Review of experimental results on $b \to d\ell^+\ell^-$ decays

Area 6 meeting on heavy flavour aspects in EFT fits

21st November 2022 **T. Blake**

Why study $b \rightarrow d\ell^+ \ell^-$ decays?

- Very rare FCNC transition.
 - Suppressed by small size of V_{td} in the SM.
- Tensions are seen in $b \rightarrow s\ell^+\ell^$ processes between data and SM predictions.

- Comparisons between measurements of $b \rightarrow s\ell^+\ell^-$ and $b \rightarrow d\ell^+\ell^-$ processes probe the flavour structure of the underlying theory.
 - If the underlying theory does not share the same flavour structure as the SM, could see much larger deviations from SM predictions in $b \rightarrow d\ell^+ \ell^-$ processes.

Existing constraints

R. Bause, H. Gisbert, M. Golz & G. Hiller [arXiv:2209.04457] 12 $- \mathcal{B}\left(\bar{B} \to X_d \gamma\right)$ $\mathcal{B}(B^0 \to \mu^+ \mu^-)$ 10 $\mathcal{B}\left(B^+ \to \pi^+ \mu^+ \mu^-\right)$ $\mathcal{B}\left(B_s^0 \to \bar{K}^{0*} \mu^+ \mu^-\right)$ 8 global fit 6 H_{23} best fit SM ΔC_{10} global fit $b \to s$ 4best fit $b \to s$ 0 -2-4-2.5-7.50.0 10.0 -5.0-10.02.55.07.5 ΔC_9 Constraints from $b \rightarrow s\mu^+\mu^-$ processes.

 $\mathscr{B}(B^0 \to \mu^+ \mu^-) \propto |C_{10}|^2$ Constraint is a horizontal band in the $C_9 - C_{10}$ plane.

 $\mathscr{B}(B^+ \to \pi^+ \mu^+ \mu^-) \propto |C_9|^2 + |C_{10}|^2$ Constraint forms a donut shape in the $C_9 - C_{10}$ plane.

To distinguish C_9 and C_{10} need angular information, e.g. $A_{\rm FB} \propto {\rm Re}(C_9 C_{10})$, or precise information on C_7 and interference at low q^2 .

Existing constraints?

$B^0 \rightarrow \mu^+ \mu^-$

- Incredibly rare process in SM due to the small size of V_{td} and additional helicity suppression.
- No evidence of a statistically significant signal at any experiment.

At 95% confidence level:

- $\mathscr{B}(B^0 \to \mu^+ \mu^-) < 2.6 \times 10^{-10}$ [LHCb, <u>Phys. Rev. Lett. 128, (2022) 041801</u>]
- $\mathscr{B}(B^0 \to \mu^+ \mu^-) < 1.9 \times 10^{-10}$ [CMS, <u>CMS-PAS-BPH-21-006</u>]
- $\mathscr{B}(B^0 \to \mu^+ \mu^-) < 2.1 \times 10^{-10}$ [Atlas, Jhep 04 (2019) 098]
- Comparable precisions achieved by ATLAS, CMS and LHCb.

 $-2\Delta \ln L$

- Global analysis of experiment data using run 1 + 2015 & 2016 data sets is consistent with the SM prediction (and the background only hypothesis).
- Branching fraction measurement constrains $C_{10}, C_{\rm S}$ and $C_{\rm P}$ Wilson coefficients.

[https://cds.cern.ch/record/2727216]

$B^0 \rightarrow \mu^+ \mu^-$

• Main challenge (beside the small signal) is misidentified backgrounds:

$B^+ \rightarrow \pi^+ \mu^+ \mu^-$

[LHCb, JHEP 10 (2015) 034]

- Measurement of the differential branching fraction of the $B^+ \rightarrow \pi^+ \mu^+ \mu^-$ decay in bins of q^2 performed by LHCb using data collected in run 1 (with 3 fb⁻¹ of integrated luminosity).
- See important backgrounds from misidentified decays — in particular from $B^+ \rightarrow K^+ \mu^+ \mu^$ which has a branching fraction that is $(|V_{ts}|/|V_{td}|)^2 \sim 25$ times larger than the signal.

$B^+ \to \pi^+ \mu^+ \mu^-$

- Observed signal normalised w.r.t. to $B^+ \rightarrow J/\psi K^+$ decays in the same data set.
- Data are compatible with predictions given the statistical uncertainties on the measurements.
- Differential branching fraction measurement constrains C_9 and C_{10} Wilson coefficients.

- First evidence of the $B_s^0 \rightarrow \overline{K}^{*0} \mu^+ \mu^-$ seen with a significance of 3.4σ by LHCb using its run 1 and 2016 data sets (with 4.6 fb⁻¹ of integrated luminosity).
- Determine branching fraction using $B^0 \rightarrow J/\psi K^{*0}$ as a normalisation channel. Yields

 $\mathscr{B}(B_s^0 \to \overline{K}^{*0} \mu^+ \mu^-) = [2.9 \pm 1.0 \,(\text{stat}) \pm 0.2 \,(\text{syst}) \pm 0.3 \,(\text{norm})] \times 10^{-8}$

- Main challenge is the understanding of the tails of the mass resolution and the background from $B^0 \rightarrow K^{*0}\mu^+\mu^-$ decays.
 - The $B^0 \to K^{*0} \mu^+ \mu^-$ decay is ~100 times more prominent than the signal due to $|V_{td}/V_{ts}|$ and the *B* production fraction ratio (f_s/f_d) in *pp* collisions.

Dominant contribution is from $B^0 \rightarrow K^{*0} \mu^+ \mu^-$ decays.

• Can gain an understanding of the modelling of the tails by comparing $\overline{K}^{*0}J/\psi$ reconstructed with and without a J/ψ mass constraint.

Other constraints?

$B^0 \to \rho^0 \mu^+ \mu^-$

[LHCb, Phys. Lett. B743 (2015) 46] Events/(20 MeV/c²) 40 \cdots $B_s^0 \rightarrow \pi^+ \pi^- \mu^+ \mu^ B^0 \rightarrow \pi^+ \pi^- \mu^+ \mu^-$ First evidence for the ••••• $B^0 \rightarrow K^*(892)^0 \mu^+ \mu^ B^0 \rightarrow \pi^+ \pi^- \mu^+ \mu^-$ decay seen ---- $B_s^0 \rightarrow \eta' \mu^+ \mu^-$ 30 with a significance of 4.8σ using ----- Combinatorial the LHCb run 1 dataset (with 3fb⁻¹ - Total fit 20 LHCb $B_s^0 \rightarrow \pi^+ \pi^- \mu^+ \mu^$ of integrated luminosity). decays 10 Misidentified $B^0 \to K^{*0} (\to K^+ \pi^-) \mu^+ \mu^$ decays with $K \rightarrow \pi$ 5.4 5.6 5.8 5.2 $M(\pi^{+}\pi^{-}\mu^{+}\mu^{-})$ [GeV/c²] $B^0 \rightarrow \eta' \mu^+ \mu^$ decays with $\eta' \rightarrow \pi^+ \pi^- \gamma$

$B^0 \to \rho^0 \mu^+ \mu^-$

- First evidence for the $B^0 \rightarrow \pi^+ \pi^- \mu^+ \mu^-$ decay seen with a significance of 4.8σ using the LHCb Run1 dataset (with 3fb⁻¹ of integrated luminosity).
- Determine branching fraction with $B^0 \rightarrow J/\psi K^{*0}$ as a normalisation channel.

Yields:

 $\mathscr{B}(B^0 \to \pi^+ \pi^- \mu^+ \mu^-) = [2.11 \pm 0.51 \,(\text{stat}) \pm 0.15 \,(\text{syst}) \pm 0.16 \,(\text{norm})] \times 10^{-8}$

$B^0 \to \rho^0 \mu^+ \mu^-$

- Unfortunately, given the large natural width of the ρ , it is hard to separate the signal from other $\pi^+\pi^-$ contributions.
 - \blacktriangleright No attempt was made to separate the ρ from other contributions in the LHCb analysis.

[LHCb, Phys. Lett. B743 (2015) 46]

 $\rightarrow N \mu^{-} \mu$

• First observation of the $\Lambda_b \rightarrow p \pi^- \mu^+ \mu^-$ decay with a significance of 5.5σ using the LHCb run 1 data set (with 3fb⁻¹ of integrated luminosity).

• Measured branching fraction ratio:

 $\frac{\mathscr{B}(\Lambda_b \to p\pi^-\mu^+\mu^-)}{\mathscr{B}(\Lambda_b \to J/\psi(\to \mu^+\mu^-)p\pi^-)} = 0.044 \pm 0.012(\text{stat}) \pm 0.007(\text{syst})$

which corresponds to $\mathscr{B}(\Lambda_b \to p\pi^-\mu^+\mu^-) \approx 6 \times 10^{-8}$

Nu

[LHCb, Phys. Rev. Lett. 117 (2016) 082003]

- Even bigger challenge in interpreting the result due to the large number of overlapping Nstates with different quantum numbers decaying to $p\pi^{-}$.
 - Would require an amplitude analysis to separate states, which is not possible with the current data set.
- For comparison, the figure shows the states used in the amplitude analysis of $\Lambda_b \to J/\psi p\pi^-$ decays.

Possible future constraints?

Lepton flavour universality tests

- Focus on $B^+ \to \pi^+ \ell^+ \ell^-$ as the cleanest experimental signatures.
- Expect $\mathcal{O}(25) B^+ \rightarrow \pi^+ e^+ e^-$ decays in $1 < q^2 < 6 \,\mathrm{GeV^2/c^4}$ with the LHCb Run 1+2 dataset (with 9fb⁻¹ of integrated luminosity).
- Main challenge is the small electron mode yield and backgrounds from:
 - 1. $B^+ \to K^+ e^+ e^-$ decays with $K \to \pi$.
 - 2. Semileptonic decays with missing neutrinos.
 - 3. Misidentified hadronic decays, e.g. $B^+ \to \pi^+ \pi^- \pi^-$ with $\pi^\pm \to e^\pm$.

NB, expect to see a significant improvement in electron efficiency in data collected from next year due to the removal of LHCb's hardware trigger.

Angular distribution of $B^+ \rightarrow \pi^+ \mu^+ \mu^-$

• Simplified angular distribution, which depends on two parameters:

$$\frac{\mathrm{d}\Gamma}{\mathrm{d}\cos\theta} = \frac{3}{4}(1-F_{\mathrm{H}})(1-\cos^{2}\theta) + \frac{F_{\mathrm{H}}}{2} + A_{\mathrm{FB}}\cos\theta$$
[Bobeth et. al. JHEP 12 (2007) 040]

- $A_{\rm FB}$ and $F_{\rm H}$ receive contributions from $C_{\rm S}$, $C_{\rm P}$, $C_{\rm T}$ and $C_{\rm T5}$, which are absent in the SM.
 - $C_{\rm S}$ and $C_{\rm P}$ appear in different combinations in $F_{\rm H}$ and $A_{\rm FB}$, compared to $\mathscr{B}(B^0 \to \mu^+ \mu^-)$.

[Bobeth et. al. EPJC 75 (2015) 9]

Angular observables

- Most powerful constraints on C_9 and C_{10} in $b \to s\ell^+\ell^-$ decays come from the angular distribution of the $B^0 \to K^{*0}\mu^+\mu^-$ decay.
 - Best sensitivity comes from $A_{\rm FB}$ and S_5/P_5' .
- Analog of $B^0 \to K^{*0} \mu^+ \mu^-$ is $B^0 \to \rho^0 \mu^+ \mu^-$ but this decay is not self-tagging.
 - We can only gain information on the flavour of the *B* by tagging the flavour of the system at production.
 - We cannot measure $A_{\rm FB}$ and S_5/P_5' in an untagged analysis. We can measure $F_{\rm L}$ and S_4/P_4' in an untagged analysis.

[Descotes-Genon et. al., JHEP 04 (2015) 045]

 In time-dependent analyses, sensitivity is limited by the effectivetagging power of the experiment.

• For LHCb in Run 1 + 2, this is $\varepsilon_{\rm eff} = \varepsilon_{\rm tag} D^2 \sim 5~\%$, see e.g. [LHCb, JHEP 11 (2017) 170].

Angular observables

- There are several self-tagging options but each has experimental difficulties:
 - $B_s^0 \to \overline{K}^{*0} \mu^- \mu^-$ is the best choice at LHCb but is limited by the small sample size and the background from $B^0 \to K^{*0} \mu^+ \mu^-$.
 - $B^+ \rightarrow \rho^+ \mu^+ \mu^-$ is challenging at LHCb as it requires the reconstruction of a π^0 .
 - $\Lambda_b \rightarrow N\mu^+\mu^-$ has a complex angular structure to the the overlapping (interfering) $p\pi^-$ resonances, see. e.g. [A. Beck et. al., <u>arXiv:2210.09988</u>]

Summary

- LHC Run 1+2 data has enabled measurements of $b \rightarrow d\ell^+ \ell^-$ processes for the first time.
 - The challenge for Belle II is the small size of the branching fraction compared to the number of B^+B^- or $B^0\overline{B}{}^0$ produced.
- Expect updated measurements on several processes with the legacy run 1 + 2 data set.
- New opportunities will be possible with the data from runs 3 and 4.
 - There are also interesting opportunities for measurements of *CP* violation in $b \rightarrow d\ell^+ \ell^-$ decays due to the large weak phase differences between contributions to the amplitude of the decay.