Thermal misalignment of Scalar Dark Matter

Mudit Rai (University of Pittsburgh)¹

Collaborators: Brian Batell & Akshay Ghalsasi

(2211.xxxx hep-ph)

Dark Matter 26.8% Ordinary Matter 4.9% Dark Energy 68.3%

Motivation

- A scalar field coupled through the Higgs portal provides a minimal and well motivated model of ultralight DM.[1]
- Several dynamical sources of scalar field misalignment during the radiation era exist in this model. We have computed the relic abundance over a broad range of masses and for different initial conditions.
- ► For larger scalar masses, thermal misalignment, due to the thermal potential, is the dominant misalignment mechanism, and provides a robust relic density target, which is largely independent of the initial conditions.
- ► For smaller masses, misalignment from the shift in scalar vev triggered by the EWPT dominates and the precise relic density prediction depends on the initial conditions.
- A variety of experimental and astrophysical constraints on the model exist, but new ideas are needed to further explore the cosmologically motivated parameter space.

Thermal Misalignment vs Standard Misalignment

Higgs portal model

• Light scalar ϕ with small coupling to Higgs(h) in thermal bath:

$$V = -\frac{1}{2} \,\mu^2 \,h^2 + \frac{1}{4} \lambda \,h^4 + \frac{1}{2} m_\phi^2 \phi^2 + \frac{1}{2} A \,\phi \,h^2$$

Since we are always in regime where $A^2 \lesssim m_\phi^2 \ll \lambda v^2$

$$heta \sim rac{A}{2\lambda v} \simeq rac{Av}{M_h^2}, \qquad M_h^2 \simeq 2\lambda v^2 + rac{A^2}{2\lambda}, \qquad M_\phi^2 \simeq m_\phi^2 - rac{A^2}{2\lambda}.$$

$$\frac{A^2}{m_\phi^2} < 2\lambda$$

Black: No Higgs vev

Effective potential

■ There are three contributions to the effective potential:

$$V_{eff}(\phi, h, T) = V_0(\phi, h) + V_{CW}(\phi, h) + V_{th}(\phi, h, T)$$

- The first term is the usual zero temperature potential.
- In our study, the CW potential only effects the Higgs transition slightly and does not have a major impact on our final results, thus ignored.
- lacktriangledown is not in thermal equilibrium, but experiences a thermal potential due to its coupling to SM via Higgs, all of which is in thermal equilibrium.

1-loop finite temperature effective potential

For our model, the thermal potential is given as:

$$V_1^T(\phi, h, T) = \frac{1}{2\pi^2} T^4 J_B \left[\frac{m_h^2(\phi, h)}{T^2} \right] + \frac{3}{2\pi^2} T^4 J_B \left[\frac{m_\chi^2(\phi, h)}{T^2} \right] + \frac{6}{2\pi^2} T^4 J_B \left[\frac{m_W^2(h)}{T^2} \right]$$
$$+ \frac{3}{2\pi^2} T^4 J_B \left[\frac{m_Z^2(h)}{T^2} \right] - \frac{12}{2\pi^2} T^4 J_F \left[\frac{m_t^2(h)}{T^2} \right] - \frac{12}{2\pi^2} T^4 J_F \left[\frac{m_b^2(h)}{T^2} \right] + \dots$$

where

$$J_B(w^2) = \int_0^\infty dx \, x^2 \, \log[1 - e^{-\sqrt{x^2 + w^2}}]$$
 $J_F(w^2) = \int_0^\infty dx \, x^2 \, \log[1 + e^{-\sqrt{x^2 + w^2}}].$

 We account for the hard thermal loops by using the Truncated dressing, where the masses are replaced by [1]

$$m^2 = m_{tree}^2 + \Pi(T), \ \Pi(T) \propto T^2$$

Higgs field

Dimensionless variables: $y=rac{T}{\mu}, \quad \hat{\phi}=rac{\phi}{M_{
m pl}}, \quad \hat{h}=rac{h}{\mu}, \quad \kappa=rac{m_\phi M_{
m pl}}{\mu^2}, \quad eta=rac{AM_{pl}}{\mu^2}$

■ Higgs field tracks its minima, which can be derived by minimizing the potential, $\frac{\partial V}{\partial h} = 0$:

$$0 = \lambda \hat{h}^{2} - (1 - \beta \hat{\phi}) + \frac{y^{2}}{2\pi^{2}} \left(6\lambda (J'_{B}[\eta_{h}] + J'_{B}[\eta_{\chi}]) + g^{2} (J'_{B}[\eta_{W_{T}}] + J'_{B}[\eta_{W_{L}}]) + (g^{2} + g'^{2})J'_{B}[\eta_{Z_{T}}] \right)$$
$$+ \frac{y^{2}}{2\pi^{2}} \left(\frac{\partial \eta_{Z_{L}}}{\partial z} J'_{B}[\eta_{Z_{L}}] + \frac{\partial \eta_{A_{L}}}{\partial z} J'_{B}[\eta_{A_{L}}] \right) - \frac{y^{2}}{2\pi^{2}} \left(12y_{t}^{2} J'_{F}[\eta_{t}] \right)$$

Ansatz:

$$\hat{h}^2(\hat{\phi}, y) \approx \hat{h}_0^2(y) + \left(\frac{\partial \hat{h}^2}{\partial \hat{\phi}}\right) \hat{\phi}$$

Evolution of Scalar Dark Matter

EOM for ϕ :

$$\ddot{\phi} + 3H\dot{\phi} + \frac{\partial V_{eff}}{\partial \phi} = 0$$

In terms of dimensionless quantities and temperature:

$$\hat{\phi}'' + \frac{1}{\gamma^2 y^6} \left[\kappa^2 \hat{\phi} + \frac{\beta \hat{h}^2}{2} + \frac{\beta y^2}{2\pi^2} \left(J_B'[\eta_h] + 3J_B'[\eta_\chi] \right) \right] = 0.$$

We solve it numerically by inserting the Higgs solution.

Initial Conditions

- We consider two sets of initial conditions as our benchmark models:
- For a long enough period of inflation and a low enough Hubble, $H_I < v$, the effective temperature experienced by the scalar field is $T \sim H_I$.
- Since $H_I \ll v$, the Higgs is close to its vev and the true minima of ϕ is approximately given by it's 0 T value :

$$\phi[y_i] = \phi_0 = \frac{\beta M_{pl}}{\beta^2 - 2\lambda \kappa^2}$$

 $\phi_i=0$, serves as a representative example of the general situation where ϕ_i is vastly different than ϕ_0 , and Higgs VEV misalignment controls the final relic density for low masses.

Onset of oscillations

For the onset of oscillations, we require,

$$(3H)^2 \sim m_\phi^2(T)$$

■ We will focus on 2 regions, where in both cases:

$$3H \sim m_{\phi} \Longrightarrow y_{osc} \sim \sqrt{\frac{\kappa}{3\gamma}}$$

Region 1 (small β, large κ, high T):

$$\kappa > 3\gamma$$
, $y_{osc} \gg 1$

■ Region 2 (small κ , low T):

$$\kappa < 3\gamma$$
, $y_{osc} < 1$

Approximate DM density: Region I

- Region I is defined as : $(\kappa \gtrsim 10^3, \ m_{\phi} \gtrsim 3 \times 10^{-3} \text{eV})$
- ► In this region, the thermal misalignment dominates over the kick due to Higgs transition, hence we drop the Higgs dependent term to get an approximate form of the equation:

$$\hat{\phi}''(y) + \frac{\beta}{2\pi^2 \gamma^2 y^4} \left(J_B'[\eta_h] + 3(J_B'[\eta_\chi]) = 0.$$

This yields :

elds :
$$\hat{\phi}(y)=-\frac{\beta}{6\pi^2\gamma^2y^2}+\phi_i \qquad \quad \hat{\phi}(y_{osc})=-\frac{\beta}{2\pi^2\gamma\kappa}+\phi_i \qquad \quad \stackrel{\circ}{\underset{\stackrel{\smile}{\otimes}}{\oplus}}_{10^{-12}}^{10^{-11}}$$

■ The DM density can be given by a simple approx. form:

$$\Omega_{DM} = \frac{\rho(T_0)}{\rho_{tot}} = \frac{\rho(y_{osc})}{\rho_{tot}} \left(\frac{y_0}{y_{osc}}\right)^3 \left(\frac{g_{*,0}}{g_{*,osc}}\right)$$
$$= 0.26 \left(\frac{\beta}{0.05}\right)^2 \left(\frac{1000}{\kappa}\right)^{3/2}$$

Approximate DM density: Region 2

- Region 2 is defined as : $\kappa < 1$, $m_{\phi} < 10^{-5} eV$
- The thermal potential is not relevant in this region, thus we get:

$$\phi''(y) + \frac{1}{\gamma^2 y^6} \left(\kappa^2 \hat{\phi} \right) = 0,$$

Solution:

$$\phi(y) = \frac{1}{y^4} \frac{\beta}{24\gamma^2 \lambda} + \phi_0$$

The DM density is given by:

$$\Omega_{DM} = \frac{\rho(T_0)}{\rho_{tot}} = \frac{\rho(y_{osc})}{\rho_{tot}} \left(\frac{y_0}{y_{osc}}\right)^3 \left(\frac{g_{*,0}}{g_{*,osc}}\right) \\
= 0.26 \left(\frac{\beta}{2 \times 10^{-4}}\right)^2 \left(\frac{\kappa}{10^{-3}}\right)^{1/4}$$

Peaky behavior (intermediate masses)

- $3*10^{-3}eV \lesssim m_{\phi} \lesssim 10^{-2}eV$, thermal and Higgs transition compete.
- If the scalar happens to be near its peak amplitude of oscillation when the Higgs transitions, then it leads to reduction in its amplitude, thus larger coupling A in required to get the right abundance, which leads to peaks.

Relic Density Plot

Conclusions

- Ultralight scalars in DM models lead to a well-motivated and phenomenologically distinct viable scenarios.
- ► Particularly, we have focused on the phenomenology of a realistic scenario where the DM couples to the Higgs and the SM.
- Relic abundance is fairly insensitive to initial conditions and is dictated by the couplings and masses.
- This is one of the most minimal setup which is also experimentally viable.
- In future, more work is needed to conceive of ways to probe the model experimentally.

THANK YOU!

BACKUP Slides

Mass eigenstates

Mass eigenvalues :

$$M_{h,\phi}^2 = rac{1}{2} \left[2 \lambda v^2 + m_\phi^2 \pm \sqrt{(2 \lambda v^2 - m_\phi^2)^2 + 4 A^2 v^2}
ight]$$

Standard Misalignment mechanism

$$\ddot{\phi} + 3H\dot{\phi} + m_{\phi}^2\phi = 0$$

- During early times (high T) the scalar is held up by Hubble friction and remains fixed at its initial value.
- As the universe cools, H < m. This signals the onset of scalar oscillations.
- At late times, the scalar oscillates about its minimum and is diluted due to Hubble expansion.

Standard Misalignment mechanism

The energy density redshifts as matter

$$\rho_{\phi} = \frac{1}{2} m_{\phi}^2 \langle \phi^2(t) \rangle \sim a(t)^{-3} \sim t^{-3/2} \sim T^3$$

The relic abundance at late times will depend on the initial value of field via the oscillation field value:

$$\Omega_{\phi}|_{0} = \frac{\rho_{\phi,0}}{\rho_{c,0}} \simeq \frac{\frac{1}{2} m_{\phi}^{2} \phi_{\text{osc}}^{2} (T_{0}/T_{\text{osc}})^{3} (g_{*S}^{0}/g_{*S}^{\text{osc}})}{\rho_{c,0}}$$

Potential in dimensionless terms

We do calculations in dimensionless terms, by defining,

$$y = rac{T}{\mu}, \quad \hat{\phi} = rac{\phi}{M_{
m pl}}, \quad \hat{h} = rac{h}{\mu}, \quad \kappa = rac{m_{\phi}M_{
m pl}}{\mu^2}, \quad eta = rac{AM_{pl}}{\mu^2}$$

The potential becomes:

$$\hat{V} = -\frac{1}{2}\hat{h}^{2}(1 - \beta\hat{\phi}) + \frac{1}{4}\lambda\hat{h}^{4} + \frac{1}{2}\kappa^{2}\hat{\phi}^{2}
+ \frac{y^{4}}{2\pi^{2}}(J_{B}[\eta_{h}] + 3J_{B}[\eta_{\chi}] + 4J_{B}[\eta_{W_{T}}] + 2J_{B}[\eta_{Z_{T}}] + 2J_{B}[\eta_{W_{L}}] + J_{B}[\eta_{Z_{L}}] + J_{B}[\eta_{A_{L}}] - 12J_{F}[\eta_{t}])$$
(21)

■ The potential leads to a set of coupled EoM for the two fields, and we solve them numerically, by first solving for Higgs.

Thermal potential: Basics

- Thermal potentials can be understood from the phase space distributions.
- Consider a field ψ with mass m_{ψ} in thermal bath, then it's free energy density $(\mu=0)$ gives the thermodynamic effective potential (: bosons, + : fermion)

$$V_{th}(\chi) = \mathcal{F} = -P$$

$$V_{th}(\chi) = \frac{(-1)^n g}{6\pi^2} T^4 \int_0^\infty dx \frac{x^4}{\sqrt{x^2 + m_{\psi}^2(\chi)/T^2}} \{exp[(\sqrt{x^2 + m_{\psi}^2(\chi)/T^2}] \pm 1\}^{-1}$$
$$= \frac{(-1)^n g}{2\pi^2} T^4 \int_0^\infty dx \, x^2 \log[1 \pm e^{-\sqrt{x^2 + m_{\psi}^2(\chi)/T^2}}]$$

x = p/T

Where the Phase space and pressure is given as :

$$f(p) = \{exp[(\sqrt{p^2 + m_{\psi}^2(\chi)} - \mu)/T] \pm 1\}^{-1} \qquad P = \frac{g_{\psi}}{2\pi^2} \int_0^{\infty} dp \, \frac{p^4}{3E(p)} f(p) dp \, dp \, \frac{p^4}{2\pi^2} f(p) dp$$

Finite temperature J functions

At high temperature, one can expand them as:

$$J_B(y^2) \approx J_B^{\text{high}-T}(y^2) = -\frac{\pi^4}{45} + \frac{\pi^2}{12}y^2 - \frac{\pi}{6}y^3 - \frac{1}{32}y^4 \log\left(\frac{y^2}{a_b}\right)$$

$$J_F(y^2) \approx J_F^{\text{high}-T}(y^2) = \frac{7\pi^4}{360} - \frac{\pi^2}{24}y^2 - \frac{1}{32}y^4 \log\left(\frac{y^2}{a_f}\right) \qquad \text{for } |y^2| \ll 1$$

At low temperature, they are Boltzmann suppressed, thus the analysis reverts to the Tree level potential.

Hard Thermal loops basics

$$V = \frac{-\mu^2 \phi^2}{2} + \frac{\lambda \phi^4}{4}$$

1-loop mass correction λT^2

higher-loop daisy correction
$$\frac{\lambda^n T^{2n-1}}{u^{2n-3}}$$

Large ratios of T/ μ have to be resumed ($\mu^2 \sim \lambda T^2$), which can be done by replacing the tree mass by

$$m^2(\phi) = m_{\mathrm{tree}}^2(\phi) + \Pi(\phi, T)$$

For scalars, Π gives the leading contribution in T to the one-loop thermal mass, and is obtained by differentiating V_{th} with respect to field:

$$\Pi \sim \lambda T^2 + \dots$$

This includes the hard thermal loops and daisy contributions to all orders.

Potential including thermal effects

Thus, by resuming the thermal mass in the arguments of the thermal potential, ("Truncated Full Dressing"), we get:

$$\hat{V} = -\frac{1}{2}\hat{h}^{2}(1 - \beta\hat{\phi}) + \frac{1}{4}\lambda\hat{h}^{4} + \frac{1}{2}\kappa^{2}\hat{\phi}^{2}
+ \frac{y^{4}}{2\pi^{2}}(J_{B}[\eta_{h}] + 3J_{B}[\eta_{\chi}] + 4J_{B}[\eta_{W_{T}}] + 2J_{B}[\eta_{Z_{T}}] + 2J_{B}[\eta_{W_{L}}] + J_{B}[\eta_{Z_{L}}] + J_{B}[\eta_{A_{L}}] - 12J_{F}[\eta_{t}])$$

For Higgs and the Goldstones, the correction is given by

$$\begin{split} \eta_h &= \frac{1}{y^2} \left(3\lambda \hat{h}^2 - (1 - \beta \hat{\phi}) + \frac{y^2}{4} \left(2\lambda + y_t^2 + \frac{3}{4} g^2 + \frac{1}{4} g'^2 \right) \right) \\ \eta_\chi &= \frac{1}{y^2} \left(\lambda \hat{h}^2 - (1 - \beta \hat{\phi}) + \frac{y^2}{4} \left(2\lambda + y_t^2 + \frac{3}{4} g^2 + \frac{1}{4} g'^2 \right) \right), \end{split} \\ y &= \frac{T}{\mu}, \quad \hat{\phi} = \frac{\phi}{M_{\rm pl}}, \quad \hat{h} = \frac{h}{\mu}, \quad \kappa = \frac{m_{\phi} M_{\rm pl}}{\mu^2}, \quad \beta = \frac{A M_{pl}}{\mu^2}, \quad \beta = \frac{A M_{pl}}{\mu^2}, \end{split}$$

For Longitudinal vector boson modes, it is given as (gauge basis):

$$\Pi_{GB}^{L}(0) = \frac{11}{6}T^2 \operatorname{diag}(g^2, g^2, g^2, g'^2)$$

 Contributions to Fermions (no zero modes, thus no IR divergence in propagators) and transverse vector boson modes (gauge symmetry) are suppressed.

Initial Conditions

- The amplitude of the oscillations are controlled by two different sources (misalignment at end of inflation, ϕ_i and Thermal Misalignment, ϕ_T)
- ▶ Total misalignment, and the energy density is dictated by ϕ_T + ϕ_i ϕ_{min} .
- For a long enough period of inflation and a low enough Hubble, $H_I < v$, the effective temperature experienced by the scalar field is $T \sim H_I$.
- Since $H_I \ll v$, the Higgs is close to its vev and the true minima of ϕ is approximately at ϕ_0 .
- The long period helps the field to reach it's true minima.

Overall comparison with numerics

Blue Dashed: Approx

Reg I and II

Black: no vev

Red: DM numerical

Fifth force experiments Constraints

- In the limit of a very long-range force of range $\sim m_\phi^{-1}$, bounds are derived from post-Newtonian tests of relativity.
- The universal coupling turns out to be :

$$\alpha = g_{hNN} \frac{\sqrt{2} M_P}{m_{\text{nuc}}} \frac{Av}{m_h^2}$$

$$\simeq 10^{-3} \left(\frac{m_h}{115 \,\text{GeV}}\right)^{-2} \frac{A}{10^{-8} \,\text{eV}}.$$

$$A = \frac{\beta \mu^2}{M_{pl}}$$

$$V(r) = -\frac{Gm^2}{r}(1 + \alpha^2 e^{-m_{\phi}r})$$

Resonant absorption in gas chamber

- Bosonic dark matter (DM) detectors based on resonant absorption onto a gas of small polyatomic molecules.
- The excited molecules emit the absorbed energy into fluorescence photons that are picked up by sensitive photodetectors with low dark count rates.
- DM masses between 0.2 eV and 20 eV are targeted, with Bulk and Stack configurations being focused on.

Stellar Cooling bounds

- Stellar cooling constraints relies upon the draining and cooldown of stars due to production of ultralight particles (like ϕ) in stars.
- We consider the bounds coming from red giants (RG) and horizontal branch (HB) stars cooling.

2 body photon decay

- Extragalactic bounds
 - Photons emitted from very late decays that do not lie in ultraviolet range, can be observed today as a distortion of the diffuse extragalactic background light (EBL).
 - Together these bounds cover the wavelength range between 0.1 and 1000 μ m, that is roughly the mass range between 0.1 eV and 1 keV.
- Two body photon decays $(\phi \rightarrow \gamma \gamma)$
 - ► HEAO-1: Data is from observations of 3-50 keV photons made with the A2 High-Energy Detector on HEAO-1. Other datasets from the experiment are significantly weaker than those from the INTEGRAL experiment.
 - INTEGRAL: Data is from observations of 20 keV to 2 MeV photons.

Initial Conditions: Comparison

We will compare the case where initially if the field starts from 0, which can be the case of high scale inflation. We observe that the High T behavior is same in both cases.

 ϕ evolution(Higgs vev subtracted) comparison for different choices of initial conditions, with benchmark points being: $(A, m_{\phi}) = (3.21 \times 10^{-12}, 0.032 \times 10^{-8}) \, eV$. Gray curve: $\phi_i = \phi_0$, Red Curve $\phi_i = 0$: Dashed curves corresponds to respective initial conditions.

Conclusions

- Particularly, we have focused on the phenomenology of a realistic scenario where the DM couples to the Higgs and the SM.
- This is one of the most minimal setup which is also experimentally viable.
- A variety of opportunities for probing this scenario in the future exist.
- Our DM density line can be interpreted as a constraints coming from cosmology(thermal effects),
- The High T thermal effects are fairly insensitive to the initial conditions, and thus for heavier mass ranges, it would be hard to escape these bounds modulo fine tuned initial conditions.