



# Towards the Detection of Ultralight Dark Photon Dark Matter Using Optomechanical Sensors

#### **SUSY 2023**

**Dorian Amaral**<sup>1</sup> Erqian Cai<sup>1</sup> Christopher Tunnell<sup>1</sup>

July 17th, 2023

<sup>1</sup>Rice University

## Beyond the WIMP Paradigm



#### B-L Dark Photon Dark Matter

- ullet Dark photon from a new gauged  $U(1)_{B-L}$  symmetry is a popular BSM extension
- ullet Characterised by two parameters: coupling  $(g_{B-L})$  and mass  $(m_{\mathrm{DM}})$
- Ultralight dark photons lead to an ever-present, oscillating background dark electric field
- This leads to a very small differential acceleration between materials with different charge-mass ratios!

# The Optomechanical Sensor



Wikipedia

## **Detecting Ultralight Dark Matter**



- Sensor constantly immersed in oscillating dark electric field
- If mirrors made of different materials, get differential acceleration

Amplitude related to DM field 
$$\Delta a = g_{B-L} \Delta_{B-L} \hat{\boldsymbol{a_0}} \cos(\omega_{\mathrm{DM}}) \hat{\boldsymbol{\varepsilon}} \cdot \hat{\boldsymbol{m}}$$
 DM Polarisation Projection

 $a_0$  and  $\hat{\varepsilon} \cdot \hat{m}$  are inherently stochastic!

#### The Stochastic Field



#### **Our Goal**

- Cavity accelerometers have been used to draw limits on B-L dark photon DM Peter W. Graham et al. **1512.06165**, Daniel Carney et al. **1908.04797**, Jack Manley et al. **2007.04899**
- However, a likelihood-led treatment incorporating stochastic field properties and DM signal shape is lacking
- Want to develop this treatment in contact with experimentalists in Windchime
   Collaboration!

How does field stochasticity impact projected limits?

## **Towards a Statistical Limit-Setting Treatment**

• Previously: Limits set using SNR = 1

$$d \equiv \frac{\text{Signal Power Spectral Density}}{\text{Noise Power Spectral Density}} \stackrel{!}{=} 1$$

- Problem: Does not account for statistics of problem and stochasticity of field!
- ullet We can quantify departure from simple SNR treatment via a correction factor,  $\kappa$

$$g_{B-L} = \kappa \, g_{B-L}^{\mathrm{SNR}}$$

### The Stochastic Field: Field Amplitude

• Randomness in field amplitude due to random DM phase,  $\varphi \sim \mathrm{U}(0,\,2\pi)$ 

$$a_0 \propto \sum_i^{N_{
m waves}} e^{iarphi_i}$$

 Amplitude distribution follows from statistics of a 2D random walk





## The Stochastic Field: Polarisation Projection



 Signal dependent on time-averaged projection of random DM polarisation onto sensor sensitivity axis
 Andrea Caputo et al. 2105.04565

Signal 
$$\propto \langle |\hat{\boldsymbol{\varepsilon}} \cdot \hat{\boldsymbol{m}}(t)|^2 \rangle_T \equiv \langle \cos^2(\theta) \rangle_T$$

- Depends on
  - Observation time ( $T_{
    m obs}$ )
  - Direction of sensitivity axis  $(\hat{m})$
  - Location of experiment (lat)

## The Polarisation Projection PDF



# Towards a Statistical Limit-Setting Treatment: The Likelihoods

1. Get deterministic likelihood. Takes care of inherent statistics of problem

$$\mathcal{L}_{\text{det}}(d) = \chi_{\text{nc}}^2(d; \lambda_{\text{nc}}(g_{B-L}), k = 2)$$

2. Account for stochasticity. We handle this via a marginalised likelihood 1

$$\mathcal{L}_{\mathrm{stoch}}(d) = \int_{\Omega} \mathcal{L}_{\mathrm{det}} \, r(x) \, p(\langle \cos^2(\theta) \rangle_T) \, \mathrm{d}x \, \mathrm{d}\langle \cos^2(\theta) \rangle$$

3. Find that  $g_{B-L}$  for which we can exclude  $g_{B-L}=0$  to 95% confidence level

<sup>&</sup>lt;sup>1</sup>Similar approach in Gary P. Centers et al. 1905.13650 but only for amplitude stoch.

# Visualising the Likelihoods





# **Correcting for Stochasticity**

| Effect                                   | Correction Factor, $\kappa$ |
|------------------------------------------|-----------------------------|
| Likelihood Treatment (Det.)              | 3.9                         |
| w/ Stochastic Amplitude                  | 11                          |
| w/ Stochastic Amplitude and Polarisation | 35                          |

### **Making Contact with Experiment**



#### The Stochastic Field: Short Observation Time



#### **Summary**

- Ultralight B − L vector is a well-motivated DM candidate
- Optomechanical sensors are up to task of measuring effects of dark electric field
- However, it is crucial to account for field stochasticity
- This can lead to  $\mathcal{O}(10\text{--}100)$  effects in limit projections

Optomechanical sensors are powerful probes of ultralight B-L dark matter, but we cannot ignore a proper statistical treatment!

### **Dependence on Observation Time**



# Backgrounds

$$S_{aa}^{\rm Th} \equiv \frac{4k_B T \gamma}{m_s}$$

$$S_{aa}^{\rm SN}(\omega) \equiv \frac{\hbar \kappa L^2}{2\omega_L P_L} |\chi_c(\omega)|^{-2} |\chi_m(\omega)|^{-2}$$

$$S_{aa}^{\rm BA}(\omega) \equiv \frac{2\hbar \omega_L P_L}{m_s^2 L^2 \kappa} |\chi_c(\omega)|^2$$

$$|\chi_m(\omega)|^{-2} = (\omega^2 - \omega_0^2)^2 + \gamma^2 \omega^2$$

$$|\chi_c(\omega)|^{-2} = \frac{\omega^2 + \kappa^2/4}{\kappa}.$$

#### **Statistics**

1. Solve for  $d_{\lim}$  under null hypothesis (Type-I error step)

$$\int_0^{d_{\text{lim}}} \mathcal{L}(d|g_{B-L}=0) dd = 1 - \alpha$$

2. Solve for  $g_{B-L} > 0$  in alternative hypothesis (Type-II error step)

$$\int_0^{d_{\lim}} \mathcal{L}(d|g_{B-L}) \mathrm{d}d = 1 - \beta \equiv \alpha$$