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Beyond the WIMP Paradigm
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B − L Dark Photon Dark Matter

• Dark photon from a new gauged U(1)B−L symmetry is a popular BSM extension

• Characterised by two parameters: coupling (gB−L) and mass (mDM)

• Ultralight dark photons lead to an ever-present, oscillating background dark

electric field

• This leads to a very small differential acceleration between materials with different

charge-mass ratios!
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The Optomechanical Sensor
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Detecting Ultralight Dark Matter

Mat. 1

Mat. 2

ULDM

• Sensor constantly immersed in

oscillating dark electric field

• If mirrors made of different materials,

get differential acceleration

∆a = gB−L∆B−L

Amplitude related to
DM field

↓
a0 cos(ωDM)ε̂ · m̂︸ ︷︷ ︸

DM Polarisation
Projection

a0 and ε̂ · m̂ are inherently

stochastic!
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The Stochastic Field

Am(t) ∼
Nwaves∑
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Our Goal

• Cavity accelerometers have been used to draw limits on B − L dark photon DM

Peter W. Graham et al. 1512.06165, Daniel Carney et al. 1908.04797,

Jack Manley et al. 2007.04899

• However, a likelihood-led treatment incorporating stochastic field properties and

DM signal shape is lacking

• Want to develop this treatment in contact with experimentalists in Windchime

Collaboration!

How does field stochasticity impact projected limits?
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https://arxiv.org/abs/1512.06165
https://arxiv.org/abs/1908.04797
https://arxiv.org/abs/2007.04899


Towards a Statistical Limit-Setting Treatment

• Previously: Limits set using SNR = 1

d ≡ Signal Power Spectral Density

Noise Power Spectral Density
!
= 1

• Problem: Does not account for statistics of problem and stochasticity of field!

• We can quantify departure from simple SNR treatment via a correction factor, κ

gB−L = κ gSNR
B−L

7 / 16



The Stochastic Field: Field Amplitude

• Randomness in field amplitude due to

random DM phase, φ ∼ U(0, 2π)

a0 ∝
Nwaves∑

i

e iφi

• Amplitude distribution follows from

statistics of a 2D random walk

a0 ∼ Rayle
igh
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The Stochastic Field: Polarisation Projection

ε

m

ω⊕
• Signal dependent on time-averaged projection

of random DM polarisation onto sensor

sensitivity axis Andrea Caputo et al. 2105.04565

Signal ∝ ⟨|ε̂ · m̂(t)|2⟩T ≡ ⟨cos2(θ)⟩T

• Depends on
• Observation time (Tobs)

• Direction of sensitivity axis (m̂)

• Location of experiment (lat)
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https://arxiv.org/abs/2105.04565


The Polarisation Projection PDF
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Towards a Statistical Limit-Setting Treatment: The Likelihoods

1. Get deterministic likelihood. Takes care of inherent statistics of problem

Ldet(d) = χ2
nc (d ; λnc(gB−L), k = 2)

2. Account for stochasticity. We handle this via a marginalised likelihood1

Lstoch(d) =

∫

Ω
Ldet r(x) p(⟨cos2(θ)⟩T ) dx d⟨cos2(θ)⟩

3. Find that gB−L for which we can exclude gB−L = 0 to 95% confidence level

1Similar approach in Gary P. Centers et al. 1905.13650 but only for amplitude stoch.
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https://arxiv.org/abs/1905.13650


Visualising the Likelihoods
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Correcting for Stochasticity

Effect Correction Factor, κ

Likelihood Treatment (Det.) 3.9

w/ Stochastic Amplitude 11

w/ Stochastic Amplitude and Polarisation 35
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Making Contact with Experiment
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The Stochastic Field: Short Observation Time
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Summary

• Ultralight B − L vector is a well-motivated DM candidate

• Optomechanical sensors are up to task of measuring effects of dark electric field

• However, it is crucial to account for field stochasticity

• This can lead to O(10–100) effects in limit projections

Optomechanical sensors are powerful probes of

ultralight B − L dark matter, but we cannot ignore a proper statistical

treatment!
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Dependence on Observation Time
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Backgrounds

STh
aa ≡ 4kBTγ

ms

SSN
aa (ω) ≡ ℏκL2

2ωLPL
|χc(ω)|−2|χm(ω)|−2

SBA
aa (ω) ≡ 2ℏωLPL

m2
sL

2κ
|χc(ω)|2

|χm(ω)|−2 = (ω2 − ω2
0)

2 + γ2ω2

|χc(ω)|−2 =
ω2 + κ2/4

κ
.
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Statistics

1. Solve for dlim under null hypothesis (Type-I error step)

∫ dlim

0
L(d |gB−L = 0)dd = 1− α

2. Solve for gB−L > 0 in alternative hypothesis (Type-II error step)

∫ dlim

0
L(d |gB−L)dd = 1− β ≡ α
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