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Q-balls: Non-Topological Solitons

Extended (scalar) field configuration

Carries conserved charge

(Quasi-)stable if total energy is less than Qm, mass energy of Q free
scalar quanta

Condition for global Coleman (thin wall) Q-balls to exist:

V(¢)/$? is minimized at finite nonzero ¢g

Energy per unit charge w = /2V/(¢o)/¢3 is less than m = v/2V”

Typically, to minimize 1/ V/(¢$)/¢? at nonzero ¢g requires an attractive
interaction (e.g., #3)...but is this necessary?
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The Motivation...

@ Renormalizable theory with a ¢ — —¢ symmetry:
No Q-balls at zero temperature

@ Theory has bosons whose mass is proportional to the VEV, m ~ g¢

@ At finite temperature, one-loop corrections to scalar potential:

niT" T4 m?
Vl loop D) Z (TIQ>

bosons
@ At high temperatures:
4
U T 2
o)~ =35 T 127 6~

induces a term ~ —AT|¢|3.

@ Potential issues: Finite temperature corrections also affect the mass;
High T not valid unless T > ¢¢
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SM(-ish) Higgs as a Playground

Complications with the SM Higgs:

@ Due to running quartic coupling, V(h) < 0 at large scales, which
leads to solitosynthesis (phase transition to true vacuum)

o Solution: Adjust top pole mass to ensure V/(h) > 0 to h > 1018 GeV

@ Q-balls made of Higgs quanta carry gauge charge- repulsive
interactions mediated by gauge bosons increases energy

o First consider “global” Higgs model: gauge bosons have masses
~ g (h), but ignore repulsive gauge boson interactions inside Q-ball

@ Then consider gauged SM Higgs model; extra energy from the gauge
interactions prevents thermal Higgs balls from existing

@ What about extensions of SM?
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“Global” Higgs Model

@ Treat the Higgs ball as if it carries global, not gauge charge: ignore
gauge-boson-mediated interactions between charge inside the Q-ball

@ Include in the Higgs potential: Zero-temperature one-loop effects,
finite-temperature one-loop effects, and ring (daisy) finite
temperature effects

@ Do not make the high temperature expansion
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Gauge Effects

o Gauged U(1) Q-balls: Heeck et. al., Phys. Rev. D 103 (2021)
o Generalized their approach to generic SU(N) and then SU(2) x U(1),
but still making the static charge approximation:

o(x,t) = j}%F(r)e’l“’t,
Ad(x, t) = Ap(t), Al(x,t) =0
@ Removes SU(2) self-interactions between the gauge fields in the
Q-ball (Higgs quanta still interact via SU(2) interactions)
@ Breakdown of static charge approximation <> confining nature of
SU(N) gauge interactions

@ Use static charge approximation only if Q-ball radius is much less
than SU(2) confinement scale
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Properties of Gauged Higgs Balls

Results:

@ Energy per unit charge w:
1 1
w = ERhowM/g‘%V + g%, coth <2Rhm/g5v +g,2,>

where wy is the “global” Q-ball energy per unit charge, hg is the
global Q-ball VEV, and R is the radius.
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Properties of Gauged Higgs Balls

Results:

@ Energy per unit charge w:
1 1
w = ERhowM/g‘%V + g%, coth <2Rhm/g5v +g,2,>

where wy is the “global” Q-ball energy per unit charge, hg is the
global Q-ball VEV, and R is the radius.

o Charge:

oo R (Rhoy /a3y + &% coth (1Rhoy/ef, + 6% ) —2)
Y — —Yw —

g, + 8%

(Numerically invert to find radius for a given charge.)

e VEV: Step function with h = hy (global value) inside.
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Thermal Higgs Balls in the SM

No thermal Higgs balls in the Standard Model: Extra energy from gauge
boson repulsion between charges makes the energy per unit charge w

greater than the mass of a free Higgs quanta:
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BSM?

Does this hold for all extensions of the SM? (Or in non-SM sectors?)

@ Idea: Modify the running of the gauge couplings gy and gy (e.g.,
extra fermions)

@ Why this might work: Decreases the energy contribution from
repulsive gauge interactions

@ Why this doesn’t work: The gauge boson masses ~ ghg, so it also
decreases the cubic term that makes the thermal balls

@ Need to decouple these two things
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Does this hold for all extensions of the SM? (Or in non-SM sectors?)

@ Also introduce a scalar field:

2
V(H,S) = —2HTH + Ay(HTH)? + %52 4 AsS* + ApsHTHS?

which has mass:
ms eff = 4/ m% = )‘HShZ ~ \/Aysh

e Coefficient of —AT |h|® term in potential controlled by Ays, not
gauge couplings

@ This method can be used with global charge to make thermal Q-balls

@ SUSY has both: extra scalars & modified gauge coupling runnings
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BSM Example

Ans = 0.9, and running to one-tenth their SM values:
HS Y,&W
(not fine-tuned since at one loop level, contributions to the 3 function o g°)
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Axs = 0.9, and running to one-tenth their SM values:
HS Y,&W
(not fine-tuned since at one loop level, contributions to the 3 function o g°)
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@ Across a range of temperatures, Higgs balls exist up to charges ~ 100

@ Quasi-stable: Higgs quanta can decay
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Summary

Thermal Q-balls

@ Non-topological solitons that exist at finite temperature due to
induced attractive interactions

@ Requirement: Charged scalar field whose VEV determines bosonic
masses

@ Can have gauge charge (e.g., Higgs mechanism) or global charge
(e.g., scalar interactions)

Example: Higgs Balls
e No Higgs balls in SM, but may exist in BSM models (SUSY?)
@ Stable at high temperatures

@ Cosmological implications?

Thank you! Any questions?

Lauren Pearce (PSU-NK)
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Quasi-Stability

o Higgs Balls are only quasi-stable: can't fall apart into individual Higgs
quanta, but the Higgs quanta themselves can decay.

Lauren Pearce (PSU-NK) 1/2



Quasi-Stability

o Higgs Balls are only quasi-stable: can't fall apart into individual Higgs
quanta, but the Higgs quanta themselves can decay.

@ Decays occur throughout the volume of the Q-ball, so l'q_pa1 = QI

Lauren Pearce (PSU-NK) 1/2



Quasi-Stability

o Higgs Balls are only quasi-stable: can't fall apart into individual Higgs
quanta, but the Higgs quanta themselves can decay.

@ Decays occur throughout the volume of the Q-ball, so l'q_pa1 = QI

@ In a cosmological context:

Lauren Pearce (PSU-NK) 1/2



Quasi-Stability

o Higgs Balls are only quasi-stable: can't fall apart into individual Higgs
quanta, but the Higgs quanta themselves can decay.

@ Decays occur throughout the volume of the Q-ball, so l'q_pa1 = QI

@ In a cosmological context:

Higgs balls decay efficiently when F'q_pan ~ QH (where H is Hubble
coefficient)

Lauren Pearce (PSU-NK) 1/2



Quasi-Stability

o Higgs Balls are only quasi-stable: can't fall apart into individual Higgs
quanta, but the Higgs quanta themselves can decay.

@ Decays occur throughout the volume of the Q-ball, so l'q_pa1 = QI

@ In a cosmological context:

Higgs balls decay efficiently when F'q_pan ~ QH (where H is Hubble
coefficient)
Equivalently, when ', ~ H

Lauren Pearce (PSU-NK) 1/2



Quasi-Stability

o Higgs Balls are only quasi-stable: can't fall apart into individual Higgs
quanta, but the Higgs quanta themselves can decay.

@ Decays occur throughout the volume of the Q-ball, so l'q_pa1 = QI

@ In a cosmological context:
Higgs balls decay efficiently when F'q_pan ~ QH (where H is Hubble
coefficient)
Equivalently, when ', ~ H

Ttotal

Q =10°
assuming radiation domination

Tgauge

Tfermions

10° 10" 10" 10
T[GeV]

Lauren Pearce (PSU-NK) 1/2



Quasi-Stability

o Higgs Balls are only quasi-stable: can't fall apart into individual Higgs
quanta, but the Higgs quanta themselves can decay.

@ Decays occur throughout the volume of the Q-ball, so l'q_pa1 = QI

@ In a cosmological context:
Higgs balls decay efficiently when F'q_pan ~ QH (where H is Hubble
coefficient)
Equivalently, when ', ~ H

Ttotal

Q =10°
assuming radiation domination

Tgauge

Tfermions

Exist for wide range of temperatures,
but stable against decay for
T > 10" GeV

10° 10" 10" 10
T[GeV]
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...but were Higgs balls produced?

Just because these states exists doesn’t mean they were produced
@ No known production mechanism for gauged Q-balls!
@ Because of repulsive interaction, difficult to get large scale condensate
of non-zero charge
@ Therefore the usual production via fragmentation technique isn't
(trivally) applicable

Area for future work...
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