Probing Axionic Instabilities in the late Universe via CMB-B mode

Subhajit Ghosh w/ Michael Geller, Sida Lu, Yuhsin Tsai

PIKIMO 13 | 12 Nov, 2022 | University of Cincinnati

Introduction

GRAVITY

Introduction

Secluded Dark Sector: Axion

m > H(z) at Matter Domination $\longrightarrow m \leq 10^{-28} \text{ eV}$

Tachyonic instability: Exponential production of Dark photon

$$\hat{X}^{i}(\mathbf{x},\tau) = \int \frac{d^{3}k}{(2\pi)^{3}} \hat{X}^{i}(\mathbf{k},\tau) e^{i\mathbf{k}\cdot\mathbf{x}} = \sum_{\lambda=\pm} \int \frac{d^{3}k}{(2\pi)^{3}} v_{\lambda}(k,\tau) \varepsilon_{\lambda}^{i}(\mathbf{k}) \hat{a}_{\lambda}(\mathbf{k}) e^{i\mathbf{k}\cdot\mathbf{x}} + \text{h.c.}$$

Dark Photon E.O.M
$$\rightarrow v_{\pm}''(k,\tau) + \omega_{\pm}^2(k,\tau) v_{\pm}(k,\tau) = 0$$

Time dependent frequency \rightarrow

$$\omega_{\pm}^2(k,\tau) = k^2 \mp k \frac{\alpha}{f} \phi'$$

$$0 < k < \frac{\alpha |\phi'|}{f} \longrightarrow \omega_{\pm}^2 < 0 \longrightarrow v_{\pm} \sim e^{|\omega_{\pm}|\tau}$$

Exponential growth

Tachyonic instability: Exponential production of Dark photon

 $|v_+| \gg |v_-|$

In our numerical calculation we only consider one helicity for simplicity Did not include back-reaction of Dark photon gauge modes on Axion (requires lattice study)

Axion Energy gets transferred to DR

 $m = 1.25 \times 10^{-29} \text{ eV}$

Dark photon sources metric fluctuations

The density perturbation in Dark Photon is very high \rightarrow sources metric fluctuation in Matter Domination

$$\langle \delta \rho_e^2 \rangle^{1/2} \sim 10^{-5} \rho_m$$

ISW Effect

$$\begin{split} \delta'_m &+ \theta_m = 3\Phi' ,\\ \theta'_m &+ \frac{a'}{a} \theta_m = -\Phi ,\\ k^2 \Phi &+ 3\frac{a'}{a} \Phi' + 3\left(\frac{a'}{a}\right)^2 \Phi = -4\pi G_N a^2 (\delta \rho_e + \delta \rho_m) \end{split}$$

$$\begin{split} \Theta_{0}(\mathbf{n}) &= \sum_{l} i^{l} \left(2l+1 \right) \int \mathcal{D}k \, \tilde{\Theta}_{l}(\mathbf{k}) P_{l}\left(\frac{\mathbf{k} \cdot \mathbf{n}}{k}\right) \\ \tilde{\Theta}_{l}(\mathbf{k}) &= 2 \int_{\tau_{rec}}^{\tau_{0}} d\tau \, \Phi'(\mathbf{k},\tau) j_{l} [k(\tau_{0}-\tau)] \,, \\ C_{l}^{TT} &= \frac{1}{4\pi} \int d\mathbf{n}' d\mathbf{n}'' \Theta_{0}(\mathbf{n}') \Theta_{0}(\mathbf{n}'') P_{l}(\mathbf{n}' \cdot \mathbf{n}'') \\ \\ \text{Similar } C_{\ell}^{EE} \text{ expressions} \end{split}$$

 $\bar{h}_{ij}^{\prime\prime} + \left(k^2 - \frac{a^{\prime\prime}}{a}\right)\bar{h}_{ij} = \frac{2}{M_{Pl}^2}a\,\Pi_{ij}(\mathbf{k},\tau) \\ \cdot \langle \left\{\int_{\tau_{\rm rec}}^{\tau_{\rm rei}} d\tau\,h_{ij}^{\prime}(k,\tau)\frac{j_2[(\tau_{\rm rei}-\tau)\,k]}{(\tau_{\rm rei}-\tau)^2\,k^2}\right\}^2 \rangle$ Similar C_{ℓ}^{TT} and C_{ℓ}^{EE} expressions

Mode solution & Spectrum computed numerically from scratch → Huge Numerical Challenge

Tensor Mode

Constraints from CMB TT+EE+BB measurement

Combined CMB TT+EE+BB Constraint (preliminary)

CP Violation: Non-zero EB correlation

Breaks CP as ϕ takes a background value

One helicity is enhanced compared to other \equiv CP Violation

Recent measurement of CP violation from CMB in terms of birefringence angle CP violation seen at 3.6σ

> Eskilt et. al., arXiv: 2205.13962

Non-zero EB correlation from Axion

The signal does not have large support at small scale (unable to explain the CP violation)

Predicts very large CP violation at large scale

Preliminary

Conclusion

- Completely secluded dark sectors can be probed via gravitational effects
- Tachyonic instability generates exponential growth for dark photon
- Preliminary studies show the signal is not strongly affected by back-reaction
- Axion Dark photon system generates sizable B mode signal for future B mode experiments
 - Produces CP violating EB signal at large scale

Stay tuned for the complete analysis (arXiv: 2212.xxxx)

ΤΗΑΝΚΥΟυ