

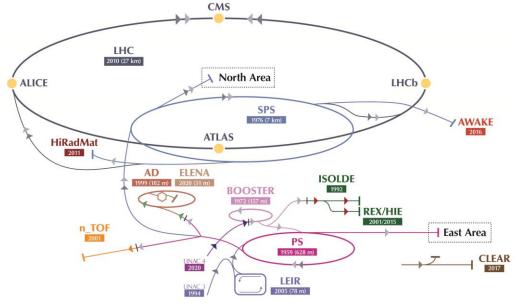
MARCHESE project

Remote Monitoring of Health Parameters

Contents

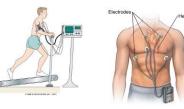
- Background and project origin
- Contactless Monitoring
- Remote Photoplethysmography
- CERN Applications
- Medical Applications
- Conclusion and future works

Background and project origin

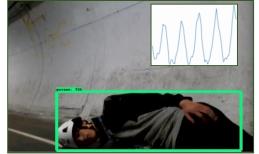


Fire simulation: fire seat at TT60up, design fire DF5 (13MW) PA7, TA7, TT70, **TT60,TCC6** modeled, courtesy of HSE (A. Arnalich)

Response time of a rescue team of **CERN Fire Brigade** could take up to 22 minutes in the LHC tunnel.


The research is oriented towards the development of robotic solutions: workers' detection and health contactless monitoring during emergencies situations is important to support in search and rescue scenarios.

Contactless Monitoring



TRADITIONAL CONTACT SYSTEMS

EMERGENCY SITUATIONS

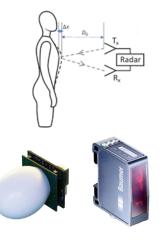
HEALTHCARE and HOSPITAL SCENARIO

ADVANTAGES

- No-invasive monitoring system
- No infection: monitoring patients at risk (COVID19)
- Not require skin contact: burned people, newborns
- Not affect the activities of daily living
- Reusable device by different users, contact-based ones need to be personal
- Ready-to-use technologies

DRAWBACKS

- Not possible to detect all physiological signals in contactless way
- Person should be confined in a limited space throughout the entire monitoring session



Contactless Monitoring

MECHANICAL DISPLACEMENT

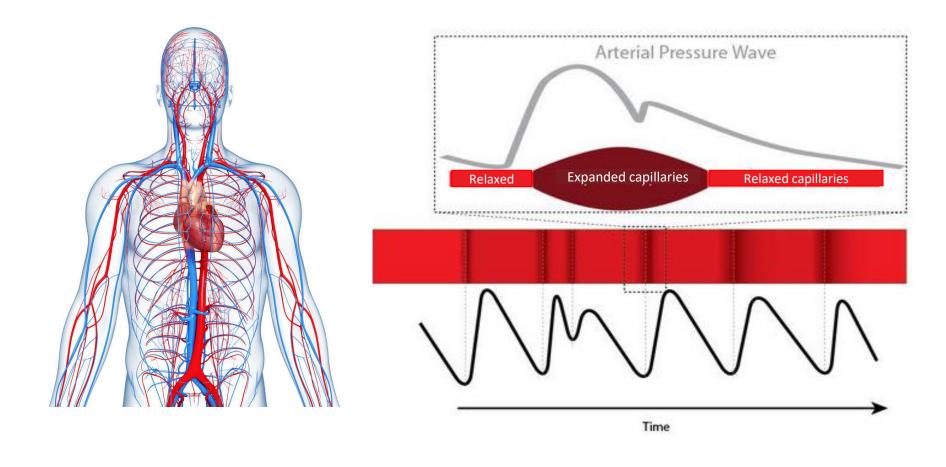
- Chest displacement for RR
- Heart contractions for HR and HRV
- Carotid artery pulsation for HR and HRV

THERMOGRAPHY

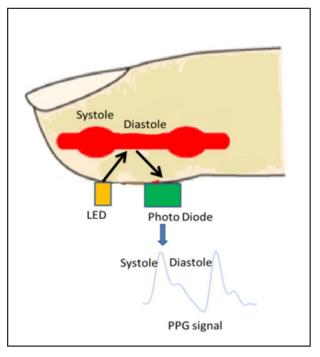
 Body Temperature distribution provides information about the human well-being

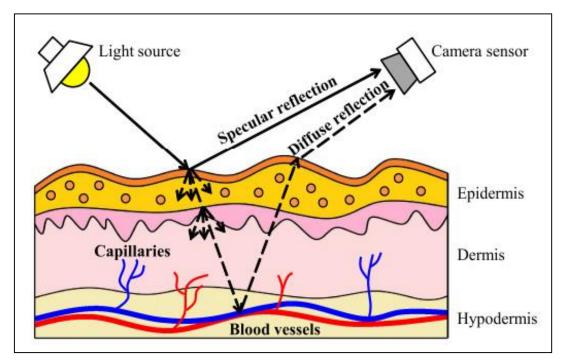
PHOTOPLETHYSMOGRAPHY

- Optical technique used to detect volumetric changes in the blood in the peripheral circulation.
- Blood volume changes in microvascular tissue (i.e. at cheeks and forehead level)

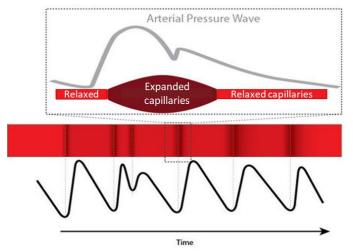


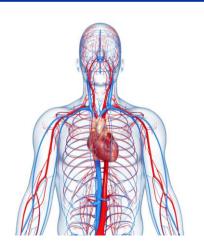
PhotoPlethysmoGraphy (PPG)

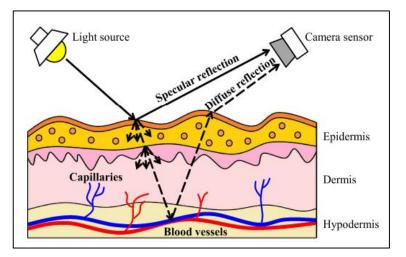




Contact PPG vs remote PPG




REMOTE PPG or NO-CONTACT PPG



Remote PPG: Dichromatic model

$$C_k(t) = I(t) \cdot [\underline{v_s(t)} + \underline{v_d(t)}] + v_n(t)$$

SPECULAR REFLECTION

$$v_{\scriptscriptstyle S}(t) = u_{\scriptscriptstyle S} \cdot (s_0 + s(t))$$

- u_s = unit color vector of the light spectrum
- s_0 = stationary part of specular reflection
- s(t) = varying part of specular reflection (motion)

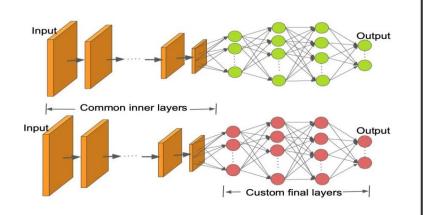
→ DIFFUSE REFLECTION

$$v_d(t) = u_d \cdot d_0 + u_p \cdot p(t)$$

- u_d = unit color vector of the skin tissue
- u_p = pulsatile coeff in RGB channels
- d_0 = stationary reflection of diffuse reflection p(t) = pulse signal

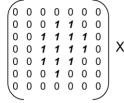
$$\begin{array}{c} \text{Constant} & \text{Specular} \\ \text{DICHROMATIC} \\ \text{MODEL} \end{array} \rightarrow \begin{array}{c} C_k(t) \sim I_0 \big(1+i(t)\big) \cdot \big[\begin{array}{c} u_c \cdot c_0 + u_s \cdot s(t) + u_p \cdot p(t) \\ \end{array} \big] \end{array}$$


Remote PPG: Video pre-processing

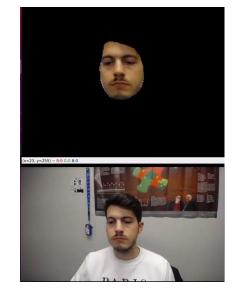


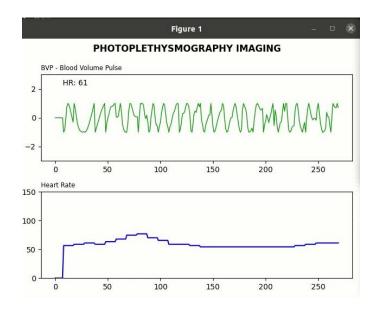
30 images/second Logitech 1080p FULL HD GPU NVIDIA GTX 1080p

NEURAL NETWORK

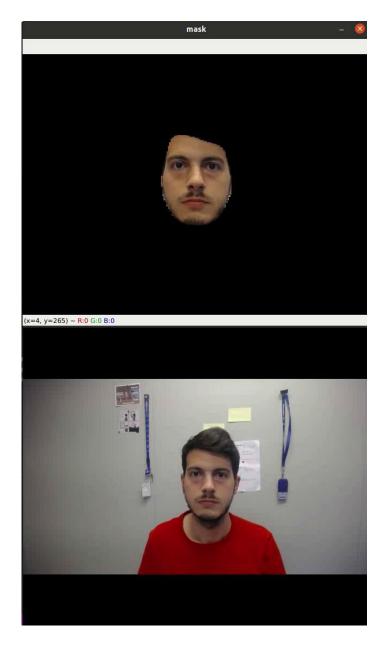


SEPARATION of SKIN PIXELS from NO-SKIN PIXELS

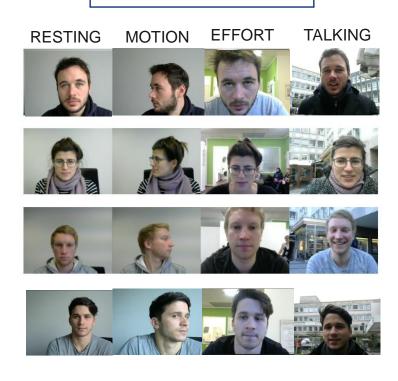


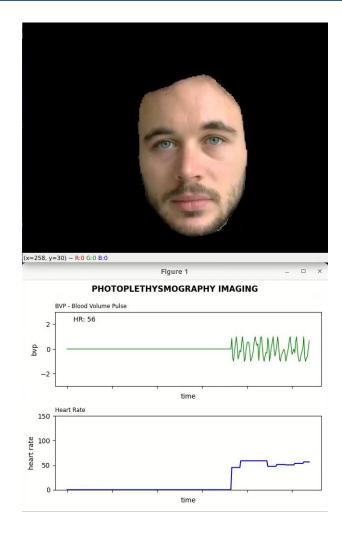


0 0 0 0 0 0 0 0 0 0 92 44 0 0 0 0 25 49 28 89 0 0 0 68 92 88 23 0 0 0 18 91 18 0 0 0 0 0 12 0 0 0 0 0 0 0 0 0 0 0


REAL TIME

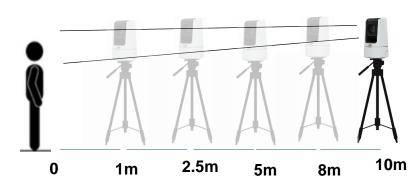

```
FPS: 30.15244789362723 - your Heart Rate is 54
FPS: 30.176730443624784 - your Heart Rate is 54
FPS: 29.993199459865966 - your Heart Rate is 54
FPS: 30.127259410614457 - your Heart Rate is 54
FPS: 29.754511151694206 - your Heart Rate is 54
FPS: 30.525815272766796 - your Heart Rate is 54
FPS: 30.09615865280778 - your Heart Rate is 54
FPS: 30.00694674141071 - your Heart Rate is 56
FPS: 30.103675746000043 - your Heart Rate is 58
FPS: 30.11694061634009 - your Heart Rate is 61
FPS: 29.781652546534897 - your Heart Rate is 61
FPS: 30.385103636796103 - your Heart Rate is 61
```

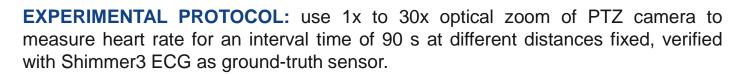




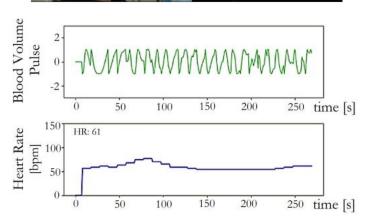
Remote PPG: available databases

DATABASE




Experiment in the LHC mock-up

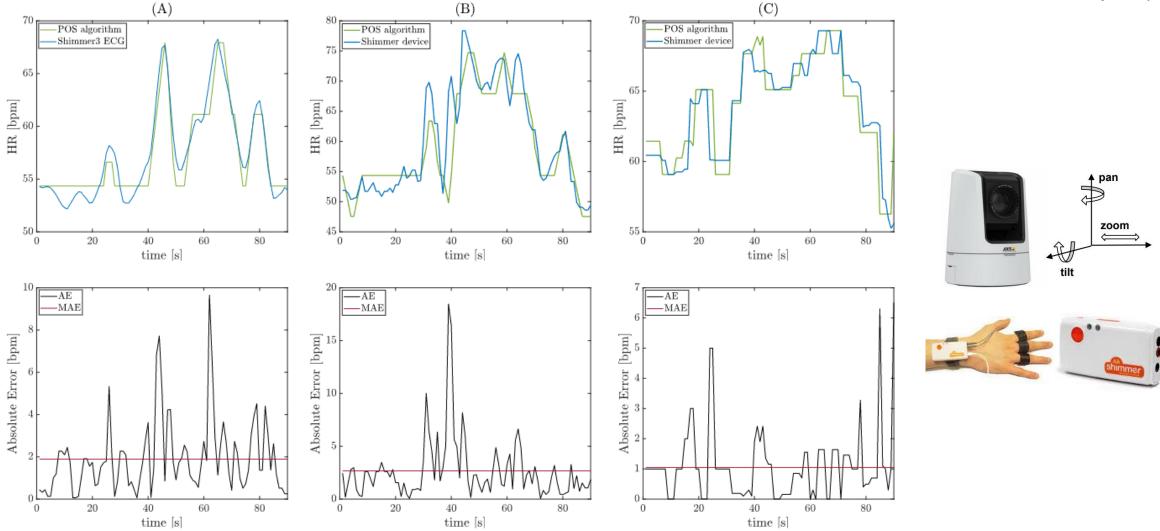
EXPERIMENTAL SETUP


EVALUATION METRICS

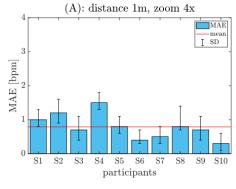
- Absolute Error (AE):
- Mean Absolute Error (MAE):

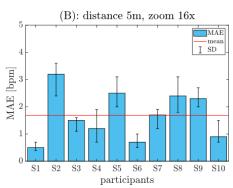
$$AE(i) = |HR_{POS}(i) - HR_{true}(i)|$$

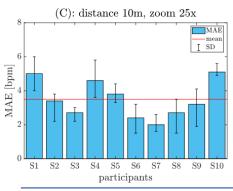
$$MAE = \sum_{i=1}^{N} AE(i)$$

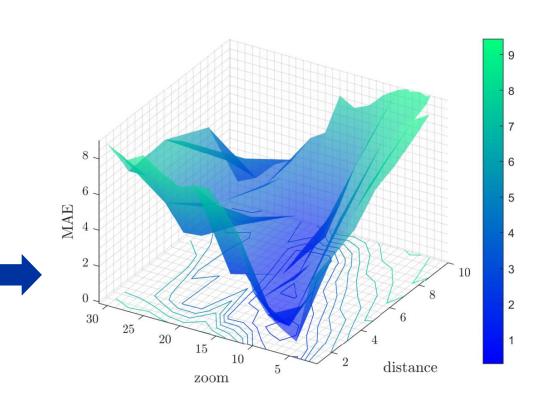


Remote PPG: comparison with benchmark device








Remote PPG: comparison with benchmark device

EVALUATION METRICS

- AE = Absolute Error
- MAE = Mean Absolute Error

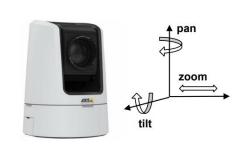
STATISTICAL ANALYSIS

distance-zoom	PCC	p-value
d = 1m, $zoom = 4x$	$\rho = 0.92$	p < 0.0001
d = 1m, zoom = 6x	$\rho = 0.92$	p = 0.0009
d = 1m, zoom = 8x	$\rho = 0.92$	p = 0.0012
d = 2.5m, zoom = 6x	$\rho = 0.92$	p = 0.0004
d = 2.5m, zoom = 8x	$\rho = 0.94$	p = 0.0007
d = 2.5m, zoom = 10x	$\rho = 0.89$	p < 0.0001
d = 2.5m, zoom = 12x	$\rho = 0.94$	p < 0.0001
d = 5m, zoom = 12x	$\rho = 0.90$	p = 0.0014
d = 5m, zoom = 14x	$\rho = 0.87$	p < 0.0001
d = 5m, zoom = 16x	$\rho = 0.91$	p = 0.0005
d = 8m, zoom = 14x	$\rho = 0.91$	p < 0.0001
d = 8m, zoom = 16x	$\rho = 0.96$	p = 0.0002
d = 8m, zoom = 18x	$\rho = 0.92$	p = 0.0008
d = 10m, zoom = 30x	ρ = 0.92	p = 0.0004

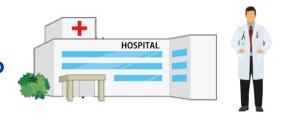
PEARSON CORRELATION COEFFICIENT

$$\rho = \frac{\sum_{i} (HR_{POS}(i) - \mu)(HR_{true}(i) - \hat{\mu})}{\sqrt{\sum_{i} (HR_{POS}(i) - \mu)^{2}} \sqrt{\sum_{i} (HR_{true}(i) - \hat{\mu})^{2}}}$$

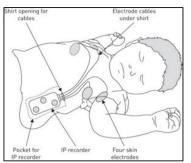
Applications

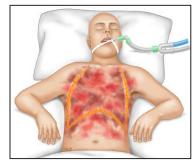

CERN Applications: VISUAL INSPECTION IN HARSH ENVIRONMENT

- Contactless Monitoring System
- Vital parameters check
- Human presence
- Workers' localization
- Support in harsh environment
- Search and Rescue scenario



Medical Applications

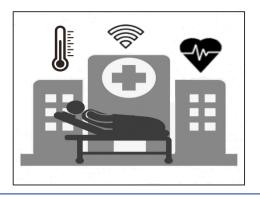

In contact with Medical Staff in the Hospital


- **■** Understand which are the needs of the real scenario
- Develop technologies useful

NEWBORN and PATIENTS WITH BURNS

- Fragile skin
- No abrasions and damage of epidermis
- Continuous and constant monitoring

ASSISTIVE ROBOTIC REHABILITATION


- adjust the exercise level (increase or decrease) according to the patient's physiological response
- Exploit residual patient capabilities (assistance-as-needed)

SMART HOSPITAL ROOM

- Hospital room for remote monitoring
- Avoid medical staff infections
- Hospitalization more comfortable for patients
- Group or single patient monitoring

Conclusion

- Complete development of remote PPG system ready-to-use via webcam
- An experiment was conducted in order to evaluate optimal configuration in terms of distance and camera zoom
- Good correlation between algorithm and benchmark device (PCC and p-value)
- Mobile camera lens implementation for remote PPG system more versatile: adapt the technology to the human and not vice versa

FUTURE WORKS

- Continue in working on limits: illumination, body motions, multiple detection
- Explore other contactless monitoring methods to extend the system (radars, laser distance)

Continue in getting knowledge and experiences with medical staff

Thank you for your attention!