Searches in (di)tau tails in ATLAS and CMS

Arne Reimers

LHC EFT WG meeting

21 November 2022

Introduction

- For combined BSM explanations: flavor structure driven by anomalies
 - Tree-level in SM \rightarrow Need strong effect for 3^{rd} generation

$$R(D^{(\star)}) = \frac{\mathscr{B}(B \to D^{(\star)}\tau\nu)}{\mathscr{B}(B \to D^{(\star)}\ell\nu)}$$

Introduction

- For combined BSM explanations: flavor structure driven by anomalies
 - Tree-level in SM \rightarrow Need strong effect for 3^{rd} generation
 - Dominant couplings to 3rd generation

$$R(D^{(\star)}) = \frac{\mathscr{B}(B \to D^{(\star)}\tau\nu)}{\mathscr{B}(B \to D^{(\star)}\ell\nu)}$$

Leptoquarks at the LHC

- Pair production via QCD
 - Depends only on M_{LQ}
 - Model-independent
- Single production
 - Depends on M_{LQ}
 - Scales with λ^2
 - Sensitive to initial-state PDF
- LQ in the t-channel
 - non-resonant process
 - Much weaker dependence on M_{LQ}
 - Scales with λ^4

<u>CMS-PAS-EXO-19-016</u>

Arne Reimers

Searches in (di)tau tails

21 November 2022 5

<u>CMS-PAS-EXO-19-016</u>

6

<u>CMS-PAS-EXO-19-016</u>

• 5 event categories ...

7

• Consider different au decay modes

 $\sim \tau_h \tau_h$

• $\mu \tau_{\rm h}$

- Individual search channels based on lepton flavor
- $e\tau_h$ Signal regions (88% branching fraction)
- eμ
 Almost no signal: tt and DY control regions
 μμ
- $\ell \to \tau_{\rm h}$ fakes suppressed by DNN-based τ identification
- $j \rightarrow \tau_{\rm h}$ fakes estimated from data

<u>CMS-PAS-EXO-19-016</u>

• 5 event categories x 5 $\tau\tau$ decay modes ...

21 November 2022

9

<u>CMS-PAS-EXO-19-016</u>

- 5 event categories x 5 $\tau\tau$ decay modes x 3 years of data taking
 - 75 distributions combined in simultaneous fit to data

<u>CMS-PAS-EXO-19-016</u>

- Post-fit distributions in $\tau_h \tau_h$ channel
- Whole Run-2 dataset
- Vector LQ: 2 TeV, $\lambda = 2.5$
 - all 3 processes combined
- Disagreement with SM
- Dominant backgrounds:

Arne Reimers

- $t\bar{t}$
- ► DY (ττ)
- j $\rightarrow \tau$ fakes

CMS-PAS-EXO-19-016

- Backgrounds with genuine τ_h constrained via fit in signal-depleted regions
 - $t\bar{t}$ in $e\mu$ region
 - in $\mu\mu$ region
- Useful for both experimental and theoretical uncertainties
- **Excellent** agreement with SM found

Searches in (di)tau tails

- Background with j $\rightarrow \tau_h$ fakes derived directly from data
- Separately for different processes
 - ► $t\bar{t}$
 - W+jets
 - QCD
- Invert τ_h identification \Rightarrow rich in fake τ_h
- Fake rate measured in same-sign $\tau\tau$ events
- applied to opposite-sign data

- Simultaneous fit of all 75 distributions
- Signal combined according to relative cross sections of each signal process
- Vector LQs excluded below 1.8-1.9 TeV assuming $\lambda = 1 \rightarrow$ LQ pair production

- Simultaneous fit of all 75 distributions
- Signal combined according to relative cross sections of each signal process
- Vector LQs excluded below 1.8-1.9 TeV assuming $\lambda = 1 \rightarrow$ LQ pair production
- Observed excess of ~3.4 / 3.1 σ (scalar / vector) at high mass and $\lambda = 2.5 \rightarrow t$ channel

- Simultaneous fit of all 75 distributions
- Signal combined according to relative cross sections of each signal process
- Vector LQs excluded below 1.8-1.9 TeV assuming $\lambda = 1 \rightarrow$ LQ pair production
- Observed excess of ~3.4 / 3.1 σ (scalar / vector) at high mass and $\lambda = 2.5 \rightarrow t$ channel

CMS search for t-channel LQ: $pp \rightarrow \tau \tau$

CMS, arXiv:2208.02717

- Typical signature of searches for heavy $H \to \tau \tau$
 - Search in distribution of transverse mass
 - Sensitive to LQ *t*-channel signal, allow LQ $\rightarrow s\tau$, $b\tau$
 - Couplings predicted to fit anomalies [JHEP 08 (2021) 050]

$$\beta_R = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & \beta_R^{b\tau} \end{pmatrix}$$

CMS search for t-channel LQ: $pp \rightarrow \tau \tau$

Typical signature of searches for heavy $\mathrm{H} ightarrow au au$

- Search in distribution of transverse mass
- Sensitive to LQ *t*-channel signal, allow LQ $\rightarrow s\tau$, $b\tau$
- Couplings predicted to fit anomalies [JHEP 08 (2021) 050]
- Similar event selection & categorization, but not identical

ATLAS: agreement with SM

<u>CMS, arXiv:2208.02717</u>

Arne Reimers

Searches in (di)tau tails

21 November 2022 18

CMS search for t-channel LQ: $pp \rightarrow \tau \tau$

CMS, arXiv:2208.02717

- Typical signature of searches for heavy $H \to \tau \tau$
 - Search in distribution of transverse mass
 - Sensitive to LQ *t*-channel signal, allow LQ $\rightarrow s\tau$, $b\tau$
 - Couplings predicted to fit anomalies [JHEP 08 (2021) 050]
- Similar event selection & categorization, but not identical
- Independent background estimation, different discriminant
- 1-2 σ discrepancy between expected and observed limit

19

ATLAS search for LQ: $pp \rightarrow b\tau\tau$

ATLAS-CONF-2022-037

ATLAS search for LQ: $pp \rightarrow b\tau\tau$

ATLAS-CONF-2022-037

- Search for scalar LQ single & pair production
- Several data-driven corrections to backgrounds
- Simultaneous fit of distributions of $S_{\rm T}$ in $\ell \tau_h$ and $\tau_h \tau_h$ channels
- Combination of single & pair production improves sensitivity

ATLAS search for LQ: $pp \rightarrow b\tau\tau$

ATLAS-CONF-2022-037

- Search for scalar LQ single & pair production
- Several data-driven corrections to backgrounds
- Simultaneous fit of distributions of $S_{\rm T}$ in $\ell \tau_h$ and $\tau_h \tau_h$ channels
- Combination of single & pair production improves sensitivity
- Limits on coupling λ vs. $m_{\rm LO}$

CMS search for t-channel LQ: pp $\rightarrow \tau \nu$

CMS-PAS-EXO-21-009

- Consider $b \rightarrow c \tau \nu$
- LQ t channel $\rightarrow \tau \nu$

- Search for NP in $\tau + p_{\rm T}^{\rm miss}$ final state
 - Transverse mass final discriminant
 - Allow all couplings predicted to fit anomalies [JHEP 08 (2021) 050]

$$\beta_L = \begin{pmatrix} 0 & 0 & \beta_L^{d\tau} \\ 0 & \beta_L^{s\mu} & \beta_L^{s\tau} \\ 0 & \beta_L^{b\mu} & \beta_L^{b\tau} \end{pmatrix} \beta_R = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & \beta_R^{b\tau} \end{pmatrix}$$

CMS search for t-channel LQ: $pp \rightarrow \tau \nu$

CMS-PAS-EXO-21-009

- Consider $b \to c \tau \nu$
- LQ *t* channel $\rightarrow \tau \nu$

- Search for NP in $\tau + p_{\rm T}^{\rm miss}$ final state
 - Transverse mass final discriminant
 - Allow all couplings predicted to fit anomalies [JHEP 08 (2021) 050]
 - Consider 3 LQ coupling benchmarks
 - First result in this channel

Searches in (di)tau tails

CMS search for t-channel LQ: $pp \rightarrow \tau \nu$

B

CMS-PAS-EXO-21-009

- Consider $b \to c \tau \nu$
- LQ *t* channel $\rightarrow \tau \nu$

- Transverse mass final discriminant
- Allow all couplings predicted to fit anomalies [JHEP 08 (2021) 050]
- Consider 3 LQ coupling benchmarks
- First result in this channel
- Limits on coupling vs. mass
- Complementary to ττ searches, similar sensitivity
- Observed limit ~ 1 σ above expectation

Conclusion

- Leptoquarks strongly motivated as possible explanation for B anomalies
- Many recent search results for non-resonant signatures of t-channel LQs
- CMS search for LQ $\rightarrow b\tau$ covers all 3 LQ processes
 - Intriguing 3σ excess where sensitive to LQ in *t* channel ($\tau\tau$ final state)
 - Similar result from independent CMS search in same final state
- First search for *t*-channel LQ in $\tau \nu$ final state

