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Introduction

Introduction

The first instances of four-dimensional pure N’ = 4
supergravities were constructed almost 50 years ago by [Das
(1977), Cremmer and Scherk (1977), Cremmer, Scherk and
Ferrara (1978), Freedman and Schwarz (1978)].

The coupling of N' = 4 supergravity to vector multiplets, as
well as some of its gaugings, were analyzed a few years later,
by [de Roo (1985), Bergshoeff, Koh and Sezgin (1985), de
Roo and Wagemans (1985), Perret (1988)].
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Introduction

More recently, various gauged N = 4 supergravity models
originating from orientifold compactifications of type IIA or |IB
supergravity were studied [D'Auria, Ferrara and Vaula (2002),
D'Auria, Ferrara, Gargiulo, Trigiante and Vaula (2003), Berg,
Haack and Kors (2003), Angelantonj, Ferrara and Trigiante
(2003,2004), Villadoro and Zwirner (2004,2005), Derendinger,
Kounnas, Petropoulos and Zwirner (2005), Dall'Agata,
Villadoro and Zwirner (2009)].

The most general analysis of the structure of the gauged

D = 4, N = 4 supergravity is provided by [Schon and Weidner
(2006)], where one can find a systematic discussion of the
consistency constraints on the embedding tensor.
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However, a specific symplectic frame is chosen, in which the
rigid symmetry group of the ungauged Lagrangian is
G: = SO(1,1) x SO(6, n) (n = number of vector multiplets).

This choice is constraining, since for example the maximally
supersymmetric anti-de Sitter vacuum cannot be obtained by a
purely electric gauging in this frame [Louis and Triend| (2014)].
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Our work provides the full Lagrangian and supersymmetry
transformation rules for the gauged four-dimensional N’ = 4
supergravity coupled to n vector multiplets in an arbitrary
symplectic frame.

Any known (as well as yet unknown) vacuum of such a theory
can be obtained from an electrically gauged theory, which is
incorporated in our general Lagrangian.
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The Ingredients of N' = 4 Supergravity

N = 4 supergravity multiplet:

4 spin-1/2 fermions x; (dilatini)

@ graviton g,

e 4 gravitini¢ i=1,....4
@ 6 vector fields AV = —A”
°

°

1 complex scalar 7
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The Ingredients of = 4 Supergravity

The scalar sector of the supergravity multiplet

ector multiplets

n vector multiplets:
@ n vector fields A/%, a=1,....n
@ 4n gaugini \¥

@ 6n real scalar fields
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The scalar sector of the supergravity multiplet
The scalar sector of the vector multiplets
The fermionic fields

The scalar sector of the supergravity multiplet

The two real scalars of the N' = 4 supergravity multiplet
parametrize the coset space SL(2,R)/SO(2).

Coset representative: complex SL(2,R) vector V,,

o = +, —, which satisfies

V. Vi — ViVs = —2ieqp, (1)

where €,5 = —€3, and e, = 1.
V, carries SO(2) charge +1.
We also define
M.s = Re(V.V5) - (2)
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The scalar sector of the vector multiplets

The 6n real scalars of the n vector multiplets parametrize the
coset space SO(6,n)/(SO(6)xSO(n)).

Coset representative: (n+ 6) x (n+ 6) matrix L with
entries L™ = (L™, Lis?), where M =1,..., n+6,
m=1....6,a=1,...,n, which is an element of SO(6,n):

v = Mun L™ = Ly Ly = L™ Lnm + Lv?Lna, (3)

where nyy = nun = diag(—1,-1,-1,-1,—-1,-1,1,...,1).
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The Ingredients of ' = 4 Supergravity

The scalar sector of the supergravity multiplet
The scalar sector of the vector multiplets
The fermionic fields

We also introduce the positive definite symmetric matrix
M = LLT with elements

Mun = —Lm™Lym + Lv?Lis - (4)
We can trade Ly™ for the antisymmetric SU(4) tensors
Ly = —Lp/, i j=1,...,4, defined by
LMU - mULMma (5)

where T,/ are six antisymmetric 4x4 matrices that realize the
isomorphism between the fundamental representation of SO(6)
and the twofold antisymmetric representation of SU(4).

1
el m’ (6)

Pseudoreality : Ly = (Ly?)* = 5

Nikolaos Liatsos Gauged D = 4 N = 4 Supergravity
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The scalar sector of the supergravity multiplet
The scalar sector of the vector multiplets
The fermionic fields

The fermionic fields

Field | SO(2
7
X'
A\

harge

I N—r

RN TN = O

+|+

Vs =V X =X AT = A (7)

Yiw = (])°, xi = (X')¢ and A7 = (A¥)¢ have opposite SO(2)
charges and chiralities.
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Duality and Symplectic Frames

The ungauged theory for the four-dimensional A/ = 4 Poincaré
supergravity coupled to n vector multiplets contains n+ 6
abelian vector fields AQ, AN=1,....,n+6, and is described by
a 2-derivative Lagrangian of the form

1 1 1w
e_lﬁ :ZIA):F:VFZ#V + ZRAZF;/L\V(*FX)#V + §O/I< Fl/t\y
+ e_l»cresta (8)

where F/L\V = 28[HA1’,\], (xFM), = %GWPUF’\”", Trs and Ras
are real symmetric matrices that depend on the scalar fields,
with Z)s being negative definite, while Oy and L, do not

depend on the vector fields.
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We can associate with the field strengths Flﬁ\y their magnetic
duals Gp,, defined by

-1, Ue
nvpo A
OF),

= R/\XF/LXV — I/\):(*Fz)w, — (*O/\)l“/ .
(9)

G/\l“’ = —é€

The equations of motion for the vector fields read
1l Gnjp) = 0 (10)

and imply the local existence of n+ 6 dual magnetic vector
fields Aa, such that

Gapw = 20[Anjy)- (11)
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Duality and Symplectic Frames

The group of global transformations that leave the full set of
Bianchi identities and equations of motion of the ungauged
D = 4, N = 4 matter-coupled supergravity invariant is

G =SL(2,R) x SO(6,n) C Sp(2(n+6),R). (12)

The vector fields A;/)' which are those appearing in the
ungauged Lagrangian and will be referred to as electric
vectors, together with their magnetic duals Ay, form an
SL(2,R)xSO(6,n) vector At = Al™ = (AR, An,.), which is
also a symplectic vector of Sp(2(6 + n),R).
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Every electric/magnetic split A%' = Al = (A7), Ay,,) such
that the symplectic form

CMN — CMaNﬂ = nMNeozﬂ (13)

decomposes as

AT A A
o (o 25 )= (% %) e
(C/\ (C/\): —(5/\ 0
defines a symplectic frame and any two symplectic frames are
related by a symplectic rotation.
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It is convenient to parametrize the choice of the symplectic
frame by means of projectors M, and My that extract the
electric and magnetic components of a symplectic vector

VM = (VA V,) respectively, according to

vA=nh VM, Vi = M VM. (15)
These projectors must satisfy the properties
MMy MY =0,
MMy CYY = 63,
MamMey CMY =0,
M vl = Man My = Caw

where Crn = Cpansg = Nun€as
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Once the choice of frame has been made, the kinetic matrices
Ins and Rpg for the electric vectors follow from decomposing
the 2(6 + n) x 2(6 + n) matrix

Mpmpn = Mpang = MagMun (20)
as
Moo [Maz MATY (T +RI R (RTN
MN = My MM T (TR —(Z-1)E '

(21)
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Duality and Symplectic Frames

Moreover, the complex kinetic matrix of the vector fields
Nas = Ras + i Ias (22)
satisfies the following useful relations
Nas =y VLM = Nppg VLMY, (23)

Nas M o (V) LM2 = Mapa (V) LV2. (24)

Nikolaos Liatsos Gauged D = 4 N = 4 Supergravity



Duality Covariant Gauging

Duality Covariant Gauging

In the embedding tensor formalism [Nicolai and Samtleben
(2001), de Wit, Samtleben and Trigiante (2003,2005,2007)]
which involves the introduction of gauge fields A = AV
that decompose into electric gauge fields A/’) and magnetic
gauge fields Ap,, the gauge group generators X1 = (Xa, X")
are expressed as linear combinations of the generators t, of
SL(2,R)xSO(6,n)

Xu = Outa, (25)

where A = ([MN], (af)) is an index labeling the adjoint
representation of SL(2,R)xSO(6,n) and @ " = (O*, OM) is
a constant tensor, called the embedding tensor.
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The components of the embedding tensor are given by [Schon
and Weidner (2006)]

Oun™ = for™ —€l'0)], Guw™ =008, (26)

where {4 and fopmne = fojmnp) are two real constant
SL(2,R)xS0O(6,n) tensors, so that

Xovnry = Xun°Cpyo =0, (27)

where Xun' = GMA(tA)NP are the matrix elements of the
gauge generators Xy, in the fundamental representation of

SL(2,R)xSO(6,n).
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Furthermore, the embedding tensor must be invariant under
the action of the gauge group G, that it defines, which is
equivalent to the following quadratic constraints on the
tensors {,p and foupnp [Schon and Weidner (2006)]

&esm =0,

f&fB)PMN =0,

28
29
3farmn foipa)” + 26 fisivea) = 0., 30

eP(€8 fapmn + Eamépn) =0,

(28)
(29)
(30)
(31)

e (fumnrfape™ — EX farmmipniaing — Eagmi faing P
+ fa[p|f5|Q]MN) =0. (32)
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Duality Covariant Gauging

These quadratic constraints guarantee the closure of the
gauge algebra:

[Xat, Xl = =X Xp - (33)

In the gauged theory, the ordinary exterior derivative d is
replaced by a gauge-covariant one

d=d— gAMXy
=d— gAMa@aMNPtN,D + gAM(aﬁﬁ)’yf,yM tas (34)

where we have introduced the one-forms
AM = AMo — Ai‘f’“dx“.
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The gauge-covariant 2-form field strengths of the vector gauge
fields are defined by [Schon and Weidner (2006)]

HMa _ dAI\/Ia . %%NPMANB A APa

— %eaMNPBNP + %52/18046’ (35)

where

~

famnpe = famnp — Sapmmnpin — EfaNnMP (36)

and BNP = BINPI gaf — B(@f) are 2-form gauge fields
transforming in the adjoint representations of SO(6,n) and
SL(2,R) respectively.
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gauged SL(2,R)/SO(2) zweibein : P = éeaﬁVac?V@ (37)
A 1 N
gauged SO(2) connection : A = —Eeaﬁvadvg, (38)
where

. 1 1
dv, =dVv, + EgéaMAWW + §g§M’8AMaVB . (39)
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Duality Covariant Gauging

gauged SO(6, n)/(SU(4) x SO(n)) vielbein : P,7 = LM ,dL,"

(40)
gauged SU(4) connection : ofz"j — LML i
(41)
gauged SO(n) connection : &,2 = LM,dLy®
(42)
where A
dLy™ = dLy™ + gAV*e wn" LM (43)
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The Lagrangian

The Lagrangian for the gauged D = 4, N' = 4 supergravity in
an arbitrary symplectic frame can be split in 6 terms as follows

L= »Ckin + 'CPauIi + ‘Cfermion mass T 'Cpot + 'Ctop + £4fermi ; (44)
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The Lagrangian

where

- 1 i vpo (Ti . A 7 A
€ 1Ekin = §R + EGM P (¢H%Pipa - 77bi,tf>/1/ppcr)

—_

A5 (XI’YHDMXI + XiVHDuXI)

X DN, + M DY) (45)

— DN

> 15 Daij 1 AN xpv
pr 5,Dél,ju,c:@m + ZI/\XHWH H

+ ~e"P " Ras Hy, H>,

pv' lpo
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The Lagrangian

where the field strengths of the fermionic fields have the
following expressions

A 1 a .2
Pirar =204 Yiiu) + S0l *(e, V) vabit) — 1AL Wiy
= 207 ¥y, (46)

. 1 3 .
D,xi =0.xi + Zwuab(e, V)vabXi + _-AuXi —&fuxj, (47)

A 1
D )\al —a >\a/ + 4W,LL (e ¢)7abAal + A /\al wl ,u>\J

+ Wa },L)\bl ) (48)
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eilﬁPauli = p: ()Zilpu X lewlu) + P (X:¢ — Xl’ylwl/}l)
— 2By (N — X)) (49)

1
2Pau,u( al¢],u al/y,uul/J ) + 2HL\VO )

where

O/\,uzz :Z/\):nzl\/la( - 2(Va)*LMU1/_}iuij - i€uupa(va)*LMUTZ?¢f
+ VLN AS = VLM AL+ 2(V) LM Xy
+ i€upo (V) LM + 200 LM iy (50)

+ i€ upo VELMZX iy P2 4 cc.).
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e Lrermion mass = — QgAQﬁj;)ZiAaj + 2g,a2§",- _j)\éj + QgALbUS\Iji)\J_Q
2 2 - o
3 282X Vb, (51)
3 3
N2 j 2+ NI N
+ 28425 Ny, — §gA1fj@D,ﬂ“ W +cc.,

+ SgAININ, +

. 1 .- 1 S
Al Arjj — cAJ A — —Aza:JA2alj> ’

9 2
(52)

1

e_lﬁpot = g2 <3
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where the A tensors are given by [Schon and Weidner (2006)]

AT = farmp (V) LM g LMK LT,
. . 1.
Aoai’ = foranp VLML L7 — 201 €am VL,
y .3 )
AY = farnp VLM g LN LPT EfaMVO‘LM’J,

Asp” = fornp VLM LV, LY
and satisfy the Ward identity

2 ik 2 i _

S A = A Ao — Aas* A =
1,02 u» 2

26{ §A11(IA11<I - §A§ A2kl AZak A27 /
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The Lagrangian

The topological term Lo, reads [de Wit, Samtleben and
Trigiante (2005)]

— 1 vVpo « o
e Liop = §g€“ P MM o Mans (9 MPQBPQ fMB V)
~ 1
<2apA£rVﬁ — &fsrs NA§6A§B - Zg@BNRSBRS + gf(s Bﬁc(j)

1
_ 6ge“”’"’ (HAREHASC + 2“/\Re|—|/\5§> Xnang AN ANP x
(58)

1
(apAf;< + 4gXP~,055CA§7A35> :
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Vacua, Masses and Supertrace

In order to derive the conditions satisfied by the critical points
of the scalar potential

1

9

1 .-
V=—e Ly =g (—gAlfAl,-j +

Aidy + %Azam;y) ,
(59)
we compute its variation induced by the action of an
infinitesimal rigid SL(2,R) x SO(6,n) transformation that is
orthogonal to the isotropy group SO(2) x SU(4) x SO(n) of
the scalar manifold on the coset representatives V,, and Ly

[de Wit and Nicolai (1984)].
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Vacua, Masses and Supertrace

Such a transformation can be written as
Vo = ZV5, 0Ly = L0002, 0Ln? = 2%;Ly",  (60)

where ¥ denotes the complex SL(2,R)/SO(2) scalar
fluctuation and ¥,; = (X,9)* = Zej. X" are the

SO(6,n)/(SO(6) x SO(n)) scalar fluctuations.

The variation of the scalar potential is given by

SV =g> (X + X*T* + X¥5,;), (61)
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Vacua, Masses and Supertrace

where
X = — 2A Aoy + =y gy — L By By
2—512U+E6 2iA 2K — 5M2a jA2T
1- . .
+ ZAzéliAzéjj, (62)

i 2tkaau Lakzan  Laizan Lz
xai — _ §A[1U<A2ak|J] _ §A[2IkA2§|J]k _ §A’2<[ |A2§|J]k _ ZA[zJ]A2gkk
ablilk A 1j] 1 abij 4k ijlm 12 = ak
— AP Ay +- ZA* Aop k + € — §A1k/A2* m

1- 1- 1-
— Aoy A’m® — §A2ImA2§kk + EALbk/Azgmk (63)

[l O8]

oo

_AablmA2bkk) -
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Vacua, Masses and Supertrace

The stationary points of the scalar potential correspond to
solutions of the following system of 6n + 2 real equations

X =0, X2 =0. (64)
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Vacua, Masses and Supertrace

Scalar masses

We can specify the mass spectrum of the scalar fields by
computing the second variation of the scalar potential under
(60). Mass terms for the scalar fluctuations:

1
e_lﬁscalar mass — _552 V. (65)
We then introduce the real scalar fluctuations
Y1 =V2ReX, Y, =V2ImY, T.,=-TmZ./, (66)

and substitute the expansions of the coset representatives
around their vacuum expectation values into the kinetic terms
for the scalars.
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Vacua, Masses and Supertrace

We find that the kinetic and mass terms for the scalar
fluctuations read

&1L 5 — 1(0,5.)(05y) - %(aug)(auzz)

2
1
- 55@(;@(@“2&)(8@@)
1 241,152 1 212,252
- E(Mo) Ly — E(Mo) ) (67)
— (MM, Y, — (MG)H 20T o
1
- E(M )am bnzamzbn7
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Vacua, Masses and Supertrace

where the elements of the squared mass matrix for the scalars
M3 are given by

2 i 2 v- 2 s
(MY = (M§)*? _gz( - gAfAlij - §A£J)A2ij + §A[2]]A2ij
+ AZaIJAZaij>7 (68)

V2 _ L
(MG)Hm = (M)t = Tg2( — Ao Ay + 44, Ay
— ALbUAQQkk) rmi +c.c., (69)
iv2 __
(MR = (MBym2 = V2 g2 Aydyn,
+4AT Ay — AT Aoy i) T
+ c.c., (70)
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Vacua, Masses and Supertrace

(MG)emn

% & (2 A Agb, — pzci Aﬁgk,) rm, ok

+ %g2( — 2A02 0 ApK ) 4+ 2% | AR K — 252K A 4 A2 K ALY
+ Ax2d ARk, — %ek/mnAgkAmen - %akmnA_w;\@mn + 2A¥k)ﬁibk/
+ 2y AR 4 A By ] — APy — 4 AR Ry Py

1 _ "

+ Zg2A22kkA2é’ jrm ey (71)
1 1 - L

+ §g2 (gAgAZk/ — 2A2£/’A29k) 6Lbrﬂ,‘jrﬂkl
1, 8 k7 kZ ¢ kZ ¢ J A ck

+ 58 (- §A1 Arpt + 2A2¢1 Ax | — Apei Ax¥ ) — Axe A=

8 (jk) = ; 1 _ »
+ §Agk)A2(k/))5LbrmUrﬂll + §g2A2£kkA2£l/5LbrmijrﬂU

+(a< b,m < n),

Nikolaos Liatsos Gauged D = = 4 Supergravity



Vacua
Masses
Supertrace relations

Vacua, Masses and Supertrace

where
Aabc = faMNPVaLMQI-NQLPQ (72)
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Vacua, Masses and Supertrace

Vector masses

Equations of motion for the vector gauge fields:
0, = igel! (VYR — () (V) )
+2g @M ypLN, 1P PRI 4 (73)

where we have introduced the symplectic vector
gl%a = (HQV, g/\w,) with

Vs

—1, dad
nvpo A
OH?,

Irnw = —€ =RasH>, — Tas(*H™)

— (*On) o - (74)

and the ellipses represent terms of higher order in the fields.
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Vacua, Masses and Supertrace

Using the twisted self-duality condition
€uupagMapa = 277MN€aIB Mnp M,B'yg;f]
+ (2-fermion terms) (75)

and that g,%a is on-shell identified with Hﬁf’f‘, we can write
(73) as

710, (eHMawmy = (M2)Mey ANSR 1 (76)
where
i * * le% *Y 9k
(MM ng = Zg2MMP€7P€fv (V) (V) VsVs = VVVEV;)
+g2@7pQR@5NSTMM'DMOWLQQLSQLRULTU
(77)

is the squared mass matrix of the vector fields.
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Fermion masses

After eliminating the mass mixing terms between the gravitini
and the spin-1/2 fermions,

e Lomix = —gz/jliv“ Gi+c.c., (78)

where 5
G,' = §A2J','XJ + 2A2§lJ/\?7 (79)

the mass matrix of the spin-1/2 fermions for Minkowski vacua
that completely break N' = 4 supersymmetry is given by
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Vacua, Masses and Supertrace

(M) (My)#
(M) (My)=¥

0 _\/§A2in + \/55{-'/42bkk
—V2AE + V2[R 24 4 252 A0

N[

(80)

( —%(Afl)k//azikfz\zj/ —232( )kl/_\zikAzbrj>
g - — . . ;
_%ﬁ(Afl)klA2jkA2éll —2(A; MM A2, ALY
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Vacua, Masses and Supertrace

The equations of motion for the gravitini read

v, 2 v, J
’}/‘u pDV¢;p = —ggAl,'j’}/’u w,jj + ... s (81)

so the mass matrix of the gravitini is given by

>
(Mz)j = —38A (82)
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Supertrace relations

Supertrace of the squared mass matrices:

STr(M?) = ) (—1)(2J + 1) Tr(M3)

spins J
—Tr (Mg) —2Tr <MT%M%) + 3Tr (M%)
4Ty <MT% M%) . (83)

This supertrace controls the quadratic divergences of the
1-loop effective potential [Coleman and Weinberg (1973),
Weinberg (1973)].

Nikolaos Liatsos Gauged D = 4 N = 4 Supergravity



Vacua
Masses

Supertrace relations

Vacua, Masses and Supertrace

Using the critical point conditions, the vanishing of the
cosmological constant and the quadratic constraints on the

embedding tensor, we find

Tr (MT%M%) - (M)’ (M)J - gg2A;fA1,-j. (84)

3 9
+ g2 AT A, (85)

4 1 - .
TI’(M%) = (M%)MQM(X - (_ + —n) g2A[2J]A2,‘J‘ + 2g2A2§,JA2*J'
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Vacua, Masses and Supertrace

bj
16 , R
- §g2A11A1,.j + 487 Aga? A®; + §”g2A§J)A2ij
o 3
+ 4g2ALbUALbU + 5g2A[2j]A2ij7 (86)
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THAMG) = (M) + (M2 + Dppdma (M)

4 - 4 i =

1 .
+ 5 (n -+ 24) ng[z'l]Az,'J' (87)

+ 2ng2A2§,—iA2§ij + 5g2A‘LbUALb,-j .
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Altogether, the supertrace of the squared mass eigenvalues

equals
) STr(M?)=4(n—1)V =0 (88)

for any Minkowski vacuum of D = 4, N' = 4 supergravity that
completely breaks A/ = 4 supersymmetry irrespective of the
number of vector multiplets and the choice of the gauge group.
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Conclusion

@ Construction of the complete Lagrangian that
incorporates all gauged N' = 4 matter-coupled
supergravities in four spacetime dimensions.

@ STr(M?) = 0 for all Minkowski vacua that completely

break N = 4 supersymmetry = the one-loop effective
potential at such vacua has no quadratic divergence

Nikolaos Liatsos Gauged D = 4 N = 4 Supergravity



Conclusion

Acknowledgements

Thank you for your attention!

The research work was supported by the Hellenic Foundation
for Research and Innovation (HFRI) under the 3rd Call for
HFRI PhD Fellowships (Fellowship Number: 6554).

HFRI

Hellenic Foundation for
Research & Innovation

Nikolaos Liatsos Gauged D = 4 N = 4 Supergravity



	Introduction
	The Ingredients of N=4 Supergravity
	The scalar sector of the supergravity multiplet
	The scalar sector of the vector multiplets
	The fermionic fields

	Duality and Symplectic Frames
	Duality Covariant Gauging
	The Lagrangian
	Vacua, Masses and Supertrace
	Vacua
	Masses
	Supertrace relations

	Conclusion

