$\mathcal{R}(D^*)$ and $\mathcal{R}(D)$ with $au^- o \mu^- u_ au \overline{ u}_\mu$

Greg Ciezarek

CERN

November 21, 2022

- In the SM, the only difference between $\overline{B} \to D^{(*)} \tau^- \overline{\nu}_{\tau}$ and $\overline{B} \to D^{(*)} \mu^- \overline{\nu}_{\mu}$ is the mass of the lepton
 - Form factors mostly cancel in the ratio of rates (except helicity suppressed amplitude)
- Ratio $R(D^{(*)}) = B(\overline{B} \to D^{(*)}\tau^-\overline{\nu}_{\tau}) / B(\overline{B} \to D^{(*)}\mu^-\overline{\nu}_{\mu})$ is sensitive to e.g charged Higgs, leptoquarks
- D vs D*: different meson spin, so different physics sensitivity

Previous status

- Before: measure $\mathcal{R}(D^*)$ with Run 1 $D^{*+}\mu^-$ data
- Now: simultaneously measure $\mathcal{R}(D)$ and $\mathcal{R}(D^*)$ with Run 1 $[D^0\mu^-]$ and $[D^{*+}\mu^-]$ data
 - Higher branching fractions and higher efficiency $[D^0\mu^-]$ sample $\sim 5 \times$ bigger than $[D^{*+}\mu^-]$
 - Largest contribution from $B \to D^{*0} (\to D^0 \pi^0) \ell \nu$
- LHCb-PAPER-2022-039 in preparation

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ ○ ○ ○

Experimental challenge

- Difficulty: neutrinos 3 for $(au^- o \mu^-
 u_ au \overline{
 u}_\mu)
 u$
 - No narrow peak to fit (in any distribution)
- Main backgrounds: partially reconstructed B decays
 - $B \to D^* \mu \nu, B \to D^{**} \mu \nu, B \to D^* D(\to \mu X) X \dots$
- Also combinatorial, misidentified backgrounds

- Can use *B* flight direction to measure transverse component of missing momentum
- No way of measuring longitudinal component \rightarrow use approximation to access rest frame kinematics
 - Assume $\gamma \beta_{z, visible} = \gamma \beta_{z, total}$
 - \sim 20% resolution on *B* momentum, long tail on high side

• Can then calculate rest frame quantities - $m^2_{missing}$, E_{μ} , $q^2\equiv M(\ell
u)$

Isolation

- Reject physics backgrounds with additional charged tracks
- MVA output distribution for $B \rightarrow D^{**} \mu^+ \nu$ background (hatched) and signal (solid)
- Inverting the cut gives a sample hugely enriched in background \rightarrow control samples

Fit strategy

- Projections of fit to isolated data shown
- All uncertainties on template shapes incorporated in fit:
 - Continuous variation in e.g different form factor parameters
 - Shape variations for all major backgrounds controlled using data samples
 - Histogram statistics included via Barlow-Beeston "lite"
- (Understanding agreement between simulation and data also essential)

2. Fit

Fit strategy

- Signal region + 3 control samples, for both D⁰ and D^{*+} samples - 8 regions
- Two fully independent fitters, independent implementations
- Nominal result: simultaneous fit of all 8 samples
- Agreement between fitters established

Fit overview

$$B \rightarrow D^{0} \mu \nu$$

$$B \rightarrow D^{*0} \mu \nu$$

$$B \rightarrow D^{*+} \mu \nu$$

$$Comb. + Fake$$

$$B \rightarrow D^{*} \mu \nu$$

$$B \rightarrow D^{0} D X$$

$$B \rightarrow D \tau \nu$$

$$B \rightarrow D^{*} \tau \nu$$

Template stats

2. Fit

2. Fit

One pion sample

- Sample with exactly one additional pion: D** backgrounds
 - Include the four known resonances, individually floating yields
 - Updated model from Bernlochner, Ligeti: all parameters unconstrained

Two pion sample

- Sample with exactly two additional pions: heavier D^{**} backgrounds (including any non-resonant)
- No theory model: cocktail sample, variation in q^2 slope

Kaon sample

- Sample with at least one additional kaom[™] B → D⁰DX[™] backgrounds
 - Also strongly constrained by the previous two samples
- Degrees of freedom: $B \rightarrow DDKX$ mass combinations, fraction of $B \rightarrow DDK*$
- Spread from an ensemble of alternative models taken as an additional systematic uncertainty

 $B \rightarrow D^{\circ} \mu \nu$ $B \rightarrow D^{*0} \mu \nu$ $B \rightarrow D^{*+} \mu \nu$

Comb. + Fake $B \rightarrow D^{**} \mu \nu$ $B \rightarrow D^0 D X$

 $B \rightarrow D \tau \nu$ $B \rightarrow D^{*} \tau \nu$ Template stats 12/20

 $\label{eq:bound} \begin{array}{c} B \rightarrow D^0 \ \mu \ \nu \\ B \rightarrow D^{\tau_0} \ \mu \ \nu \\ B \rightarrow D^{\tau_0} \ \mu \ \nu \\ Comb. + Fake \\ B \rightarrow D^{\tau_0} \ \mu \ \nu \\ B \rightarrow D^0 \ D \ X \\ B \rightarrow D \ \tau \ \nu \\ B \rightarrow D \ \tau \ \nu \\ Template stats \end{array}$

2. Fit

$D^0\mu^+$ signal sample

 $B^- \rightarrow D^0 \ell^- \overline{\nu}_\ell$ with BCL

- Helicty-suppressed terms constrained by theory, other parameters float freely
- $B^- \rightarrow D^0 \ell^- \overline{\nu}_{\ell}$ form factors from HPQCD
- $\overline{B}{}^0 \rightarrow D^{*+} \ell^- \overline{\nu}$ form factors from: Bigi, Gambino, Schacht

 $D^{*+}\mu^-$ signal sample

$$\begin{split} B &\rightarrow D^* \mu \nu \\ Comb. + Fake \\ B &\rightarrow D^{**} \mu \nu \\ B &\rightarrow D^* D X \\ B &\rightarrow D^* \tau \nu \\ Template stats \end{split}$$

Excellent fit quality throughout

Misidentified backgrounds

- Misidentified hadron component derived from data
- Inverted muon ID: select misidentified muons
 - We have these backgrounds under good control
 - Systematic uncertainty ~ 4 times smaller than previous analysis

Data/MC agreement

 Generally percent level agreement, some localised discrepancies → systematic

Internal fit uncertainties	$\sigma_{\mathcal{R}(D^*)}(\times 10^{-2})$	$\sigma_{\mathcal{R}(D)}(\times 10^{-2})$
Statistical uncertainty	1.8	6.0
Simulated sample size	1.5	4.5
$B \rightarrow D^* D X$ template shape	0.8	3.2
$\overline{B}{}^0 ightarrow D^{*+} \ell^- \overline{ u}$ form-factors	0.7	2.1
$B ightarrow D^{**} \mu^+ u$ form-factors	0.8	1.2
$\mathcal{B}(B \to D^*(D_s \to \tau \nu)X)$	0.3	1.2
MisID template	0.1	0.8
$\mathcal{B}(B \rightarrow D^{**} \tau^+ \nu)$	0.5	0.5
Combinatorial	< 0.1	0.1
Resolution	< 0.1	0.1
Additional model uncertainty	$\sigma_{\mathcal{R}(D^*)}(\times 10^{-2})$	$\sigma_{\mathcal{R}(D)}(\times 10^{-2})$
$B \rightarrow D^{(*)}DX$ model uncertainty	0.6	0.7
$\overline{B}^0_{\epsilon} \to D^{**}_{\epsilon} \mu^- \overline{\nu}_{\mu}$ model uncertainty	0.6	2.4
Data/simulation corrections	0.4	0.75
Coulomb correction to $\mathcal{R}(D^{*+})/\mathcal{R}(D^{*0})$	0.2	0.3
misID template unfolding	0.7	1.2
Baryonic backgrounds	0.7	1.2
Normalization uncertainties	$\sigma_{\mathcal{R}(D^*)}(\times 10^{-2})$	$\sigma_{\mathcal{R}(D)}(\times 10^{-2})$
Data/simulation corrections	$0.4 imes \mathcal{R}(D^*)$	$0.6 \times \mathcal{R}(D)$
$\tau^- ightarrow \mu^- u_ au \overline{ u}_\mu$ branching fraction	$0.2 imes \mathcal{R}(D^*)$	$0.2 imes \mathcal{R}(D)$
Total uncertainty	3.0	8.9

Result

• 1.9σ agreement with SM

Result

- New preliminary average: slightly lower $\mathcal{R}(D^*)$, slightly higher $\mathcal{R}(D)$, reduced correlation
 - $3.3\sigma \rightarrow 3.2\sigma$ agreement with SM
 - Excellent overall agreement between measurements_

Conclusion

- First joint measurement of R(D) and R(D*) at a hadron collider: a step up in complexity, a step up in sample size, still only Run 1
 - LHCb-PAPER-2022-039 in preparation
- Important caveat: assumes SM shape+uncertainties for $\overline{B} \to D^{(*)} \tau^- \overline{\nu}_\tau$
 - Fine for a SM null test
 - If there is non lefthanded vector new physics, measurements of $\mathcal{R}(D^{(*)})$ no longer valid
- Much more to come!
- Run 2 measurements ongoing in this and other channels
- Very small change in world average ightarrow this remains intriguing

Backups

(ロ)、(型)、(E)、(E)、(E)、(O)へ(C)

 $2.85 < q^2 < 6.10 \text{ GeV}^2/c^4 \frac{LHCb}{3.0c^4} pr$

300

200

0.40 < q² < 2.85 GeV²/c⁴LHCb prel

81

22/20

▲□▶ ▲圖▶ ▲国▶ ▲国▶ - 国 - のへで

2.85 < q² < 6.10 GeV²/c⁴ LHCb prel

Missing mass2 (GeV / c2)2

5 10 Missing mass² (GeV / c²)²

 $-0.40 < q^2 < 2.85 \text{ GeV}^2/c^4 LHCb prelimentary 3 mm s^{-1}$

 $6.10 < q^2 < 9.35 \text{ GeV}^2/c^4$ LHCb prelim

Missing mass2 (GeV / c2)2

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

Extra fit validation

- Validation fits: fix all shape parameters to nominal best fit values, try fitting alternative control sample selections
 - (exceptions in the next two slides for specific parameters)
- · Check that we really understand the backgrounds in detail

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Backgrounds with baryons?

- No baryonic backgrounds included in the nominal model
- Look at a $D^0\mu+p$ sample
 - Reuse existing $B \rightarrow D^{**} \mu^+ \nu$ samples to fit $\Lambda_b \rightarrow D^0 \mu p X$
 - Shift from including this in the full fit taken as a systematic uncertainty

- Select three pions check for missing high-multiplicity backgrounds
- Also selects a lot of muon misID: yield here similar to signal sample

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Misidentified backgrounds

- Misidentified hadron component derived from D^(*)+non-muon track data sample
- We model these very well
- Two different methods, improved since last time
- Last time: two methods for misid template shape (systematic uncertainty assigned from difference)
- Now: two bottor mothoda

Misidentified backgrounds

- Misidentified hadron component derived from D^(*)+non-muon track data sample
- Two different methods, improved since last time
 - Likelihood + sWeight based method
 - Iterative bayesian unfolding, as for $R_{J/\psi}$
- Include a momentum smearing to include the effect of muon decay-in-flight in the templates

Higher multiplicities?

- Select three pions check for missing high-multiplicity backgrounds
- Also selects a lot of muon misID: yield here similar to signal sample

30/20

пν

 $B \rightarrow D^{*+} \mu \nu$ Comb. + Fake

 $B \rightarrow D^{**} \mu \nu$ $B \rightarrow D^0 D X$ $B \rightarrow D \tau \nu$ $B \rightarrow D^* \tau \nu$

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

DD - right sign kaon

• Split DD sample by relative charge of kaon: right sign sample contains both $D \rightarrow K^+ \mu X$ and $B \rightarrow DDK^+$ decay chains

DD - wrong sign kaon

 Split DD sample by relative charge of kaon: wrong sign sample contains only a subset of B → DDK⁻ decay chains

• $\phi \to K^+ K^-$ picks out decay chains with $D_s \to \phi \mu^+ \nu_\mu$

▲□▶▲□▶★■▶★■▶ ■ のへで

Two pions - eta region

• Look in the region of $M_{\pi\pi}$ populated by $\eta \to \pi^+ \pi^- \pi^0$: no evidence for a component with different shape

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Wrong-sign pions

 Wrong-sign pions: alternative selection for modes with 2+ pions

▲□▶ ▲圖▶ ▲国▶ ▲国▶ - 国 - のへで

- Invert isolation cut (keep D^{*+} veto) no other requirements
- Background yields larger than in the signal samples

Data/MC strategy

- Huge amount work dedicated to understanding the calibration of simulation to match data
 - Two stages of corrections
 - Reweight occupancy and B kinematics from $B^+
 ightarrow J\!/\psi\,K^+$
- Reweight simulation to match data in $\overline{B} \rightarrow D^{(*)}\mu^-\overline{\nu}_{\mu}$ control region $(m_{\rm miss}^2 < 0.4 (\,{\rm GeV}^2/c^4))$
- Weights from $D^0\mu$ sample cover majority of effects in $D^{*+}\mu$ sample small additional reweighting for slow pion kinematics
- Iterative procedure, once as nominal
 - Run a preliminary fit, generate weights, final fit

• Geometry: how much does the D^0 point back to the PV, how displaced is it?

We understand muons

Very large sample of muons, test our understanding

< 口 > < 同

< ≣ ▶

ъ

æ

We understand charm+muon combinations

 Generally percent level agreement, some localised discrepancies 40/20

Data/MC systematic

- Overall agreement is excellent small residual disagrements absorbed as a systematic via a second reweighting
 - Consider multiple schemes finer binning, extra variables
 - Half the maximum taken as a systematic uncertainty

- We refit the same $[D^{*+}\mu^-]$ data sample as the previous result, with improved knowledge
- How to quantify the agreement we expect? Difference in uncertainties
 - Uncorrelated uncertainty: 0.026 on $\mathcal{R}(D^*)$
- New $D^{*+}\mu^-$ sample $\mathcal{R}(D^*) = 0.293$, 1.6 σ agreement with our previous result