

Computer-Aided deFEcts and anomalies detection, Identification and classificatioN system - CAFEIN*

Medical Applications

Ioannis Stathopoulos

*This Project was supported by CERN KT fund for medical applications

11/9/2022

Introduction

- Brain disorders are one of the greatest health challenges
 - > Around 165 million Europeans are living with a brain disorder
 - It is estimated that 1 in 3 people will suffer from a neurological and/or psychiatric disorder at some point in their lives^[1]
- One of the most promising areas of health innovation is the application of machine learning in medical imaging:^{[3][4][5]}
 - An alternative/supportive way of quick and accurate diagnosis in order to save time and resources in the daily medical workflow
 - Early diagnosis and treatment, access to medical imaging expertise in parts of the world where access to skilled radiologists is limited

Motivations and Research Gaps

Project requirements based on clinical needs and environment:

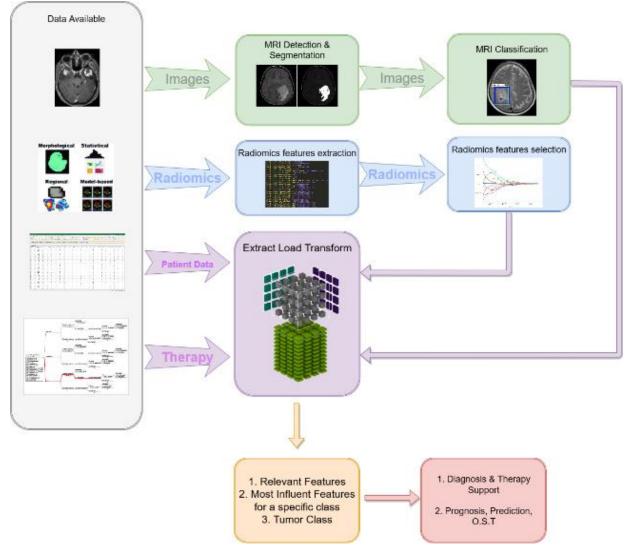
use case: the dept of Radiology of the Medical School of Athens:

Motivations

Delays, efficiency, resources, accuracy

- Large number of examinations limited experts to evaluate them
- Long examination evaluation queue
- Need for support of diagnosis The "second opinion"
- Significant amount of heterogenous, raw and unprocessed data without a proper infrastructure to exploit them

Research Gaps


Robustness, adaptability, expensive, generic

- The available methods are not tailored to real clinical needs
- Current methods are hard to deploy in the clinical environment - Need for highly expertise support
- Mostly expensive and "black boxes"
- Hard to adapt in rapid evolving clinical environment – Static

CAFEIN for Medical Applications Architecture

Al algorithms to extract features, patterns and develop models for segmentation, classification, risk prediction and prevention based on digital images and clinical, therapies and genetic data.

What is new here?

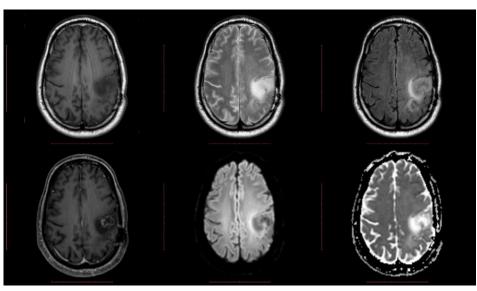
- Automated computer software
- State of the art methods based on real world diverse dataset
- Accurate and easy to use Being defined according to clinicians needs
- Integration of imaging data, radiomics and clinical data
- Fast and easy adjust on different clinical cases
- Results that will be useful in a wide range of radiology clinics with similarities with Athens

The "lifecycle"...

The expert should manually:

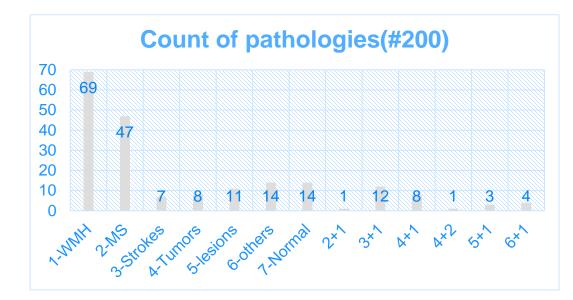
- Open the examination
- Combine different modalities
- Search for the abnormality (Detection)
- Delineate the boundaries (Segmentation)
- Try to classify it (Classification)
- Report the diagnosis

CAFEIN should automatically:


- Accept an examination as input
- Use different models, tools and algorithms for:
 - Detection,
 - Segmentation,
 - Classification
- Return a preliminary report to the clinician

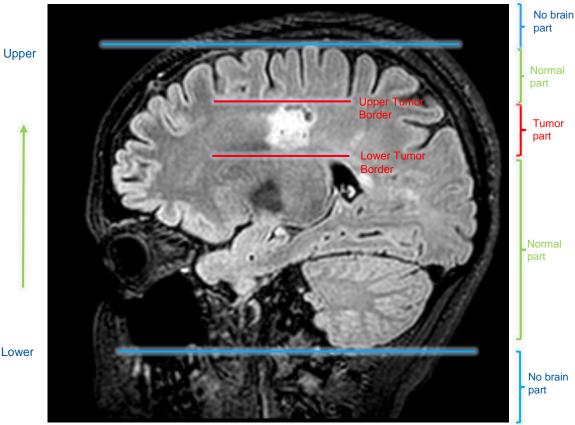
Data and Methods

- Cases from a MRI machine of 3-Tesla from the 2nd dept of Radiology of the Medical School of Athens
- 150 Brain MRI examinations containing different pathologies: <u>Tumors, Multiply Sclerosis, White Matter</u> <u>Hyper-intensities, Strokes</u>, Lesions and Normal cases
- Up to six different MRI modalities
 - Used : FLAIR, T2, T1ce
- Several Image resolutions (3D or 2D)


Six different MRI modalities (from left to right ,top to bottom): T1,T2,Flair,T1ce,Diffusion,ADC

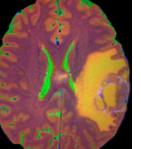
Data and Methods

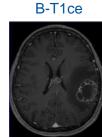
Department workflow

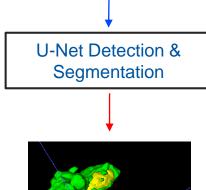

Count of patho 69	Ratio% 34.5		
	34.5		
4 7			
47	23.5		
7	3.5		
8	4		
11	5.5		
14	7		
14	7		
1	0.5		
12	6		
8	4		
1	0.5		
3	1.5		
4	2		
34 working days			
Considered cases \rightarrow	83.5%		
	7 8 11 14 14 1 12 8 1 1 3 4 34 working		

Clinical application based on CAFEIN developments

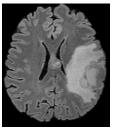
- Typically examinations comes as consecutive 2D slices. However only a small amount of them contains useful information
- There is a need for a tool for automated and optimised screening of the examinations saving time and resources for the clinicians

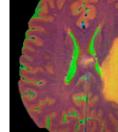


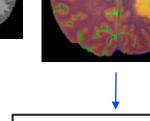


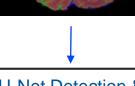

Detection and segmentation

19036 slices for training - 4438 slices for validation 3 MRI modalities Flair - T2 - T1ce as RGB slices








Abnormal

part of the

brain

Technical:

٠

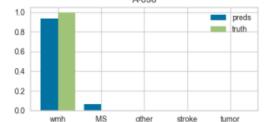
- Pre-trained InceptionV3 CNN trained on 2D "RGB" images
- Custom Preprocessing

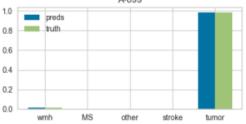
All 4 pathologies

- Custom Dice loss + Cross Entropy loss
- 100 epochs training scheme •

100 examinations for training

24 examinations for validation

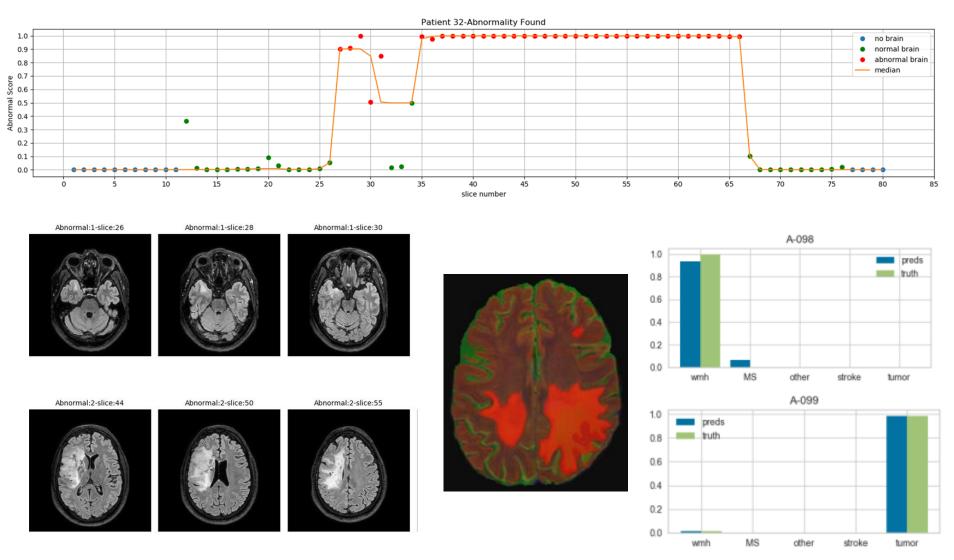

Adam optimizer •



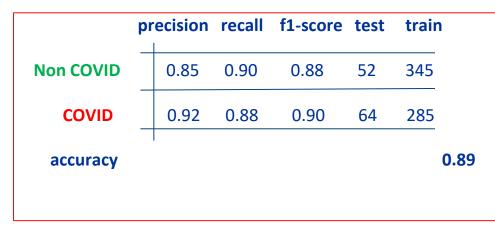
G- T2

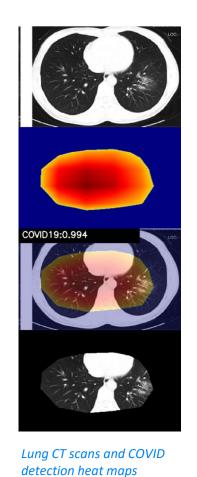
Classification 54 (3x 18) 246 (3x82) 20 Shape Features **Texture Features Intensity Features** XGBoost Model XGBoost Model XGBoost Model 124 examinations on a 5-fold scheme per examination 4507 components . All 4 pathologies . Avg Predictions 156 strokes • 159 tumors • 1492 MS • 2642 WMH • Sum & 3 MRI modalities Flair - T2 - T1ce used weight to • volume Technical: XGBoost Model trained on • component level A-099 A-098 **Custom Preprocessing** • 1.0 1.0 preds preds cross entropy loss • truth truth 0.8 0.8

Results		Predicted			
Results		stroke	tumor	MS	WMH
True	stroke	26.54	16.80	16.24	40.42
	tumor	1.63	63.27	17.40	17.70
	MS	0.30	19.43	49.00	31.26
	WMH	0.14	16.65	14.96	68.26

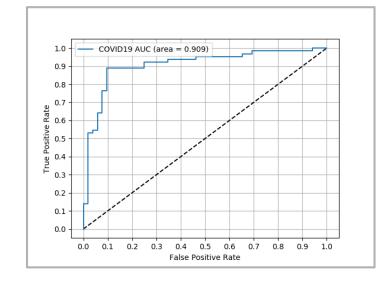


Final Output- Screening Tool

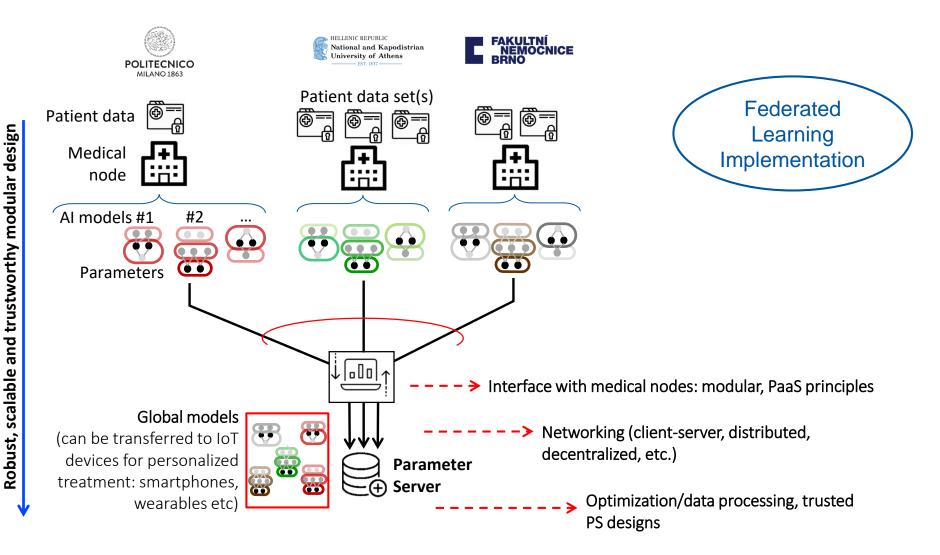



11/9/2022

CERN


CAFEIN Robustness and adaptability of the tool

Testing on a completely different clinical case: Lung CT scans – COVID diagnosis



CERN

CAFEIN CAFEIN Federated Learning platform test and validation

Computer-Aided Defects and Anomalies Detection, Identification and Classification system for Digital Images and Data

CERN

CAFEIN

11/9/2022

CAFEIN Federated Learning platform test and validation

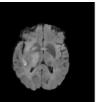
Computer-Aided Defects and Anomalies Detection, Identification and Classification system for Digital Images and Data

Federated approach impact:

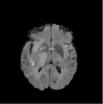
CERN CAFEIN

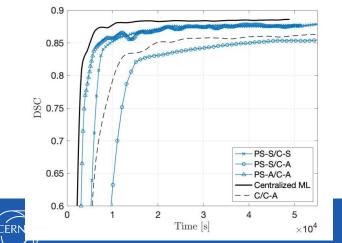
- Robustness of global models v.
 local models
- Privacy and confidentiality of data
- Communication optimization and sustainability

Single node


HELLENIC REPUBLIC National and Kapodistrian University of Athens FAKULTNÍ

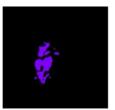
NEMOCNICE

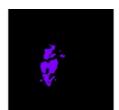



MRI

FL Server

Centralized ML





Nomination for the best innovation at the 2022 Geneva Health Forum

11/0/2022

Ground Truth

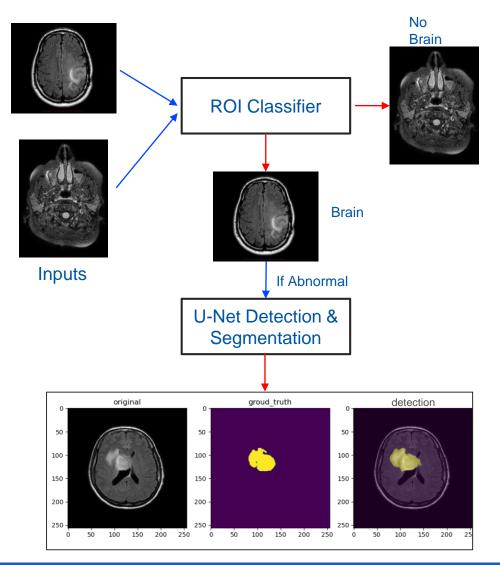
Prediction

Nomination for the best innovation at the Gene Invited at VIVATECH Paris 2022


Multi-pathology detection & classification

MEDICAL APPLICATIONS

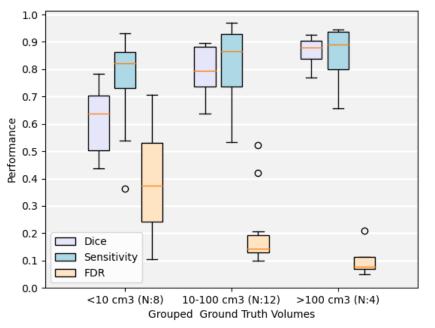
MULTI-INSTITUTIONAL



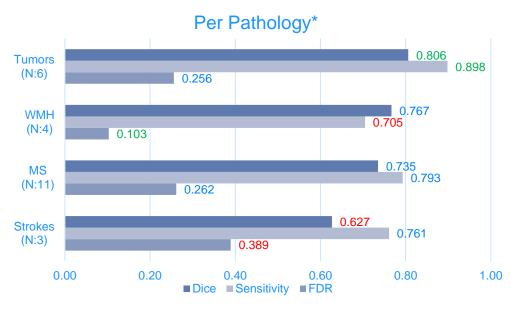
Annex...

Methodology / architecture implemented

Screening tool


• 2D Slice based - Axial - Flair

- Three Steps approach:
 - 1. Brain No Brain
 - 2. (if Brain) Normal Abnormal
 - + if Abnormal
 - Detect & Segment



Main metrics for the 24 validation Examinations

CFRN

Per Volume

*As the main pathology defined from the diagnosis

