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Beyond the WIMP Paradigm
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B — L Dark Photon Dark Matter

Dark photon from a new gauged U(1)g_; symmetry is a popular BSM extension

Characterised by two parameters: coupling (gg—1) and mass (mpur)

Ultralight dark photons lead to an ever-present, oscillating background dark

electric field

This leads to a very small differential acceleration between materials with different
charge-mass ratios!
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The Optomechanical Sensor
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Detecting Ultralight Dark Matter

e Sensor constantly immersed in
oscillating dark electric field

e |f mirrors made of different materials,
get differential acceleration

Amplitude related to
DM field

| o
Aa=gp_1Ap_japcos(wpm)E - M
ge-1Ap-1dg cos(wpm)E - M
DM Polarisation
Projection
ao and € - m are inherently
stochastic!
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The Stochastic Field
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e Cavity accelerometers have been used to draw limits on B — L dark photon DM
Peter W. Graham et al. 1512.06165, Daniel Carney et al. 1908.04797,
Jack Manley et al. 2007.04899

e However, a likelihood-led treatment incorporating stochastic field properties and
DM signal shape is lacking

e Want to develop this treatment in contact with experimentalists in Windchime
Collaboration!

How does field stochasticity impact projected limits?
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https://arxiv.org/abs/1512.06165
https://arxiv.org/abs/1908.04797
https://arxiv.org/abs/2007.04899

Towards a Statistical Limit-Setting Treatment

e Previously: Limits set using SNR =1

Signal Power Spectral Density 1

d= =
Noise Power Spectral Density

e Problem: Does not account for statistics of problem and stochasticity of field!

e We can quantify departure from simple SNR treatment via a correction factor, K

SNR
8B-L = KEB_|
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The Stochastic Field: Field Amplitude

e Randomness in field amplitude due to
random DM phase, ¢ ~ U(0, 27)

Nywaves
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e Amplitude distribution follows from
statistics of a 2D random walk
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The Stochastic Field: Polarisation Projection

e Signal dependent on time-averaged projection
of random DM polarisation onto sensor
sensitivity axis Andrea Caputo et al. 2105.04565

Signal o< (|& - m(t)|*) T = (cos*(6)) T

e Depends on
e Observation time (Tops)
e Direction of sensitivity axis (1)
e Location of experiment (lat)
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https://arxiv.org/abs/2105.04565

The Polarisation Projection PDF
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Towards a Statistical Limit-Setting Treatment: The Likelihoods

1. Get deterministic likelihood. Takes care of inherent statistics of problem

£det(d) - Xr210 (d, )\nc(ngL)7 k = 2)

2. Account for stochasticity. We handle this via a marginalised likelihood!

Lstoch(d) = /Q Lget r(x) p(<c052(9)> 7)dx d<cos2(9)>

3. Find that gg_; for which we can exclude gg_; = 0 to 95% confidence level

!Similar approach in Gary P. Centers et al. 1905.13650 but only for amplitude stoch.
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https://arxiv.org/abs/1905.13650

Visualising the Likelihoods
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Correcting for Stochasticity

Effect Correction Factor, k
Likelihood Treatment (Det.) 3.9
w/ Stochastic Amplitude 11
w/ Stochastic Amplitude and Polarisation 35
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Making Contact with Experiment
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The Stochastic Field: Short Observation Time

10_222 T \\\\HI T \\\H\I T \\\\HI T \\\\HI T \\\\HI ;
S on—23 L d
a2tV E6t-Wash
S /
£ 107 E MICROSCOPE
o,
3 B
S ot S /
5 F A Stoch. Amplitude E
g 10_26;_ 1‘ Deterministic _;
B SNR =1 E
10—277 | | \\\\HI Il Il \\\H\I Il Il \\\\HI Il Il \\\\HI Il Il \\\\HI |

10-* 107" 107 107! 107 10713
Dark Matter Mass, mpy (eV)
15/16



e Ultralight B — L vector is a well-motivated DM candidate
e Optomechanical sensors are up to task of measuring effects of dark electric field
e However, it is crucial to account for field stochasticity

e This can lead to O(10-100) effects in limit projections

Optomechanical sensors are powerful probes of
ultralight B — L dark matter, but we cannot ignore a proper statistical
treatment!
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Dependence on Observation Time
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Backgrounds
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Statistics

1. Solve for diy, under null hypothesis (Type-I error step)

’dlim
/ L(d|lgg-1 =0)dd =1—-«
0

2. Solve for gg_; > 0 in alternative hypothesis (Type-Il error step)

im
/ L(d|gs-1)dd =1-f=a
0
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