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PV In Hadronic Processes

Since its first experimental realization1, research efforts have tried to
capture and quantify parity violation (PV), including in hadronic
processes.

Hadronic PV is complex since weak-interactions between quarks,
receive significant corrections due to QCD gluon loops. For example,
at leading order in αs ,

1C.S.Wu et al., 1957
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Theoretical Developments

At low energies, modeled using meson exchange nucleon-nucleon
interactions1, DDH introduced strong interaction modifications of the
weak interactions via phenomenological factors.

In later works2, RG methods were used to analyse hadronic PV in the
isovector sector.

More recently3, and in the light of new experimental results, it has
been argued that better theoretical estimations and comparison of
different isosectors are required.

This calls for a concrete QCD analysis and estimates comparing the
weak meson-nucleon couplings for all three isosectors.

1Desplanques, Donoghue, and Holstein (DDH), 1980
2Dai et al., 1991, Tiburzi, 2012
3Gardner et al., 2017, Schindler et al., 2016
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QCD Evolution Across Energy Scales: Our Work

G.Muralidhara HPV 4 / 18



PV Effective Hamiltonian at MW

Summing all ∆S = 0 tree level amplitudes, (we keep the W± and Z 0

contributions separate for clarity):

H PV ≡ H = HZ +HW

HZ (MW ) =
GF s

2
w

3
√
2

(
Θ1−3(

1

2s2w
−1)Θ5

)
Θ1 = [(ūu)V +(d̄d)V +(s̄s)V ]

αα [(ūu)A− (d̄d)A− (s̄s)A]
ββ

Θ5 = [(ūu)V − (d̄d)V − (s̄s)V ]
αα [(ūu)A− (d̄d)A− (s̄s)A]

ββ

HW (MW ) =−GF√
2

(
cos2(θc)Θ9+ sin2(θc)Θ11

)
Θ9 = (ūd)αα

V (d̄u)
ββ

A +(d̄u)αα

V (ūd)
ββ

A

Θ11 = (ūs)αα

V (s̄u)
ββ

A +(s̄u)αα

V (ūs)
ββ

A
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Operator group for Z0− channel

Under QCD corrections, operators rescale and mix with other operators.
For example, Θ1,

Θ1 →Θ1+
g2Γ(2− d

2 )

(4π)2(µ2)2−
d
2

(
2

9
Θ1−

2

3
Θ2+1Θ3−3Θ4

)
Continuing the analysis for every operator (existing and newly generated)
we get the following operator set that is closed under mixing,

Θ1 = [(ūu)V +(d̄d)V +(s̄s)V ]αα [(ūu)A− (d̄d)A− (s̄s)A]
ββ

Θ2 = [(ūu)V +(d̄d)V +(s̄s)V ]αβ [(ūu)A− (d̄d)A− (s̄s)A]
βα

Θ3 = [(ūu)A+(d̄d)A+(s̄s)A]
αα [(ūu)V − (d̄d)V − (s̄s)V ]ββ

Θ4 = [(ūu)A+(d̄d)A+(s̄s)A]
αβ [(ūu)V − (d̄d)V − (s̄s)V ]βα

Θ5 = [(ūu)V − (d̄d)V − (s̄s)V ]αα [(ūu)A− (d̄d)A− (s̄s)A]
ββ

Θ6 = [(ūu)V − (d̄d)V − (s̄s)V ]αβ [(ūu)A− (d̄d)A− (s̄s)A]
βα

Θ7 = [(ūu)A+(d̄d)A+(s̄s)A]
αα [(ūu)V +(d̄d)V +(s̄s)V ]ββ

Θ8 = [(ūu)A+(d̄d)A+(s̄s)A]
αβ [(ūu)V +(d̄d)V +(s̄s)V ]βα
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Anomalous Dimension Matrix γZ

The final γ matrix for the Z-sector that takes the open quark flavors into
account is

γZ (µ) =− gs
8π2

×

2
9

−2
3 1 −3 0 0 0 0

− 3
2 +

2
9nf

9
2 −

2
3nf

−3
2

−7
2 0 0 0 0

11
9

−11
3 0 0 0 0 0 0

−3
2

−7
2

−3
2

9
2 0 0 − 2

9nQ
2
3nQ

0 0 0 0 1 −3 2
9 − 2

3
− 2

9nQ
2
3nQ 0 0 −3 1 0 0

0 0 0 0 0 0 11
9 − 11

3

0 0 0 0 0 0 2nf
9 −3 1− 2nf

3


Here nf =number of dynamical quarks at the considered energy scale.
nQ =#d −#u.
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Operator group for W±− channel

The operators from the W-channel form a separate closed group,

Θ9 = (ūd)αα

V (d̄u)
ββ

A +(d̄u)αα

V (ūd)
ββ

A

Θ10 = (ūd)
αβ

V (d̄u)
βα

A +(d̄u)
αβ

V (ūd)
βα

A

Θ11 = (ūs)αα

V (s̄u)
ββ

A +(s̄u)αα

V (ūs)
ββ

A

Θ12 = (ūs)
αβ

V (s̄u)
βα

A +(s̄u)
αβ

V (ūs)
βα

A

γW (µ) =− gs
8π2


1 −3 0 0
−3 1 0 0
0 0 1 −3
0 0 −3 1


Using the γ matrices, we perform the RG flow:

C⃗ (µ) = exp

[∫ gs(µ)

gs(Mw )
dg

γT (µ)

β (gs)

]
C⃗ (Mw )
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Hadronic Wilson Coefficients

C⃗(MW ) = (1,0,0,0,−3.49,0,0,0,−13.0cos2θc ,0,−13.0sin2θc ,0),

C⃗(2GeV)=



1.09 [1.17 . . .1.06][1.08 . . .1.04] [1.07][1.06]
0.018 [0.014 . . .0.021][0.033 . . .0.006] [−0.006][−0.006]
0.199 [0.321 . . .0.133][0.193 . . .0.127] [0.158][0.153]
−0.583 [−0.990 · · ·−0.385][−0.571 · · ·−0.374] [−0.460][−0.456]
−4.36 [−4.99 · · ·−4.05][−4.34 · · ·−4.03] [−4.16][−4.14]
1.72 [2.63 . . .1.19][1.67 . . .1.16] [1.40][1.36]

−0.170 [−0.288 · · ·−0.110][−0.165 · · ·−0.105] [−0.134][−0.129]
0.332 [0.496 . . .0.235][0.322 . . .0.225] [0.275][0.268]
−16.2 [−18.6 · · ·−15.0][−16.1 · · ·−15.0] [−15.48][−15.4]
6.38 [9.76 . . .4.44][6.22 . . .4.30] [5.19][5.05]
−16.2 [−18.6 · · ·−15.0][−16.1 · · ·−15.0] [−15.48][−15.4]
6.38 [9.76 . . .4.44][6.22 . . .4.30] [5.19][5.05]


where the last four entries should be multiplied by factors of cos2θc ,cos

2θc ,sin
2θc , and sin2θc , respectively. The primary result

is given by the leftmost column of numbers. The other columns illustrate the uncertainties in the computation. In the central

column, the left set shows the ranges of WC that result in the Nf = 2+1 theory for renormalization scales of µ = 1−4GeV and

the right set shows them in the Nf = 2+1+1 theory with µ = 2−4GeV. The rightmost column gives WC if the αs running and

matching is computed at NLO (left) and NNLO (right).
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Iso-sector Separation

In terms of Hamiltonian :

Heff (µ) =
GF s

2
w

3
√
2

∑
i

Ci (µ)Θi −→ H I=1
eff =

GF s
2
w

3
√
2

∑
i

C I=1
i ΘI=1

i

Heff (µ) =
GF s

2
w

3
√
2

∑
i

Ci (µ)Θi −→ H I=0
⊕

2
eff =

GF s
2
w

3
√
2

∑
i

C I=0
⊕

2
i ΘI=0

⊕
2

i

C I=1(2GeV) =



1.091
0.018
0.199
−0.583
4.363
−1.715
4.363
−1.715

−16.221sin2 θc

6.377sin2 θc


CI=0

⊕
2(2GeV) =



−1.091
−0.018
−0.199
0.583
−4.363
1.715
−0.170
0.332

−16.221cos2 θc

6.377cos2 θc


The uncertainties in these WCs (not shown here) are also obtained alongside the
extraction.
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Meson-Nucleon couplings: hIM

The DDH’s meson-exchange phenomenological HPV Hamiltonian is
dictated by couplings hIM for meson M and isosector I :
h1

π , h1
ρ0 , h0

ρ , h2
ρ , h0

ω and h1
ω

To obtain them from our RG Hamiltonian, we make the following
matching from the quark to hadron level: ⟨MN ′|H I

eff|N⟩= ⟨MN ′|HDDH|N⟩
For example, the pion contribution to hadronic PV:

H π
DDH = ih1π(π

+p̄n−π
−n̄p) =⇒ −ih1π ūnup =

〈
nπ

+
∣∣H I=1

eff |p⟩

uN is a Dirac spinor.

Next, we make use of factorization approximation to evaluate these matrix
elements. If we consider vector meson (V) emission, the factorization
approximation for long-distance hadronic interaction matrix elements in
terms of four-quark operators separate as〈

VN ′∣∣(q̄1q2)v q̄3q4)A |N⟩= ⟨V |(q̄1q2)v |0⟩
〈
N ′∣∣(q̄3q4)A |N⟩
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h1π

As a pseudoscalar meson〈
π
+n

∣∣HI=1 |p⟩=−ih1π ūnup =

=
GF s

2
w

3
√
2

〈
π
+
∣∣(ūγ5d) |0⟩

(2c I=1
1

3
+2c I=1

2 −
2c I=1

3

3
+2c I=1

4

)
⟨n| d̄u |p⟩

With fπ the charged pion decay constant

〈
π
+
∣∣(ūγ5d) |0⟩=

m2
π fπ

i(mu +md )

mπ = 135MeV ; fπ = 130; (mu +md )[RGI] = 2(4.736(60)m(1.5)Λ)MeV

and isovector quark scalar charge of the nucleon1

⟨n| d̄u |p⟩= gu−d
s ūnup ; gu−d

s = 1.06(10)(06)sys

h1π =(3.06±0.34+
(
+1.29
−0.64

)
+0.42+(1.00))×10−7(npdGamma2 :2.6(1.2)(0.2)×10−7)

1mud : FLAG Review 2021, 2111.09849; gs : (Nf = 2+1) [S. Parke et al., 2103.05599]
2D. Blyth, et al., Phys. Rev. Lett. 121 (24) (2018) 242002.
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h0ω , h1ω , h1ρ , h0ρ and h2
ρ

Rest of the couplings defined in DDH:

h1ω =+1.825±0.111+
(
−0.047
0.125

)
−0.040+(−0.020))×10−7 ;

h0ω =+0.270±0.015+
(
−0.32
0.55

)
−0.202+(1.148))×10−7

h1ρ =−0.294±0.045+
(

0.014
−0.036

)
+0.009+(0.026))×10−7

h0ρ =−11.05±0.672+
(

1.079
−2.051

)
+0.673+(−4.039))×10−7;

h2ρ =+8.57±0.519+
(

1.129
−1.736

)
+0.802+(−3.749))×10−7
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Implications

Constraints on the parity-violating vector-meson-nucleon coupling constants:

n3He: hρ−ω ≡ h0ρ +0.605h0ω −0.605h1ρ −1.316h1ω +0.026h2ρ = (−17.0±6.56)×10−7

LOQCD+LQCD: hρ−ω =−12.9±0.52+
(

0.97
−1.9

)
+0.62+(−3.4))×10−7;

Along with the pion coupling, these predictions are within ±1σ of experiment.
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Perspective

The analysis of 18F radiative decay3from its excited state yields the bound
| h1π |< 1.3×10−7. This is the the only very precise determination in a
complex system that challenges the few-body estimations of pion-coupling,
as shown in the figure.

As an example of a complex system the above tension may be reflective of
an extraction in a different physical setting.

The couplings are not direct physical observables and thus can be sensitive
to the energy scale of the system under consideration, intrinsically
depending on the physical momentum scale of the studies in which they
are extracted.

3W. Haxton et al., Prog. Part. Nucl. Phys. 71 (2013) 185–203
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Summary

We have presented a LO QCD + LQCD analysis of the parity-violating
meson-nucleon coupling constants.

Our results compare favorably to the couplings determined in the
NPDGamma and n3He experiments

LOQCD+LQCD:hρ−ω = (−12.9± ...×10−7 [hρ−ω = (−17.0±6.56)×10−7]

LOQCD+LQCD:h1π = (3.03± . . .)×10−7 [h1π = (2.6±1.2)×10−7]

suggesting that nonfactorizable corrections are small.

Our study suggests that extraction of h1π could vary with the cutoff scale of
the physical description. We hope that further studies of hadronic parity
violation in complex systems could be made and be of sufficient precision to
reveal this effect in other isosectors as well.

A study of NLO effects in the current study could also help in cementing
these observations. This is underway.
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Thank You!
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Isospin Structure of (u,d) 4-quark Operators

Upto a normalization, we get,

|0,0⟩= |1,−1⟩⊗ |1,1⟩+ |1,1⟩⊗ |1,−1⟩− |1,0⟩⊗ |1,0⟩

ΘI=0 = (ūd)V (−d̄u)A+(−d̄u)V (ūd)A−
(
(ūu− d̄d)V√

2

(ūu− d̄d)A√
2

)
|1,0⟩= |0,0⟩⊗ |1,0⟩

ΘI=1 =

(
(ūu+ d̄d)V√

2

(ūu− d̄d)A√
2

)
|2,0⟩= |1,−1⟩⊗ |1,1⟩+ |1,1⟩⊗ |1,−1⟩+2 |1,0⟩⊗ |1,0⟩

ΘI=2 = (ūd)V (−d̄u)A+(−d̄u)V (ūd)A+2

(
(ūu− d̄d)V√

2

(ūu− d̄d)A√
2

)
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