Holography and Scale Separated AdS vacua

Fien Apers

University of Oxford

Based on **2211.04187** + work in progress with Miguel Montero and Irene Valenzuela

(See also 2202.09330 with Joe Conlon, Sirui Ning and Filippo Revello)

Outline

- 1. Introduction
- 2. DGKT vacua
- 3. Large-N scalings
- 4. Singularity probed by D-branes

Scale separated AdS vacua do have

$$\frac{L_{extra\ dimensions}}{L_{AdS}} = \frac{L_{KK}}{L_{AdS}} \ll 1$$

• Question: are AdS vacua with (parametric) scale separation in the landscape or in the swampland? [Lust, Palti, Vafa 2019]

• Question: Do there exist CFT duals for scale separated AdS vacua?

There are no known CFTs with a large gap in the spectrum of single trace primaries.

• In the best understood AdS/CFT examples, we have $L_{extra\ dimensions} pprox L_{AdS}$

- Example: $AdS_5 \times S_5(/\mathbb{Z}_k)$ dual to $\mathcal{N}=4$ SYM
- N D3-branes probing flat space or a conical singularity

Similarly, we get

- $AdS_4 \times M^7$ (M-theory) in the near-horizon geometry of N M2-branes probing a conical singularity
- $AdS_7 \times M^4$ (M-theory) in the near-horizon geometry of N M5-branes probing a conical singularity

where L(AdS) = L(M) in all these examples

Can we use holography for phenomenologically more interesting vacua? For AdS vacua with scale separation?

Scale separated AdS vacua in string theory:

KKLT [Kachru, Kallosh, Linde, Trivedi 2003]

IIB, fluxes and nonperturbative effects

DGKT [DeWolfe, Giryavets, Kachru, Taylor 2005] IIA, fluxes only

• This talk: what can we learn about the holographic dual and the holographic brane set-up from the scalar potential in the DGKT EFT, and possibly other AdS EFTs as well?

$$V_{EFT} \rightarrow \text{D-brane dual}$$

- 1. Large N-scalings [2211.04187]
- 2. Singularity probed by the D-branes [ongoing work with M. Montero and I. Valenzuela]

- 4d, $\mathcal{N}=1$ SUSY AdS vacua by compactifying 10d massive IIA on a CY
- Moduli Stabilization by fluxes: unbounded $F_4 \sim N$ and bounded F_0 , H_3
- O6 –planes needed for tadpole cancellation

$$V = \frac{1}{s^3} \left[\frac{A_{F_4}}{us} + \frac{A_{F_0}u^3}{s} + \frac{A_{H_3}s}{u^3} - A_{O6} \right]$$

- 4d, $\mathcal{N}=1$ SUSY AdS vacua by compactifying 10d massive IIA on a CY
- Moduli Stabilization by fluxes: unbounded $F_4 \sim N$ and bounded F_0 , H_3
- O6 –planes needed for tadpole cancellation

$$V = \frac{1}{s^3} \left[\frac{A_{F_4}}{us} + \frac{A_{F_0}u^3}{s} + \frac{A_{H_3}s}{u^3} - A_{O6} \right]$$

Parametric control:

- Large volume: $\mathcal{V} \sim N^{3/2}$ - Weak coupling: $e^{\phi} \sim N^{-3/4}$

- 4d, $\mathcal{N}=1$ SUSY AdS vacua by compactifying 10d massive IIA on a CY
- Moduli Stabilization by fluxes: unbounded $F_4 \sim N$ and bounded F_0 , H_3
- O6 –planes needed for tadpole cancellation

Parametric control:

- Large volume: $\mathcal{V} \sim N^{3/2}$ - Weak coupling: $e^{\phi} \sim N^{-3/4}$

Scale separation:

$$\frac{L_{KK}}{L_{AdS}} \sim N^{-1/2}$$

Moduli are stabilized with **particular masses** which are interesting from a holographic perspective:

$$\Delta = \frac{3}{2} + \sqrt{\frac{9}{4} + m^2 R_{AdS}^2}$$

$$\Delta_1 = 6$$
 and $\Delta_2 = 10$

- Universal! Independent of fluxes and choice of Calabi-Yau manifold
- Integer!

Remark: integer conformal dimensions signal the presence of polynomial shift symmetries in the large N-limit:

$$\phi \to \phi + c_{\mu_1 ... \mu_k} X^{\mu_1} ... X^{\mu_k}|_{AdS}$$

if
$$\Delta_{\phi} = k + 3$$
.

Moduli are stabilized with **particular masses** which are interesting from a holographic perspective:

$$\Delta = \frac{3}{2} + \sqrt{\frac{9}{4} + m^2 R_{AdS}^2}$$

$$\Delta_1 = 6$$
 and $\Delta_2 = 10$

- Universal! Independent of fluxes and choice of Calabi-Yau manifold
- Integer!

[Bonifacio, Hinterbichler, Joyce, Rosen 2018],[Blauvelt, Engelbrech, Hinterbichler 2022], [FA 2022]

$$V = \frac{1}{s^3} \left[\frac{A_{F_4}}{us} + \frac{A_{F_0}u^3}{s} + \frac{A_{H_3}s}{u^3} - A_{O6} \right] \rightarrow \text{ D-brane dual?}$$

Unbounded flux

Bounded fluxes

Essential: Flux-domain wall correspondence

Kounnas, Lust, Petropoulus, Tsimpis 2008 – Cribriori, Gnecchi, Lust, Scalisi 2023

Essential: Flux-domain wall correspondence:

Kounnas, Lust, Petropoulus, Tsimpis 2008 – Cribriori, Gnecchi, Lust, Scalisi 2023

N units of F_n -flux in d dimensions \leftrightarrow *N* domain walls consisting of D(8-n)-branes wrapped on (6-n-d)-cycles

Essential: Flux-domain wall correspondence:

Kounnas, Lust, Petropoulus, Tsimpis 2008 – Cribriori, Gnecchi, Lust, Scalisi 2023

N units of F_n -flux in d dimensions $\leftrightarrow N$ domain walls consisting of D(8-n)-branes wrapped on (6-n-d)-cycles

Here:

N units of F_4 -flux $\rightarrow N$ D4-branes wrapped on 2-cycles

$$V = \frac{1}{s^3} \left[\frac{A_{F_4}}{us} + \frac{A_{F_0}u^3}{s} + \frac{A_{H_3}s}{u^3} - A_{O6} \right]$$

Flux ~ N-1

Flux ∼ N

$$V = \frac{1}{s^3} \left[\frac{A_{F_4}}{us} + \frac{A_{F_0}u^3}{s} + \frac{A_{H_3}s}{u^3} - A_{O6} \right] \rightarrow$$

$$A_{F_4} \sim N^2$$

	$\mid t \mid$	x^1	x^2	x	y_1	y_2	y_3	y_4	y_5	y_6
N_1 D4	\otimes	\otimes	\otimes		\otimes	\otimes				
N_2 D4	\otimes	\otimes	\otimes				\otimes	\otimes		
N_3 D4	\otimes	\otimes	\otimes						\otimes	\otimes

$$V = \frac{1}{s^3} \left[\frac{A_{F_4}}{us} + \frac{A_{F_0}u^3}{s} + \frac{A_{H_3}s}{u^3} - A_{O6} \right] \rightarrow$$

$$A_{F_4} \sim N^2$$

	$\mid t \mid$	x^1	x^2	x	y_1	y_2	y_3	y_4	y_5	y_6
N_1 D4	\otimes	\otimes	\otimes		\otimes	\otimes				
N_2 D4	\otimes	\otimes	\otimes				\otimes	\otimes		
N_3 D4	\otimes	\otimes	\otimes						\otimes	\otimes

Large-N scalings from scalar potential:

$$c \sim R_{AdS}^2 \sim V^{-1} \sim N^{9/2}$$
$$g_s \sim N^{-3/4}$$

$$V = \frac{1}{s^3} \left[\frac{A_{F_4}}{us} + \frac{A_{F_0}u^3}{s} + \frac{A_{H_3}s}{u^3} - A_{O6} \right] \rightarrow$$

$$A_{F_4} \sim N^2$$

	t	x^1	x^2	x	y_1	y_2	y_3	y_4	y_5	y_6
N_1 D4	\otimes	\otimes	\otimes		\otimes	\otimes				
N_2 D4	\otimes	\otimes	\otimes				\otimes	\otimes		
N_3 D4	\otimes	\otimes	\otimes						\otimes	\otimes

Large-N scalings from scalar potential:

$$c \sim R_{AdS}^2 \sim V^{-1} \sim N^{9/2}$$
$$g_s \sim N^{-3/4}$$

Large-N scalings from SUGRA harmonic superposition rule in the near-horizon limit of the D4-branes

$$c \sim N^{9/2}$$

$$g_s \sim N^{-3/4}$$

$$V = \frac{1}{s^3} \left[\frac{A_{F_4}}{us} + \frac{A_{F_0}u^3}{s} + \frac{A_{H_3}s}{u^3} - A_{O6} \right] \rightarrow$$

$$A_{F_4} \sim N^2$$

$$c \sim R_{AdS}^2 \sim V^{-1} \sim N^{9/2}$$
$$g_s \sim N^{-3/4}$$

	t	x^1	x^2	x	y_1	y_2	y_3	y_4	y_5	y_6
N_1 D4	\otimes	\otimes	\otimes		\otimes	\otimes				
N_2 D4	\otimes	\otimes	\otimes				\otimes	\otimes		
N_3 D4	\otimes	\otimes	\otimes						\otimes	\otimes

Large-N scalings from SUGRA harmonic superposition rule in the near-horizon limit of the D4-branes

$$c \sim N^{9/2}$$

Non-trivial match!

$$g_s \sim N^{-3/4}$$

Observation: For 4d scalar potentials with an AdS minimum where the **large-N** scalings agree with those of the near-horizon geometry of N (possibly orthogonally intersecting) D-brane domain walls, there will be at least one modulus with mass such that $\Delta = 6$.

Observation: For 4d scalar potentials with an AdS minimum where the **large-N** scalings agree with those of the near-horizon geometry of N (possibly orthogonally intersecting) D-brane domain walls, there will be at least one modulus with mass such that $\Delta = 6$.

This suggests there is a **pure D-brane dual** for these 4d AdS flux vacua with $\Delta = 6$.

Observation: For 4d scalar potentials with an AdS minimum where the **large-N** scalings agree with those of the near-horizon geometry of N (possibly orthogonally intersecting) D-brane domain walls, there will be at least one modulus with mass such that $\Delta = 6$.

This suggests there is a **pure D-brane dual** for these 4d AdS flux vacua with $\Delta = 6$.

More generally, for d-dimensional AdS vacua, this should be $\Delta = 2(d-1)$.

- What singularity is probed by the D4-branes in DGKT?
- Delete the unbounded flux from the potential:

$$V = \frac{1}{s^3} \left[\frac{A_{F_4}}{us} + \frac{A_{F_0}u^3}{s} + \frac{A_{H_3}s}{u^3} - A_{O6} \right] \longrightarrow V = \frac{1}{s^3} \left[\frac{A_{F_4}}{us} + \frac{A_{F_0}u^3}{s} + \frac{A_{H_3}s}{u^3} - A_{O6} \right]$$

$$V = \frac{1}{s^3} \left[\frac{A_{F_0} u^3}{vs} + \frac{A_{F_0} u^3}{s} + \frac{A_{H_3} s}{u^3} - A_{O6} \right]$$
flow

 \rightarrow Find what geometry the **D4-branes** probe by finding the flow s(r), u(r), A(r) from the 'redidual potential'

$$ds_{10}^{2} = [s(r)]^{-2} \left(dr^{2} + e^{2A(r)} dx_{n} dx^{n} \right) + [u(r)] d\tilde{s}_{6}^{2}.$$

Example: $AdS_5 \times S_5(T_{1,1})$ in IIB with N units of F_5 -flux Remove the F_5 -flux and solve for the flow:

Conical singularity probed by D3-branes:

$$ds_{10}^2 = dr^2 + dx_n dx^n + r^2 ds_{S_5(T_{1,1})}^2$$

DGKT: $AdS_4 \times CY_3$ in massive IIA with N units of F_4 -flux Remove the F_4 -flux and solve the flow equations:

Comment: after two T-dualities a solution in massless IIA with unbounded F_6 -flux and F_2 -flux can be obtained which is scale separated as well as strongly coupled and so can be uplifted to M-theory

Cribriori, Junghans Van Hemelryck, Van Riet, Wrase 2021

Conical singularity probed by M2-branes:

$$ds_{11}^2 = dr^2 + dx_n dx^n + r^2 d\tilde{s}_7^2$$

Conclusions

- It is a challenge to understand holography for vacua that look more like the real world.
- A first step would be to do it for scale separated AdS vacua, the DGKT vacua.
- Holographically, the DGKT vacua have an interesting light spectrum, consisting fully of integer conformal dimensions.
- We can learn a lot about the D-brane dual from the scalar potential.
- Integer conformal dimensions are related to the presence of polynomial shift symmetries and the presence a **pure D-brane dual**.
- The D4-branes in DGKT probe a non-conical singularity.