron Measurements

Dávid Lucsányi[®], Rubén García Alía[®], *Member, IEEE*, Kacper Biłko[®], Matteo Cecchetto[®], Salvatore Fiore[®], *Member, IEEE*, and Elisa Pirovano[®]

Abtract—A single-event effect (SEE) simulation tookist has to the overall SEU rate [8], as well as the π^+ SEE cross section been developed at CEEN of the whole radiation affects commaand its impact on a mixed-field environment [9]. The section of the secti

Open-access paper: DOI link

Introduction to G4SEE: a toolkit for simulating radiation effects in electronics I

IFFE TRANSACTIONS ON NUCLEAR SCIENCE, VOL. 69, NO. 3, MARCH 2022

③ 50m ♀ 503/1-001 - Council Chamber

273

G4SEE, a novel Geant4-based Monte Carlo simulation toolkit is being developed at CERM for the radiation effects community, and released as a free and open-source code. It has been already demonstrated and validated experimentally by measurements of inelastic energy deposition single events of monoenergetic neutrons below 20 MeV. These two hands-on lectures will give an introduction on how to use the G4SEE toolkit in simple, but real-life scenarios to simulate, analyse and better understand the nuclear physics of Single Event Effects induced by neutrons and protons in microelectronic structures.

G4SEE website: https://cern.ch/g4see Speaker: David Lucsanyi (CERN)

Lectures at SERESSA 2022: Indico page

User Forum: <u>a4see-forum.web.cern.ch</u>

How does biasNonPrimariesTor

Plotting multiple histograms

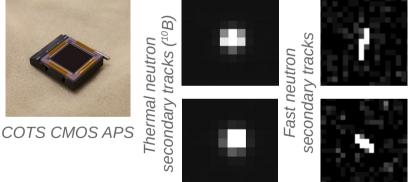
Issues post-processing, scripts

command work?

Scoring Elements rather than Isotopes

2

RADNEXT 2nd Annual Meeting - 9-10 May 2023


Next step: Integration of G4SEE into FLUKA

- The *Moira* code is being developed by the FLUKA collaboration, which will become the next (5th) major release of FLUKA.CERN
 - Moira is a Geant4 application implemented in C++, but with FLUKA physics models, scoring and other features, fully compatible with the Flair GUI
- Progressive integration of G4SEE features into Moira starts now, while the G4SEE toolkit will also remain a stand-alone, open-source toolkit
 - This activity is supported by FLUKA developers at CERN
 - **New features in FLUKA 5:** Scoring of single events with biasing; Obtaining all secondary particle data; Particle grouping in output, Post-processing scripts, etc.
 - New features in G4SEE: Scoring in arbitrary number of SVs, Complex 3D geometries (importing GDML files), Flair GUI, etc.
 - During integration some features will be duplicated, some will be only available in Moira, until FLUKA 5 will be released (probably as open-source code)

Validation of FLUKA SEE module / G4SEE

- Cross-validation between different codes and versions (G4SEE, FLUKA 4, FLUKA 5)
- Comparisons between FLUKA and Geant4 physics models
- Proton, neutron (and later heavy ion) test campaigns are planned to validate simulation results by measuring/scoring event-by-event energy deposition in micro-metric sensitive volumes:
 - 1D Energy distribution of deposited energy
 - 2D Spatial distribution of deposited energy
 - COTS CMOS Active Pixel Sensors as DUT with small pixel pitches (2 and 11 $\mu m)$

These activities will be part of

- Task 8.6 (Integration of SEE event-by-event scoring in FLUKA), and related - Milestone M8.3 (Validation of FLUKA SEE module) by June 2024 (T_0 + 36m)

Thanks for your attention!

Questions?

