

EFT interpretation of $b \to c \tau \nu$ and connections with high- $\boldsymbol{p}_{\boldsymbol{T}}$ tails

Felix Wilsch

Universität Zürich

Based on:

J. Aebischer, G. Isidori, M. Pesut, B.A. Stefanek, FW [\[2210.13422](https://arxiv.org/pdf/2210.13422.pdf)] L. Allwicher, D.A. Faroughy, F. Jaffredo, O. Sumensari, FW [\[2207.10714](https://arxiv.org/abs/2207.10714)] [\[2207.10756](https://arxiv.org/abs/2207.10756)]

LHC EFT WG 6 Meeting — CERN

November 21, 2022

l Iniversität

- Complementarity of:
	- Low-energy data (precision frontier)
	- High- $p_T^{}$ data (energy frontier)
- EFT analysis for $b \to c\tau\nu$ transition at low energies
- Construction of full flavor likelihood for NP in Drell-Yan
	- Implemented in Mathematica code: **HighPT**
	- Constraints on SMEFT and leptoquark models
- High- p_T constraints on $b \to c \tau \nu$ transition

<https://highpt.github.io/>

The flavor pattern of NP

- Model independent NP analysis using EFTs \rightarrow in particular the SMEFT
- The SMEFT has a very rich flavor structure
	- $d = 6$: 59 electroweak structures \leftrightarrow 2499 parameters
	- How to constrain all these parameters?
- Focus only on subset of operators

The flavor pattern of NP

- Model independent NP analysis using EFTs \rightarrow in particular the SMEFT
- The SMEFT has a very rich flavor structure
	- $d = 6$: 59 electroweak structures \leftrightarrow 2499 parameters
	- How to constrain all these parameters?
- Focus only on subset of operators
- Hints for NP: indication of LFUV in semileptonic B decays

Universität

Zürich

Probing semileptonic operators at different scales:

Probing semileptonic operators at different scales:

Flavor in Drell-Yan

 $- NP$

SM

 $m_{\ell\ell}$

- **→ see also the talks by Aleks and Arne**
- Hadronic cross-section:

$$
\sigma_{\text{had}}(pp \to \mathcal{C}_{\alpha} \mathcal{C}_{\beta}) = L_{ij} \otimes [\hat{\sigma}]_{ij}^{\alpha\beta}
$$

- L_{ij} parton luminosities / PDFs $\;\rightarrow$ all quark flavors contribute (except for top)

$$
\mathcal{L}_{ij}(\hat{s}) = \int_{\frac{\hat{s}}{\hat{s}}}^{1} \frac{\mathrm{d}x}{x} \left[f_{\bar{q}_i} \left(x, \mu \right) f_{q_j} \left(\frac{\hat{s}}{sx}, \mu \right) + \left(\bar{q}_i \leftrightarrow q_j \right) \right]
$$

- $\left[\hat{\sigma} \right]_{ij}^{\alpha \beta}$ partonic cross section → energy enhanced in EFT [∂] *αβ ij* ∝ *s*̂ $\frac{1}{\Lambda^4}$ | C 2
- τ -tails particularly relevant for models with large 3rd generation couplings Faroughy, Greljo, Kamenik [[1609.07138\]](https://arxiv.org/abs/1609.07138)

Low-energy constraints on *b* **→** *c τ ν* transitions

An EFT analysis under the U_1 hypothesis

EFT for the *U***1 leptoquark**

• Working hypothesis: vector leptoquark field $U_1 \sim (3,1)_{2/3}$ with current:

$$
J_U^{\mu} = \frac{g_U}{\sqrt{2}} \left[\overline{q}_L^3 \gamma^{\mu} \mathcal{C}_L^3 + \beta_R \overline{d}_R^3 \gamma^{\mu} e_R^3 + \sum_{k=1,2} \epsilon_{q_k} \overline{q}_L^k \gamma^{\mu} \mathcal{C}_L^3 \right]
$$

- Coupled only to 3rd generation leptons
- Variable coupling β_R to right-handed fields
- Suppressed coupling ϵ_{q_k} to light quarks
- Corresponding EFT Lagrangian:

$$
\mathcal{L}_{\text{EFT}}^{\text{LQ}} = \frac{2}{v^2} \bigg[C_{LL}^{ij\alpha\beta} O_{LL}^{ij\alpha\beta} + C_{RR}^{ij\alpha\beta} O_{RR}^{ij\alpha\beta} + (C_{LR}^{ij\alpha\beta} O_{LR}^{ij\alpha\beta} + \text{h.c.}) \bigg]
$$

• Introduce effective scale $\Lambda_U = \sqrt{2 M_U\big/ g_U} \; \Rightarrow \; C_{LL}^{33\tau\tau} =$ v^2 $2\Lambda_U^2$

 $O_{IJ}^{ij\alpha\beta}$ *LL* $= (\overline{q}_L^i \gamma_\mu \mathcal{E}_L^{\alpha})(\overline{\mathcal{E}}_L^{\beta} \gamma^\mu q_L^j)$ $O_{I\,R}^{ij\alpha\beta}$ *LR* $= (\overline{q}_L^i \gamma_\mu \mathcal{C}_L^{\alpha})(\overline{e}_R^{\beta} \gamma^\mu d_L^j)$ $O_{RR}^{ij\alpha\beta}$ *RR* $=(\bar{d}_R^i \gamma_\mu e_R^{\alpha})(\bar{e}_e^{\beta} \gamma^\mu d_R^j)$

Quark flavor structure

- Approximate flavor symmetry: $U(2)^3 = U(2)_Q \times U(2)_U \times U(2)_D$ for light generations
- Symmetry breaking spurions: $e_q = (e_{q_1}, e_{q_2})$

 \mathbf{e}_q , \mathbf{V}_u , \mathbf{V}_d ~ 2₀ $\mathbf{\Delta}_u\,,\,\mathbf{\Delta}_d\quad\quad\sim\quad\mathbf{2}_{\mathbf{U}(\mathbf{D})}\!\times\!\mathbf{2}_{\mathbf{Q}}\quad\quad$ light Yukawas *heavy* → *light mixing*

Baker, Fuentes-Martín, Isidori, König [[1901.10480\]](https://arxiv.org/abs/1901.10480)

• Diagonalization of Y_f by rotation L_f : $L_f Y_f Y_f^{\dagger} L_f^{\dagger} = \text{diag}(y_{f_1}, y_{f_2}, y_{f_3})$

$$
L_f \simeq \begin{pmatrix} O_f^{\dagger} & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & -\mathbf{V}_f \\ \mathbf{V}_f^{\dagger} & 1 \end{pmatrix} \text{ where } O_f = \begin{pmatrix} c_f & s_f \\ -s_f & c_f \end{pmatrix} \text{ diagonalizes } \Delta_f
$$

- Down-alignment of heavy \rightarrow light mixing
	- Closure of the algebra requires an operator $\left(\mathcal{O}(1)\middle/\Lambda_{U}^{2}\right)\left(\overline{q}_{L}^{3}\gamma_{\mu}q_{L}^{3}\right)$ 2
	- $B_{s(d)} \overline{B}_{s(d)}$ mixing requires setting $\mathbf{V_d} = 0$

 \clubsuit Minimal breaking scenario: \mathbf{e}_q and \mathbf{V}_u aligned in the $U(2)_Q$ space

❖ Up alignment for light quarks: $s_u \simeq 0$ required by $K - \overline{K}$ and $D - \overline{D}$ mixing

Low-energy constraints

• EFT Lagrangian for *b* → *cτν*

$$
\mathcal{L}_{b \to c} = -\frac{G_F}{\sqrt{2}} V_{cb} \left[\left(1 + \mathcal{C}_{LL}^c \right) (\overline{c}_L \gamma_\mu b_L) (\overline{\tau}_L \gamma^\mu \nu_L) - 2 \mathcal{C}_{LR}^c (\overline{c}_L b_R) (\overline{\tau}_R \nu_L) \right]
$$

where $\mathscr{C}_{LL(LR)}^c = C_{LL(LR)}^{cb\tau\tau}/V_{cb}$, $\mathscr{C}_{LR}^c = \beta_R^*$ *c LL*

- Left-handed couplings only: $\mathscr{C}_{LR} = 0$
- Equal magnitude: $\mathscr{C}_{LR}^c = -\mathscr{C}_{LL}^c$
- Observables relevant to low-energy fit:

-
$$
R_D
$$
, R_{D^*} , R_{Λ_b} , $\mathcal{B}(B_u^- \to \tau \overline{\nu})$

- Combined fit shows $3\,\sigma$ discrepancy with SM
- Compatible with both $\beta_R = 0$ and $\beta_R = -1$

${\sf High}\mbox{-}p_T$ constraints on transitions *b* **→** *c τ ν* **Drell-Yan tails** $b\overline{b} \rightarrow \tau^{+}\tau^{-}$

HighPT

A Mathematica package for high- p_T Drell-Yan Tails Beyond the Standard Model *(and more to come)*

Computation of:

- Drell-Yan cross sections
- Experimental observables
- Likelihoods

Implemented BSM models:

- SMEFT $(d = 6 \text{ and } d = 8)$
- BSM mediators (leptoquarks)

Recasted searches available:

• Full LHC run-II datasets

L. Allwicher, D.A. Faroughy, F. Jaffredo, O. Sumensari, FW [[2207.10756\]](https://arxiv.org/abs/2207.10756)

<https://highpt.github.io/>

Observables and likelihoods

• High- $p_T^{}$ tail distributions:

- Particle-level distribution $\frac{u}{u}$ computed from final state particles d*σ* d*x e*, *μ*, *τ*, *ν*
- Detector-level distribution $\frac{uv}{1}$ measured by experiments from reconstructed objects (isolated leptons, tagged jets, missing energy, …) d*σ* d*x*obs

• **Relate**
$$
\frac{d\sigma}{dx}
$$
 to $\frac{d\sigma}{dx_{obs}}$ using MC simulations (MadGraph+Pythia+Delphes)

$$
\sigma_q(x_{\text{obs}}) = \sum_{p=1}^{M} K_{pq} \sigma_p(x) \longleftarrow \boxed{\text{computed}}
$$

object reconstruction efficiencies, detector response, phase-space mismatch

• Recasts of available experimental searches:

$$
\chi^2 \sim \frac{(N_{\rm NP} + N_{\rm SM} - N_{\rm data})^2}{\sigma^2}
$$

Observables and likelihoods

• High- $p_T^{}$ tail distributions:

- Particle-level distribution $\frac{u}{u}$ computed from final state particles d*σ* d*x e*, *μ*, *τ*, *ν*
- Detector-level distribution $\frac{uv}{1}$ measured by experiments from reconstructed objects (isolated leptons, tagged jets, missing energy, …) d*σ* d*x*obs
- Relate $\frac{uv}{dv}$ to $\frac{uv}{dv}$ using MC simulations (MadGraph+Pythia+Delphes) d*σ* d*x* d*σ* d*x*obs

$$
\sigma_q(x_{\text{obs}}) = \sum_{p=1}^{M} K_{pq} \sigma_p(x)
$$
 computed

object reconstruction efficiencies, detector response, phase-space mismatch

• Recasts of available experimental searches:

$$
HighPT
$$
\n
$$
\chi^2 \sim \frac{(N_{\text{NP}} + N_{\text{SM}} - N_{\text{data}})^2}{\sigma^2}
$$
\nprovided by experiment

Observables and likelihoods

• High- $p_T^{}$ tail distributions:

- Particle-level distribution $\frac{u}{u}$ computed from final state particles d*σ* d*x e*, *μ*, *τ*, *ν*
- Detector-level distribution $\frac{uv}{1}$ measured by experiments from reconstructed objects (isolated leptons, tagged jets, missing energy, …) d*σ* d*x*obs
- Relate $\frac{uv}{dv}$ to $\frac{uv}{dv}$ using MC simulations (MadGraph+Pythia+Delphes) d*σ* d*x* d*σ* d*x*obs

$$
\sigma_q(x_{\text{obs}}) = \sum_{p=1}^{M} K_{pq} \sigma_p(x)
$$
 computed

object reconstruction efficiencies, detector response, phase-space mismatch

• Recasts of available experimental searches:

HighPT

*χ*2 ∼

can be exported to python

*σ*2 provided by experiment

 $(N_{\rm NP} + N_{\rm SM} - N_{\rm data})^2$

U **Leptoquark model ¹**

$$
\mathcal{L}_{U_1} = [x_1^{L}]^{i\alpha} \bar{q}_i \psi_1 l_{\alpha} + [x_1^{R}]^{i\alpha} \bar{d}_i \psi_1 e_{\alpha} + [\bar{x}_1^{R}]^{i\alpha} \bar{u}_i \psi_1 \psi_{\alpha} + \text{h.c.} \xrightarrow{\text{SMEFT}} [C_{lq}^{(1)}]_{\alpha\beta ij} = [C_{lq}^{(3)}]_{\alpha\beta ij} = -\frac{1}{2} [x_1^{L}]_{i\beta} [x_1^{L}]_{j\alpha}^{*}
$$

- Consider couplings to left-handed fields only $q_{3,2}^L$ and ℓ_3^L
- Relevant processes: $b\bar{b} \rightarrow \tau^+\tau^-$, $b\bar{s} \rightarrow \tau^+\tau^-$, $b\bar{c} \rightarrow \tau^-\bar{\nu}$... (+ c.c.)

U **Leptoquark model ¹**

 $[C_{lq}^{(1)}]_{\alpha\beta ij} = [C_{lq}^{(3)}]_{\alpha\beta ij} = -\frac{1}{2}$ 2 $[x_1^L]_{i\beta} [x_1^L]_{j\alpha}^*$ SMEFT

- Consider couplings to left-handed fields only $q_{3,2}^L$ and ℓ_3^L
- Relevant processes: $b\bar{b} \rightarrow \tau^+\tau^-$, $b\bar{s} \rightarrow \tau^+\tau^-$, $b\bar{c} \rightarrow \tau^-\bar{\nu}$... (+ c.c.)

SMEFT fit

U **Leptoquark model ¹**

 $[C_{lq}^{(1)}]_{\alpha\beta ij} = [C_{lq}^{(3)}]_{\alpha\beta ij} = -\frac{1}{2}$ 2 $[x_1^L]_{i\beta} [x_1^L]_{j\alpha}^*$ SMEFT

- Consider couplings to left-handed fields only $q_{3,2}^L$ and ℓ_3^L
- Relevant processes: $b\bar{b} \rightarrow \tau^+\tau^-$, $b\bar{s} \rightarrow \tau^+\tau^-$, $b\bar{c} \rightarrow \tau^-\bar{\nu}$... (+ c.c.)

Felix Wilsch LHC EFT WG Meeting: EFT interpretation of $b \to c \tau \nu$ and connections with high- p_T tails

Di-tau tails

- Searches for *pp* → *ττ*
	- **ATLAS** *(no excess)* **[\[2002.12223\]](http://arxiv.org/abs/2002.12223)** [implemented in HighPT]
	- **CMS** $\left(\sim 3\sigma\right)$ excess) **[\[2208.02717\]](http://arxiv.org/abs/2208.02717)** [not yet implemented in HighPT]
- Exploit *b*-tagging:
	- Models with large 3rd generation couplings
	- Particularly relevant for $b\bar{b} \rightarrow \tau^- \tau^+$
	- $\,$ Gluon splitting $g \to b \bar b$

High-*p* **constraints on the** *^T U***¹**

$$
J_U^{\mu} = \frac{g_U}{\sqrt{2}} \left[\overline{q}_L^3 \gamma^{\mu} \mathcal{C}_L^3 + \beta_R \overline{d}_R^3 \gamma^{\mu} e_R^3 + \sum_{k=1,2} \epsilon_{q_k} \overline{q}_L^k \gamma^{\mu} \mathcal{C}_L^3 \right]
$$

- Relevant processes at high- p_T : $pp\to\tau\tau$ in particular $b\bar{b}\to\tau^+\tau^-$
	- Effective scale: $\Lambda_U^{} = \sqrt{2} M_U^{} \big/ g_U^{}$
- Searches for *pp* → *ττ*
	- **ATLAS** *(no excess)* **[\[2002.12223\]](http://arxiv.org/abs/2002.12223)** [implemented in HighPT]
	- $-$ **CMS** $\left(\sim 3\sigma$ excess) [\[2208.02717\]](http://arxiv.org/abs/2208.02717)
- Exploit *b*-tagging for $b\bar{b} \rightarrow \tau^-\tau^+$
- Rescaled using NLO corrections computed in **U. Haisch, L. Schnell, S. Schulte, [\[2209.12780](https://arxiv.org/abs/2209.12780)]**

Constraints on right-handed coupling scenarios

J. Aebischer, G. Isidori, M. Pesut, B.A. Stefanek, FW [\[2210.13422\]](https://arxiv.org/abs/2210.13422)

• A specific NP model would have many more collider signatures **see e.g. Baker, Fuentes-Martin, Isidori, König [[1901.10480\]](http://arxiv.org/abs/1901.10480)**

15

$\overline{\text{High-}p_{T}}$ vs. R_{D} and R_{D^*}

• Effective Lagrangian for $b \to c$ transitions:

$$
\mathcal{L}_{b \to c} = -\frac{4G_F}{\sqrt{2}} V_{cb} \left[\left(1 + \mathcal{C}_{LL}^c \right) (\bar{c}_L \gamma_\mu b_L) (\bar{\tau}_L \gamma^\mu \nu_L) - 2 \mathcal{C}_{LR}^c (\bar{c}_L b_R) (\bar{\tau}_R \nu_L) \right]
$$

• Match $\mathscr{C}_{LL(LR)}^c$ to the U_1 model

J. Aebischer, G. Isidori, M. Pesut, B.A. Stefanek, FW [\[2210.13422](https://arxiv.org/abs/2210.13422)]

H igh- p_T vs. R_D and R_{D^*}

• Effective Lagrangian for $b \to c$ transitions:

$$
\mathcal{L}_{b \to c} = -\frac{4G_F}{\sqrt{2}} V_{cb} \left[\left(1 + \mathcal{C}_{LL}^c \right) (\bar{c}_L \gamma_\mu b_L) (\bar{\tau}_L \gamma^\mu \nu_L) - 2 \mathcal{C}_{LR}^c (\bar{c}_L b_R) (\bar{\tau}_R \nu_L) \right]
$$

- Match $\mathscr{C}_{LL(LR)}^c$ to the U_1 model
- Details of the fit:
	- $\mathcal{C}_{LL}^c \rightarrow 0$ corresponds to $|\beta_R| \rightarrow \infty$
	- More model dependence
		- ‣ Depends on 2nd gen. coupling *ϵq*
		- **•** Small ϵ_q requires lower scale Λ_U
- Currently good compatibility of constraints
- Improvements expected by HL-LHC
- CMS excess would indicate scenario with large *βR*

J. Aebischer, G. Isidori, M. Pesut, B.A. Stefanek,

FW [\[2210.13422](https://arxiv.org/abs/2210.13422)]

Conclusions

- High- p_T provides information complementary to low-energy experiments
	- Improvements expected with upcoming Run-3 and HL-LHC
	- Will help to scrutinize the origin of the B -anomalies
- Construction of full flavor likelihood for high- p_T Drell-Yan processes at LHC
	- For the SMEFT explicit heavy BSM mediators
- Future features for the **HighPT** code:
	- Addition of further observables (b -tagging, FB-asymmetries, other collider processes, low-energy, \ldots) **<https://highpt.github.io/>**
	- Assessment of PDF uncertainties & NLO corrections

Thank you for your attention !!!

Bounds on NP scenarios

Example:

LQ models for $R_{D^{(\ast)}}$

- Consider flavor indices: *αβij* ∈ {3333, 3323}
- Relevant experimental sear
	- *pp* → *ττ*
	- *pp* → *τν*
- Perform fits for:
	- Wilson coefficients
	- NP couplings

 $\mathcal{L}_{S_1} = [y_1^L]^{i\alpha} S_1 \bar{q}_i^c \epsilon l_{\alpha} + [y_1^R]^{i\alpha} S_1 \bar{u}_i^c e_{\alpha} + [\bar{y}_1^R]^{i\alpha} S_1 \bar{d}_i^c \nu_{\alpha} + \text{h.c.}$ $\mathcal{L}_{R_2} = -[y_2^L]^{i\alpha} \bar{u}_i R_2 \epsilon l_\alpha + [y_2^R]^{i\alpha} \bar{q}_i e_\alpha R_2 + \text{h.c.}$ $\mathcal{L}_{U_1}=[x_1^L]^{i\alpha}\bar{q}_i\psi_1l_\alpha+[x_1^R]^{i\alpha}\bar{d}_i\psi_1e_\alpha+[\bar{x}_1^R]^{i\alpha}\bar{u}_i\psi_1\psi_\alpha+\text{h.c.}$

SMEFT matching @ tree-level

R **Leptoquark ² (3, 2, 7/6)**

$$
\mathcal{L}_{R_2} = -[y_2^L]_{i\alpha} \, \bar{u}_i R_2 \epsilon l_\alpha + [y_2^R]_{i\alpha} \, \bar{q}_i e_\alpha R_2 + \text{h.c.}
$$

$$
\rightarrow [C_{lequ}^{(1)}]_{\alpha\beta ij} = 4[C_{lequ}^{(3)}]_{\alpha\beta ij} = -\frac{1}{2} [y_2^R]_{i\beta} [y_2^L]_{j\alpha}^*
$$

SMEFT fit

LQ mediator fit

L. Allwicher, D.A. Faroughy, F. Jaffredo, O. Sumensari, FW [[2207.10714\]](https://arxiv.org/abs/2207.10714)

Felix Wilsch LHC EFT WG Meeting: EFT interpretation of $b \rightarrow c \tau \nu$ **and connections with high-** p_T **tails**

S **Leptoquark ¹ (3¯, 1, 1/3)**

 \rightarrow $[C_{lequ}^{(1)}]_{\alpha\beta ij} = -4[C_{lequ}^{(3)}]_{\alpha\beta ij} =$ 1 2 $[y_1^L]_{i\alpha}^* [y_1^R]_{j\beta}$

SMEFT fit

LQ mediator fit

L. Allwicher, D.A. Faroughy, F. Jaffredo, O. Sumensari, FW [[2207.10714\]](https://arxiv.org/abs/2207.10714)

Felix Wilsch LHC EFT WG Meeting: EFT interpretation of $b \to c \tau \nu$ and connections with high- p_T tails

LFV in the U_1 model

- $U_1 \sim (3, 1, 2/3)$ leptoquark model:
- LFV requires 2 couplings turned on
	- LFV can be constrained by $pp \to \ell \ell'$ and $pp \to \ell \ell'$
- Example: consider only 3rd generation quarks

CKM rotations

• Effects of up- / down-alignment assumption for NP constraints

Felix Wilsch LHC EFT WG Meeting: EFT interpretation of $b \to c \tau \nu$ and connections with high- p_T tails

χ **likelihood vs ² CL***^s*

- χ^2 likelihood: combine experimental bins with low event count in the tails to validate the Gaussian approximation **(1***σ***, 2***σ***, 3***σ* **contours)**
- Compare to $CL_s = \frac{1}{1 p_0}$ method (1 σ *, 2* σ *, 3* σ dashed contours) *ps* $1 - p_0$ 1σ , 2σ , 3σ
- CL_s tends to be more conservative, but overall good agreement with χ^2

EFT validity

- High- $p_T^{}$ tails: events with highest invariant mass are around $\sqrt{\hat{s}} \lesssim 4\,{\rm TeV}$
- ➡ Validity of EFT approach for relatively light NP mediators (~*few* TeV) ???
	- Option 1: drop highest bins of all searches
	- Option 2: include higher dimensional operators
		- \blacktriangleright How sizable is the effect of $d=8$ operators compared to $d=6$?
	- Option 3: simulate with explicit NP mediator rather than EFT
		- \blacktriangleright How does the explicit model compare to $d=6,8$ EFT operators?
- Analyse these effects with HighPT for some specific models [w.i.p.]

see e.g.:

Dawson, Fontes, Homiller, Sullivan [\[2205.01561](https://arxiv.org/abs/2205.01561)] Boughezal, Mereghetti, Petriello [\[2106.05337\]](https://arxiv.org/abs/2106.05337) Alioli, Boughezal, Mereghetti, Petriello [\[2003.11615\]](https://arxiv.org/abs/2003.11615) Kim, Martin [\[2203.11976\]](https://arxiv.org/abs/2203.11976)

Jack-knife plots

Clipped limits

- Constraints obtained with sliding upper cut $M_{\rm cut}$ for experimental observables
- Allows assessment of EFT validity range

EFT validity

L. Allwicher, D.A. Faroughy, F. Jaffredo, O. Sumensari, FW [[2207.10714\]](https://arxiv.org/abs/2207.10714)

Felix Wilsch LHC EFT WG Meeting: EFT interpretation of $b \to c \tau \nu$ and connections with high- p_T tails

Drell-Yan form-factors

 ℓ_{α}

 $\begin{array}{c} p \\ q_j \end{array}$

• **Drell-Yan processes:**

 $\bar{u}_i u_j \to \ell^-_\alpha \ell^+_\beta$, $\bar{d}_i d_j \to \ell^-_\alpha \ell^+_\beta$, $\bar{u}_i d_j \to \ell^-_\alpha \bar{\nu}_\beta$, $\bar{d}_i u_j \to \ell^+_\alpha \nu_\beta$

• Amplitude form-factor decomposition:

$$
A_{ij}^{\alpha\beta} \equiv \mathcal{A} \left(\bar{q}_i q'_j \rightarrow \bar{\ell}_{\alpha} \ell'_{\beta} \right)
$$
\n
$$
= \frac{1}{v^2} \sum_{X,Y} \left\{ \left(\bar{\ell}_{\alpha} \mathbb{P}_X \ell'_{\beta} \right) \left(\bar{q}_i \mathbb{P}_Y q'_j \right) \left[\mathcal{F}_S^{XY,qq'}(\hat{s},\hat{t}) \right]_{ij}^{\alpha\beta} \right\}
$$
\n
$$
+ \left(\bar{\ell}_{\alpha} \gamma_{\mu} \mathbb{P}_X \ell'_{\beta} \right) \left(\bar{q}_i \gamma^{\mu} \mathbb{P}_Y q'_j \right) \left[\mathcal{F}_V^{XY,qq'}(\hat{s},\hat{t}) \right]_{ij}^{\alpha\beta}
$$
\n
$$
+ \left(\bar{\ell}_{\alpha} \sigma_{\mu\nu} \mathbb{P}_X \ell'_{\beta} \right) \left(\bar{q}_i \sigma^{\mu\nu} \mathbb{P}_Y q'_j \right) \delta^{XY} \left[\mathcal{F}_T^{XY,qq'}(\hat{s},\hat{t}) \right]_{ij}^{\alpha\beta}
$$
\n
$$
+ \left(\bar{\ell}_{\alpha} \gamma_{\mu} \mathbb{P}_X \ell'_{\beta} \right) \left(\bar{q}_i \sigma^{\mu\nu} \mathbb{P}_Y q'_j \right) \frac{i k_{\nu}}{v} \left[\mathcal{F}_{D_q}^{XY,qq'}(\hat{s},\hat{t}) \right]_{ij}^{\alpha\beta}
$$
\n
$$
= k^2 = (p_{\ell} + p_{\ell})^2
$$
\n
$$
+ \left(\bar{\ell}_{\alpha} \sigma_{\mu\nu} \mathbb{P}_X \ell'_{\beta} \right) \left(\bar{q}_i \gamma^{\mu} \mathbb{P}_Y q'_j \right) \frac{i k_{\nu}}{v} \left[\mathcal{F}_{D_\ell}^{XY,qq'}(\hat{s},\hat{t}) \right]_{ij}^{\alpha\beta}
$$
\n
$$
Dipole
$$
\n
$$
\hat{s} = k^2 = (p_{\ell} + p_{\ell})^2
$$
\n
$$
+ \left(\bar{\ell}_{\alpha} \sigma_{\mu\nu} \mathbb{P}_X \ell'_{\beta} \
$$

- General parametrization of tree-level effects invariant under $SU(3)_c \times U(1)_e$
- Captures local and non-local effects

Local and non-local contributions

Split form-factors into a regular and a singular piece

$$
\left| \mathcal{F}_{I}(\hat{s}, \hat{t}) \; = \; \mathcal{F}_{I, \, \text{Reg}}(\hat{s}, \hat{t}) \; + \; \mathcal{F}_{I, \, \text{Poles}}(\hat{s}, \hat{t}) \right|
$$

➡ **Form-factor framework can incorporate both EFT and explicit NP models**

Local and non-local contributions

Split form-factors into a regular and a singular piece

$$
\mathcal{F}_{I}(\hat{s},\hat{t}) = \mathcal{F}_{I,\text{Reg}}(\hat{s},\hat{t}) + \mathcal{F}_{I,\text{Poles}}(\hat{s},\hat{t})
$$

- Analytic function of \hat{s} , \hat{t}
- Describes EFT contact interactions
	- ‣ Can be matched to the SMEFT
- Formal expansion in validity range of the EFT: v^2 , $|\hat{s}|$, $|\hat{t}| < \Lambda^2$

$$
F_{I,Reg}(\hat{s},\hat{t}) = \sum_{n,m=0}^{\infty} F_{I,(n,m)} \left(\frac{\hat{s}}{v^2}\right)^n \left(\frac{\hat{t}}{v^2}\right)^m
$$

➡ **Form-factor framework can incorporate both EFT and explicit NP models**

Local and non-local contributions

Split form-factors into a regular and a singular piece

$$
\mathcal{F}_I(\hat{s}, \hat{t}) \ = \ \mathcal{F}_{I, \text{Reg}}(\hat{s}, \hat{t}) \ + \ \mathcal{F}_{I, \text{Poles}}(\hat{s}, \hat{t})
$$

- Analytic function of \hat{s} , \hat{t}
- Describes EFT contact interactions
	- ‣ Can be matched to the SMEFT
- Formal expansion in validity range of the EFT: v^2 , $|\hat{s}|$, $|\hat{t}| < \Lambda^2$

$$
F_{I,Reg}(\hat{s},\hat{t}) = \sum_{n,m=0}^{\infty} F_{I,(n,m)} \left(\frac{\hat{s}}{v^2}\right)^n \left(\frac{\hat{t}}{v^2}\right)^m
$$

- Isolated simple poles in \hat{s} , \hat{t} (no branch-cuts at tree-level)

Describes non-local effects due to exchange of mediators (SM & NP)

$$
F_{I, \text{Poles}}(\hat{s}, \hat{t}) = \sum_{a} \frac{v^2 \mathcal{S}_{I(a)}}{\hat{s} - \Omega_a} + \sum_{b} \frac{v^2 \mathcal{T}_{I(b)}}{\hat{t} - \Omega_b} - \sum_{c} \frac{v^2 \mathcal{U}_{I(c)}}{\hat{s} + \hat{t} + \Omega_c}
$$

SM $(I = V)$ NP

$$
\Omega_n = m_n^2 - im_n \Gamma_n \qquad \hat{u} = -\hat{s} - \hat{t}
$$

➡ **Form-factor framework can incorporate both EFT and explicit NP models**

${\bf Regular \textbf{form-factors} } F_{I,\text{Reg}}(\hat{s},\hat{t})$ **̂**

- **Regular form-factors:** analytic functions of \hat{s} , \hat{t}
- Describe unresolved d.o.f. \rightarrow EFT
- Formal expansion in validity range of the EFT $|\hat{s}|, |\hat{t}| < \Lambda^2$:

Derivative expansion:

\n
$$
F_{I,Reg}(\hat{s}, \hat{t}) = \sum_{n,m=0}^{\infty} F_{I,(n,m)} \left(\frac{\hat{s}}{v^2} \right)^n \left(\frac{\hat{t}}{v^2} \right)^m
$$
\n**EFF expansion:**

\n
$$
F_{I,(n,m)} = \sum_{k=n+m+1} \mathcal{O} \left((v^2/\Lambda^2)^k \right)
$$

• Terms to consider at mass dimension *d*

$$
- d = 6 : (n, m) = (0, 0)
$$

$$
- d = 8 : (n, m) = (0, 0), (1, 0), (0, 1)
$$

Singular form-factors $F_{I,\text{Poles}}(\hat{s},\hat{t})$ **̂**

• **Pole form-factors:** non-analytic functions with finite number of simple poles

$$
F_{I,\text{Poles}}(\hat{s},\hat{t}) = \sum_{a} \frac{v^2 \mathcal{S}_{I(a)}}{\hat{s} - \Omega_a} + \sum_{b} \frac{v^2 \mathcal{T}_{I(b)}}{\hat{t} - \Omega_b} - \sum_{c} \frac{v^2 \mathcal{U}_{I(c)}}{\hat{s} + \hat{t} + \Omega_c}
$$

- \triangleright a : sum over all s-channel (colorless) mediators
- \rightarrow *b* : sum over all *t*-channel (colorful) mediators
- \cdot *c* : sum over all *u*-channel (colorful) mediators
- $-$ SM contribution \rightarrow $S_{V(a)}$ $(a \in \{ \gamma, Z, W \})$
- NP contribution \rightarrow $\mathcal{S}_{I(a)}, \mathcal{T}_{I(b)}, \mathcal{U}_{I(c)}$
- Residues can be made independent of \hat{s} , \hat{t} by partial fraction decomposition:

$$
\frac{f(z)}{z - \Omega} = \frac{f(\Omega)}{z - \Omega} + g(z, \Omega)
$$
\nredefines $F_{I,Reg}$ \n
$$
\begin{array}{c}\n\mathcal{S}_{I(a)}(\hat{s}) \to \mathcal{S}_{I(a)} \\
\mathcal{T}_{I(b)}(\hat{t}) \to \mathcal{T}_{I(b)} \\
\mathcal{U}_{I(c)}(\hat{u}) \to \mathcal{U}_{I(c)}\n\end{array}
$$

 $\hat{u} = -\hat{s} - \hat{t}$

Universität

 $\Omega_n = m_n^2 - i m_n \Gamma_n$

SMEFT

$$
\mathcal{L}_{\text{SMEFT}} = \mathcal{L}_{\text{SM}} + \sum_{i} \frac{C_i^{(6)}}{\Lambda^2} Q_i^{(6)} + \sum_{i} \frac{C_i^{(8)}}{\Lambda^4} Q_i^{(8)} + \mathcal{O}(\Lambda^{-6})
$$

• Cross-section in the SMEFT to $\mathcal{O}(\Lambda^{-4})$

$$
\sigma \sim \left| A_{\rm SM} \right|^2 + \frac{1}{\Lambda^2} 2 \,{\rm Re} \left(A^{(6)} A_{\rm SM}^* \right) + \frac{1}{\Lambda^4} \left(\left| A^{(6)} \right|^2 + 2 \,{\rm Re} \left(A^{(8)} A_{\rm SM}^* \right) \right) + \mathcal{O}(\Lambda^{-6})
$$

- Consistent description up to $\mathcal{O}(\Lambda^{-4})$
	- $|A^{(6)}|^2$ contribution can be energy enhanced
	- LFV only through $|A^{(6)}|^2$ (no SM interference)
- \blacktriangleright Requires inclusion of $d=8$ operators Boughezal, Mereghetti, Petriello [\[2106.05337\]](https://arxiv.org/abs/2106.05337)
	- Only $d = 8$ interference with SM relevant

SMEFT

$$
\mathcal{L}_{\text{SMEFT}} = \mathcal{L}_{\text{SM}} + \sum_{i} \frac{C_i^{(6)}}{\Lambda^2} Q_i^{(6)} + \sum_{i} \frac{C_i^{(8)}}{\Lambda^4} Q_i^{(8)} + \mathcal{O}(\Lambda^{-6})
$$

• Cross-section in the SMEFT to $\mathcal{O}(\Lambda^{-4})$

$$
\sigma \sim \left| A_{\rm SM} \right|^2 + \frac{1}{\Lambda^2} 2 \operatorname{Re} \left(A^{(6)} A_{\rm SM}^* \right) + \frac{1}{\Lambda^4} \left(\left| A^{(6)} \right|^2 + 2 \operatorname{Re} \left(A^{(8)} A_{\rm SM}^* \right) \right) + \mathcal{O}(\Lambda^{-6})
$$

- Consistent description up to $\mathcal{O}(\Lambda^{-4})$
	- $|A^{(6)}|^2$ contribution can be energy enhanced
	- LFV only through $|A^{(6)}|^2$ (no SM interference)
- \blacktriangleright Requires inclusion of $d=8$ operators Boughezal, Mereghetti, Petriello [\[2106.05337\]](https://arxiv.org/abs/2106.05337)
	- Only $d = 8$ interference with SM relevant

• $d = 6$ Warsaw basis *ψ*4 , *ψ*2*H*2*D*, *ψ*2*XH*

Grzadkowski, Iskrzynski, Misiak, Rosiek [\[1008.4884](https://arxiv.org/abs/1008.4884)]

• $d = 8$ basis (C. Murphy) $\psi^4 D^2$, $\psi^4 H^2$, $\psi^2 H^2 D^3$, $\psi^2 H^4 D$

ψ **contact interactions ⁴ non-local contributions**

Murphy [[2005.00059\]](https://arxiv.org/abs/2005.00059)

see also: Li et al [\[2005.00008](https://arxiv.org/abs/2005.00008)]

EFT contributions

• Feynman diagrams for Drell-Yan in the SMEFT to $\mathscr{O}(\Lambda^{-4})$

EFT operator counting and energy scaling

Only contributions interfering with the SM

EFT contributions

• Feynman diagrams for Drell-Yan in the SMEFT to $\mathscr{O}(\Lambda^{-4})$

EFT operator counting and energy scaling

• **Example: vector form-factors**
$$
\begin{aligned}\n&\text{NC: } a \in \{\gamma, Z\} \\
&\text{CC: } a \in \{W\} \\
&\text{FC: } a \in \{W\} \\
&\text{C: } a \in \{W\} \\
&\text
$$

• Schematic form-factor matching to $\mathcal{O}(\Lambda^{-4})$:

$$
F_{V(0,0)} = \frac{v^2}{\Lambda^2} C_{\psi^4}^{(6)} + \frac{v^4}{\Lambda^4} C_{\psi^4 H^2}^{(8)} + \frac{v^2 m_a^2}{\Lambda^4} C_{\psi^2 H^2 D^3}^{(8)} + \cdots
$$

$$
F_{V(1,0)} = \frac{v^4}{\Lambda^4} C_{\psi^4 D^2}^{(8)} + \cdots
$$

$$
F_{V(0,1)} = \frac{v^4}{\Lambda^4} C_{\psi^4 D^2}^{(8)} + \cdots
$$

$$
\delta \mathcal{S}_{(a)} = \frac{m_a^2}{\Lambda^2} C_{\psi^2 H^2 D}^{(6)} + \frac{v^2 m_a^2}{\Lambda^4} \left(\left[C_{\psi^2 H^2 D}^{(6)} \right]^2 + C_{\psi^2 H^4 D}^{(8)} \right) + \frac{m_a^4}{\Lambda^4} C_{\psi^2 H^2 D^3}^{(8)} + \cdots
$$

• **Example: vector form-factors**
$$
\begin{aligned}\n& \text{NC: } a \in \{\gamma, Z\} \\
& \text{CC: } a \in \{W\} \\
& \text{LC: } a \in \{W\} \\
& \text
$$

• Schematic form-factor matching to $\mathcal{O}(\Lambda^{-4})$:

$$
F_{V(0,0)} = \frac{v^2}{\Lambda^2} C_{\psi^4}^{(6)} + \frac{v^4}{\Lambda^4} C_{\psi^4 H^2}^{(8)} + \frac{v^2 m_a^2}{\Lambda^4} C_{\psi^2 H^2 D^3}^{(8)} + \cdots
$$

$$
\mathcal{S}_{(\gamma, \text{SM})} = 4\pi \alpha_{\text{em}} Q_l Q_q
$$

$$
\mathcal{S}_{(Z, \text{SM})} = \frac{4\pi \alpha_{\text{em}}}{c_W^2 s_W^2} g_l^X g_q^Y
$$

$$
\mathcal{S}_{(W, \text{SM})} = \frac{1}{2} g_2^2
$$

$$
F_{V(1,0)} = \frac{v^4}{\Lambda^4} C_{\psi^4 D^2}^{(8)} + \cdots
$$

$$
F_{V(0,1)} = \frac{v^4}{\Lambda^4} C_{\psi^4 D^2}^{(8)} + \cdots
$$

$$
\delta \mathcal{S}_{(a)} = \frac{m_a^2}{\Lambda^2} C_{\psi^2 H^2 D}^{(6)} + \frac{v^2 m_a^2}{\Lambda^4} \left(\left[C_{\psi^2 H^2 D}^{(6)} \right]^2 + C_{\psi^2 H^4 D}^{(8)} \right) + \frac{m_a^4}{\Lambda^4} C_{\psi^2 H^2 D^3}^{(8)} + \cdots
$$

• **Example: vector form-factors**
$$
\int_{C; a}^{NC; a} \in \{y, Z\}
$$
 Include BSM mediators similarly
\n
$$
F_V = F_{V(0,0)} + F_{V(1,0)} \frac{\hat{s}}{v^2} + F_{V(0,1)} \frac{\hat{t}}{v^2} + \sum_{a}^{V^2} \frac{v^2}{\hat{s} - M_a^2 + iM_a \Gamma_A} \left(\delta_{(a, SM)} + \delta \delta_{(a)} \right)
$$
\n• **Schematic form-factor matching to** $\mathcal{O}(\Lambda^{-4})$:
\n
$$
F_{V(0,0)} = \frac{v^2}{\Lambda^2} C_{\psi^4}^{(6)} + \frac{v^4}{\Lambda^4} C_{\psi^4 H^2}^{(8)} + \frac{v^2 m_a^2}{\Lambda^4} C_{\psi^2 H^2 D^3}^{(8)} + \cdots
$$
\n
$$
F_{V(1,0)} = \frac{v^4}{\Lambda^4} C_{\psi^4 D^2}^{(8)} + \cdots
$$
\n
$$
F_{V(0,1)} = \frac{v^4}{\Lambda^4} C_{\psi^4 D^2}^{(8)} + \cdots
$$
\n
$$
\delta \delta_{(a)} = \frac{m_a^2}{\Lambda^2} C_{\psi^2 H^2 D}^{(6)} + \frac{v^2 m_a^2}{\Lambda^4} \left(\left[C_{\psi^2 H^2 D}^{(6)} \right]^2 + C_{\psi^2 H^4 D}^{(8)} \right) + \frac{m_a^4}{\Lambda^4} C_{\psi^2 H^2 D^3}^{(8)} + \cdots
$$

• Example: vector form-factors
\n
$$
\log_{10} 10^{-10} \text{ N} = \frac{1}{2} \int_{C_{1,0}}^{C_{1,0}} \frac{1}{\sqrt{2}} + \sum_{\substack{a \ b \ b \ c}}^{C_{2,0}} \frac{1}{\sqrt{2}} + \sum_{\substack{a \ b \ b \ c}}^{C_{1,0}} \frac{1}{\sqrt{2}} + \sum_{\substack{a \ b \ b \ c}}^{C_{2,0}} \frac{1}{\sqrt{2}} + \sum_{\substack{a \ b \ c \ (a, S_M) \ b \ c}}^{C_{2,0}} \frac{1}{\sqrt{2}} + \sum_{\substack{a \ b \ c \ (a, S_M) \ b \ c}}^{C_{2,0}} \frac{1}{\sqrt{2}} + \sum_{\substack{a \ b \ c \ (a, S_M) \ c \ (a, S_M) \ c}}^{C_{2,0}} \frac{1}{\sqrt{2}} + \sum_{\substack{a \ b \ c \ (a, S_M) \ c \ (a, S_M) \ c}}^{C_{2,0}} \frac{1}{\sqrt{2}} + \sum_{\substack{a \ b \ c \ (a, S_M) \ c \ (a, S_M) \ c}}^{C_{2,0}} \frac{1}{\sqrt{2}} + \sum_{\substack{a \ b \ c \ (a, S_M) \ c \ (a, S_M) \ c}}^{C_{2,0}} \frac{1}{\sqrt{2}} + \sum_{\substack{a \ b \ c \ (a, S_M) \ c \ (a, S_M) \ c}}^{C_{2,0}} \frac{1}{\sqrt{2}} + \sum_{\substack{a \ b \ c \ (a, S_M) \ c \ (a, S_M) \ c}}^{C_{2,0}} \frac{1}{\sqrt{2}} + \sum_{\substack{a \ b \ c \ (a, S_M) \ c \ (a, S_M) \ c}}^{C_{2,0}} \frac{1}{\sqrt{2}} + \sum_{\substack{a \ b \ c \ (a, S_M) \ c \ (a, S_M) \ c}}^{C_{2,0}} \frac{1}{\sqrt{2}} + \sum_{\substack{a \ b \ c \ (a, S_M) \ c \ (a, S_M) \ c}}^{C_{2,0}} \frac{1}{\sqrt{2}} + \sum_{\substack{a \ b \ c \ (a, S_M) \ c \ (a, S_M) \ c}}^{C_{2,0}} \frac{1}{\sqrt{2}} + \sum_{\substack{a \ b \ c \ (a, S_M) \ c \ (a
$$

